The present invention relates generally to a logic arrangement, data structure, system and method for acquiring data, and more particularly to a logic arrangement, data structure, system and method for acquiring data describing at least one characteristic of an object, synthesizing new data, recognizing acquired data and reducing the amount of data describing one or more characteristics of the object (e.g., a human being).
Natural images are the composite consequence of multiple factors related to scene structure, illumination and imaging. Human perception of natural images remains robust despite significant variation of these factors. For example, people possess a remarkable ability to recognize faces given a broad variety of facial geometries, expressions, head poses and lighting conditions.
Some past facial recognition systems have been developed with the aid of linear models such as principal component analysis (“PCA”), independent component analysis (“ICA”). Principal components analysis (“PCA”) is a popular linear technique that has been used in past facial image recognition systems and processes. By their very nature, linear models work best when a single-factor varies in an image formation. Thus, linear techniques for facial recognition-systems perform adequately when person identity is the only factor permitted to change. However, if other factors (such as lighting, viewpoint, and expression) are also permitted to modify facial images, the recognition rate of linear facial recognition systems can fall dramatically.
Similarly, human motion is the composite consequence of multiple elements, including the action performed and a motion signature that captures the distinctive pattern of movement of a particular individual. Human recognition of particular characteristics of such movement can be robust even when these factors greatly vary. In the 1960's, the psychologist Gunnar Kohansson performed a series of experiments in which lights were attached to people's limbs, and recorded a video of the people performing different activities (e.g., walking, running and dancing). Observers of these moving light videos in which only the lights are visible were asked to classify the activity performed, and to note certain characteristics of the movements, such as a limp or an energetic/tired walk. It was observed that this task can be performed with ease, and that the observer could sometimes determine even recognize specific individuals in this manner. This may corroborate the idea that the motion signature is a perceptible element of human motion and that the signature of a motion is a tangible quantity that can be separated from the actual motion type.
However, there is a need to overcome at least some of the deficiencies of the prior art techniques.
Such need is addressed by the present invention. One of the objects of the present invention is to provide a logic arrangement, data structure, storage medium, system and method for generating an object descriptor. According to an exemplary embodiment of the present invention such data structure can include a plurality of first data elements that have information regarding at least one characteristic of the at least one object. The information of the first data elements is capable of being used to obtain the object descriptor. The object descriptor is related to the at least one characteristic and a further characteristic of the at least one object, and is capable of being used to generate a plurality of second data elements which contain information regarding the further characteristic of the at least one object based on the object descriptor.
In another exemplary embodiment of the present invention, the method can include a plurality of first data elements containing information regarding at least one characteristic of the at least one object. The object descriptor is obtained based on the information of the first data elements and is related to the at least one characteristic and a further characteristic of the object. A plurality of second data elements containing information regarding the further characteristic of the at least one object based on the object descriptor.
In still another exemplary embodiment of the present invention, the storage medium including a software program, which when executed by a processing arrangement, is configured to cause the processing arrangement to execute a series of steps. The series of steps can include a plurality of first data elements containing information regarding at least one characteristic of the at least one object. The object descriptor is obtained based on the information of the first data elements and is related to the at least one characteristic and a further characteristic of the object. A plurality of second data elements containing information regarding the further characteristic of the at least one object based on the object descriptor.
In a further exemplary embodiment of the present invention, the logic arrangement is adapted for an execution by a processing arrangement to perform a series of steps. The series of steps can include a plurality of first data elements containing information regarding at least one characteristic of the at least one object. The object descriptor is obtained based on the information of the first data elements and is related to the at least one characteristic and a further characteristic of the object. A plurality of second data elements containing information regarding the further characteristic of the at least one object based on the object descriptor.
Another of the objects of the present invention is to provide a logic arrangement, data structure, storage medium, system and method for identifying a sample object of a plurality of objects based upon a sample object descriptor. According to an exemplary embodiment of the present invention such data structure can include a plurality of first data elements that have information which is defined by at least two first primitives. The first data elements are capable of being used to obtain at least one of a plurality of object descriptors. The exemplary data structure may also include a plurality of second data elements that have information which is defined by at least two second primitives. The second data elements are capable of being used to obtain the sample object descriptor. The at least one obtained object descriptor configured to be compared to the sample object descriptor for determining whether the object is potentially identifiable as one of the object descriptors. Each of the plurality of object descriptors is associated with a respective one of a plurality of objects.
In another exemplary embodiment of the present invention, the method can include a plurality of data elements which are defined by at least two primitives are collected. At least one of a plurality of object descriptors are obtained based on the information of the data elements. The sample object descriptor is compared to at least one of the object descriptors for determining whether the sample object descriptor is identifiable as one of the object descriptors. Each of the object descriptors is associated with a respective one of a plurality of objects.
In still another exemplary embodiment of the present invention, the storage medium including a software program, which when executed by a processing arrangement, is configured to cause the processing arrangement to execute a series of steps. The series of steps can include can include a plurality of data elements which are defined by at least two primitives are collected. At least one of a plurality of object descriptors are obtained based on the information of the data elements. The sample object descriptor is compared to at least one of the object descriptors for determining whether the sample object descriptor is identifiable as one of the object descriptors. Each of the object descriptors is associated with a respective one of a plurality of objects.
In a further exemplary embodiment of the present invention, the logic arrangement is adapted for an execution by a processing arrangement to perform a series of steps. The series of steps can include a plurality of data elements which are defined by at least two primitives are collected. At least one of a plurality of object descriptors are obtained based on the information of the data elements. The sample object descriptor is compared to at least one of the object descriptors for determining whether the sample object descriptor is identifiable as one of the object descriptors. Each of the object descriptors is associated with a respective one of a plurality of objects.
Yet another of the objects of the present invention is to provide a logic arrangement, data structure, storage medium, system and method for reducing the dimensionality of one of the at least two object descriptors. According to an exemplary embodiment of the present invention such data structure can include a plurality of data elements that have information defined by at least two primitives. The data elements are capable of being used to obtain one of the object descriptors. The one of the object descriptors is capable having a reduced dimensionality.
In another exemplary embodiment of the present invention, the method can include a plurality of data elements defined by at least two primitives are collected. The one of the object descriptors based on the information of the data elements is obtained. The dimensionality of the one of the object descriptors is reduced.
In still another exemplary embodiment of the present invention, the storage medium including a software program, which when executed by a processing arrangement, is configured to cause the processing arrangement to execute a series of steps. The series of steps can include can include a plurality of data elements defined by at least two primitives are collected. The one of the object descriptors based on the information of the data elements is obtained. The dimensionality of the one of the object descriptors is reduced.
In a further exemplary embodiment of the present invention, the logic arrangement is adapted for an execution by a processing arrangement to perform a series of steps. The series of steps can include a plurality of data elements defined by at least two primitives are collected. The one of the object descriptors based on the information of the data elements is obtained. The dimensionality of the one of the object descriptors is reduced.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the present invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
In a preferred embodiment of the present invention, the data capturing system 112 can be a “VICON” system which employs at least four video cameras. The VICON system can be used to capture human limb motion and the like.
A multilinear data analysis application can be stored in the data storage unit 106 of the central server 102. This multilinear data analysis application is capable of recognizing an unknown individual, an unknown object, an unknown action being performed by an individual, an unknown expression, an unknown illumination, an unknown viewpoint, and the like. Such application can also synthesize a known action that has never before recorded as being performed by an individual, as well as an expression which has previously not been recorded as being formed by an individual. Further the application can reduce the amount of stored data that describes an object or action by using dimensionality reduction techniques, and the like. It should be understood that dimensionality reduction is equivalent to compression and data reduction. The multilinear data analysis application preferably utilizes a corpus of data, which is collected using the data capturing system 112 from different subjects. The corpus of data is stored in the database 108 of the server 102, and can be organized as a tensor D, which shall be described in further detail as follows.
A tensor, also known as an n-way array or multidimensional matrix or n-mode matrix, is a higher order generalization of a vector (first order tensor) and a matrix (second order tensor). A tensor can be defined as a multi-linear mapping over a set of vector spaces. The tensor can be represented in the following manner: AεIRI
In tensor terminology, column vectors are referred to as mode-1 vectors, and row vectors are referred to as mode-2 vectors. Mode-n vectors of an Nth order tensor AεIRI
Rn=rankn(A)=rank(A(n)).
A generalization of the product of two matrices can be the product of the tensor and matrix. The mode-n product of tensor AεIRI
The entries of the tensor B are computed by
The mode-n product can be expressed as B=A×nM, or in terms of flattened matrices as B(n)=MA(n). The mode-n product of a tensor and a matrix is a special case of the inner product in multilinear algebra and tensor analysis. The mode-n product is often denoted using Einstein summation notation, but for purposes of clarity, the mode-n product symbol will be used. The mode-n product has the following properties:
An Nth-order tensor AεIRI
A singular value decomposition (SVD) can be expressed as a rank decomposition as is shown in the following simple example:
It should be noted that an SVD is a combinatorial orthogonal rank decomposition, but that the reverse is not true; in general, rank decomposition is not necessarily singular value decomposition. Also, the N-mode SVD can be expressed as an expansion of mutually orthogonal rank-1 tensors, as follows:
where Un(in) is the in column vector of the matrix Un. This is analogous to the equation
A client interface application can be stored in the data storage units 118, 128 of the first and second client servers 114, 124, respectively. The client interface application preferably allows the user to control the multilinear data analysis application described previously. For example, the client interface application can instruct the multilinear data analysis application to generate new data describing a particular characteristic of a known object that may be different from those characteristics of the known object which were already observed. In addition, the client interface application can instruct the multilinear data analysis application to generate new data describing a particular characteristic of the remainder of the population of observed objects that are different from those characteristics of the remainder of the population already observed. Also, the client interface application can instruct the multilinear data analysis application to recognize an unknown object from the population of observed objects, recognize a characteristic of a known object from the characteristics of the known object already observed, dimensionally reduce the amount of data stored to describe a characteristic of a known object, etc. In one exemplary embodiment of the present invention, the object can be a person and the characteristic may be an action. In another embodiment of the present invention, the object could be a person's face, and the characteristic can be a facial expression. In response to the client interface application's instructions, the multilinear data analysis application may transmit to the client interface application certain information describing the requested characteristic or object.
A. Motion Signature Using a Tensor Representation of a Corpus of Data
The corpus of motion data is preferably collected from different subjects that perform at least one action which forms the tensor D. Each action can be repeated multiple times, and a motion cycle can be segmented from each motion sequence. For example, in order to suppress noise, the collected motion data can be passed through a low-pass fourth-order Butterworth filter at a cut off frequency of 6 Hz, and missing data may be interpolated with a cubic spline. Joint angles can be computed to represent the motion information of the limbs of various subjects (e.g., people). To compute the joint angles, the frame coordinate transformation for each limb may be calculated with respect to an area in which the motion information is collected, the relative orientation of each limb in the kinematic chain can then be determined, and the inverse kinematic equations are thus obtained. The joint angles are thereafter stored in the tensor D. Such tensor D can have the form of a IRG×M×T, where G is the number of subjects, M is the number of action classes, and T is the number of joint angle time samples.
In an exemplary implementation of a preferred embodiment according to the present invention, three motions are collected for each person: e.g., walk, ascend-stairs, and descend stairs. In another exemplary implementation, each action can be repeated ten (10) times. In yet another exemplary implementation, human limb motion can be recorded using the VICON system that employs four infra-red video cameras. These cameras generally detect infra-red light which is reflected from 18 markers, 9 placed on each leg of a human subject. The system 112 then computes a three-dimensional position of the markers relative to a fixed coordinate frame. The video cameras can be positioned on one side of a 12 meter long walkway such that each marker can be observed by at least two cameras during the subject's motion. To extract the three angles spanned by a joint of the subject, a plane can be defined for each limb whose motion can be measured relative to the sagittal, frontal and transverse planes through the body of the subject. It should be noted that the joint angle time samples reflect the joint angles of various joints as they move over time.
Turning to further particulars of
At step 204, the process 200 solves for a core tensor Z which can be generally used for defining the inter-relationships between the orthonormal mode matrices. This step represents an N-mode singular value decomposition (“SVD”) process 204, shown in
In an alternate embodiment of the present invention, an alternate n-mode orthonormal decomposition procedure is used in place of the n-mode SVD procedure.
In step 205, the process 200 analyzes the data collected in the step 202. With the knowledge of motion sequences of several subjects, the tensor D can take the form of a IRG×M×T tensor, where G is the number of subjects or people, M is the number of action classes, and T is the number of joint angle time samples. The N-mode SVD procedure of step 204 decomposes the tensor D into the product of a core tensor Z, and three orthogonal matrices as follows:
D=Z×1P×2A×3J,
The subject matrix P=[p1 . . . pn . . . pG]T, whose subject-specific row vectors pnT span the space of person parameters, encodes the per-subject invariance across actions. Thus, the matrix P contains the subject or human motion signatures. The action matrix A=[a1amaM]T, whose action specific row vectors anT span the space of action parameters, encodes the invariance for each action across different subjects. The joint angle matrix J whose row vectors which span the space of joint angles are preferably the eigenmotions, the motion variation.
The product Z×3 J transforms the eigenmotions into tensormotions, a tensor representation of the variation and co-variation of modes (subjects and action classes). The product Z×3J also characterizes how the subject's parameters and action parameters interact with one another. The tensor
B=Z×2A×3J
is an action specific tensormotion, which contains a set of basis matrices for all the motions associated with particular actions. The tensor
C=Z×1P×3J
is a subject/signature specific tensormotion, which preferably contains a set of basis matrices for all the motions associated with particular subjects (with particular subject motion signatures). The core tensor Z, the matrix A, and the matrix J generated by the N-mode SVD procedure of step 204 of the tensor D define a generative model.
In step 206, the process 200 determines whether it has been instructed by the client interface application to synthesize new data describing at least one known action that was never before recorded as being performed by anew subject. If the process 200 has received such instruction, step 208 is executed to perform advances to an individual generation procedure, as shown in further detail in
In step 210, the process 200 determines if it was instructed by the client interface application to synthesize new data describing a new action that was never before recorded as being performed by the remainder of the population of observed subjects. If the process 200 has received such instruction, the process 200 continues to an action generation procedure of step 212, as shown in further detail in
In step 214, the process 200 determines if it was instructed by the client interface application to recognize an unknown subject who has been observed to perform a known action as one of the population of observed known subjects. If the process 200 has received such instruction, the process 200 is directed to an individual recognition procedure of step 216, as shown in greater detail in
In a preferred embodiment, the process 200 is capable of recognizing an unknown subject who has been observed performing an unknown action as one of the population of observed known subjects.
In step 218, the process 200 determines if it was instructed by client interface application to recognize an unknown action being performed by a known subject as one of the actions already observed as being performed by the known subject. If the process 200 has received such an instruction, the process 200 continues to an action recognition procedure of step 220, as shown in
By extension, the tensor D can be an order-N tensor comprising N spaces, where N is preferrably greater than 2. N-mode SVD is a natural generalization of SVD that orthogonalizes these N spaces, and decomposes the tensor as the mode-n product of N-orthonormal spaces.
D=Z×1U1×2U2 . . . ×nUn . . . ×NUN,
A matrix representation of the N-mode SVD can be obtained by:
D(n)=UnZ(n)(Un+1Un+2 . . . UNU1 . . . Un−1)T
where is the matrix Kronecker product. The core tensor Z, can be analogous to the diagonal singular value matrix in conventional matrix SVD. It is important to realize, however, that the core tensor does not have a diagonal structure; rather, Z is in general a full tensor. The core tensor Z governs the interaction between mode matrices Un, for n=1 . . . , N. Mode matrix Un contains the orthonormal vectors spanning the column space of the matrix D(n) that results from the mode-n flattening of the tensor D, as illustrated in
As shown in
Z=D×1U1T×2U2T . . . ×nUnT . . . ×NUNT.
When the core tensor Z is selected, the procedure of step 204 is completed.
It should be noted that when D(n) is a non-square matrix, the computation of Un in the singular value decomposition D(n)=UnΣVnT can be performed, depending on which dimension of D(n) is smaller, by decomposing either D(n)D(n)T=UnΣ2UnT and then computing VnT=Σ+UnTD(n), or by decomposing D(n)TD(n)T=VnΣ2VnT and then computing Un=D(n)VnΣ+.
In step 410, the procedure of step 208 synthesizes a complete set of motions for the subject or individual. The complete set of motions for the new subject can be synthesized as follows:
Dp=B×1pT,
where B is defined as B=Z×2A×3J, as described above. When the motion signature for the individual is computed, the process 208 exits.
In particular, step 501 of this procedure flattens the new data tensor Dp,a in the action mode, yielding a row vector dpT. By flattening this new data tensor in the action mode, the matrix Dp,a(action) is generated, and in particular a row vector which we can denote as dpT is produced. Therefore, in terms of the flattened tensors, the equation Dp,a=Cp×2aT described above can be written as dpT=aTCp(actions) or dp=Cp(actions)Ta. Once the tensor is flattened, this procedure determines as to whether the new motion data tensor Dp,a represents one subject performing the new action in step 502. If the new motion data tensor Dp,a represents one subject performing the new action, the procedure of step 212 advances to step 504. If the new motion data tensor Dp,a represents more than one individual performing the new action, the procedure of step 212 is forwarded to step 506. In step 504, the associated action parameters are determined based on the new motion data tensor Dp,a, which represents one subject performing the new action. If a known subject, e.g., a person who is already recorded in the motion database, performs a new type of action dp, it is possible to compute the associated action parameters aT=dpTC−1p(actions). When the associated action parameters are computed, the procedure of step 212 is directed to step 508.
In step 506, the associated action parameters are computed based on the new motion data tensor Dp,a, which represents more than one subject performing the new action. If several different subjects are observed performing the same new action dpk, the action parameters are computed as follows:
When the associated action parameters are computed, the process 212 advances to step 508, in which the new action are obtained for the remainder of the subjects represented in the subject matrix P. The new action for all the subjects in the database can be synthesized as follows: Da=C×2aT, where C is given as C=Z×1P×3J, supra. When the new action is synthesized, the procedure of step 212 is completed.
Thereafter, in step 608, it is determined whether a process-computed magnitude of the difference between the signature p and the signature pn is smaller than any magnitude computed up to this point. If the magnitude of the difference between the signature p and the signature pn is smaller than any difference computed up to this point, the process 216 advances to step 610. Otherwise, the process 216 is forwarded to step 612. In step 610, the variable match is set to be equal to the index n. The variable match generally signifies the index of the recognized subject, such that the signature p most closely matches the signature Pmatch.
Then, in step 612, it is determined if the index n is equal to G. If that is the case, the procedure of step 216 advances to step 616, otherwise the procedure of step 216 is forwarded to step 614. In step 614, the index n is incremented by one (1), and the procedure is returned to step 606, such that each of the subjects in the subject matrix P from 1 to G is subjected to the comparison. Finally, in step 616, the signature Pmatch is identified as the signature that most closely approximates the signature p. In a preferred embodiment of the present invention, the variable match is an indexed array, which records the indices of multiple signatures that most closely match the signature p. Once the signature Pmatch is identified, the procedure of step 216 is completed.
In step 708, the procedure of step 220 determines whether process computed magnitude of the difference between the vector a and the action parameter vector am is smaller than any difference computed up to this point. If the magnitude of the difference between the vector a and the action parameter vector am is smaller than any difference computed up to this point, the procedure of step 220 advances to step 710. Otherwise, the procedure of step 220 is forwarded to step 712. In step 710, the procedure of step 220 sets the variable match is set to be equal to the index m. The variable match generally signifies the index of the recognized action, such that the vector a most closely matches the action parameter vector amatch.
Then, in step 712, it is determined if the index m is equal to M. If that is the case, the procedure of step 220 advances to step 716, otherwise the procedure is forwarded to step 714. Step 714, indicates that the index m is incremented by one (1), and the procedure advances to step 706, such that the index m increments through each of the actions in the action matrix A from 1 to M. In step 714, the action parameter vector amatch is identified as the signature that most closely approximates the vector a. In a preferred embodiment of the present invention, the variable match can be an indexed array, which records the indices of multiple actions that most closely match the vector a. Once the action parameter vector amatch is identified, the procedure of step 220 is completed.
B. Facial Signatures Using a Tensor Representation of a Corpus of Data
In a preferred embodiment of the present invention, three expressions can be collected for each person: e.g., smile, neutral, and yawn. Each expression may be captured in four different illuminations, i.e. light positions, and three different viewpoints. The four different illuminations may be one light from the center, one light from the right, one light from the left, and two lights one from the right and one from the left. The three different viewpoints may be center, 34 degrees to the right, and 34 degrees to the left. In another preferred embodiment of the present invention, further similar expressions are collected for each person such that each expression is captured in four different illuminations and two different viewpoints. For example, the four different illuminations are one light from the center, one light from the right, one light from the left, and two lights one from the right and one from the left. The two different viewpoints are 17 degrees to the right, and 17 degrees to the left. In still another exemplary embodiment of the present invention, each expression is captured in three different illuminations and five different viewpoints. For example, the three different illuminations are one light from the center, one light from the right, and one light from the left. Also, the five different viewpoints are center, 17 degrees to the right, 17 degrees to the left, 34 degrees to the right, and 34 degrees to the left.
As shown in
D=Z×1Usubjects×2Uviews×3Uillum×4Uexpress×5Upixels
where the G×V×I×E×P core tensor Z governs the interaction between the factors represented in the 5 mode matrices: The G×G mode matrix Usubjects spans the space of subject parameters, the V×V mode matrix Uviews spans the space of viewpoint parameters, the I×I mode matrix Uillum spans the space of illumination parameters and the E×E mode matrix Uexpress spans the space of expression parameters. The P×P mode matrix Upixels orthonormally spans the space of images.
The multilinear data analysis incorporates aspects of a linear principal component analysis (“PCA”) analysis. Each column of Usubjects is an “eigenimage”. These eigenimages are preferably identical to the conventional eigenfaces, since the eigenimages are computed by performing the SVD on the mode-5 flattened data tensor D so as to yield the matrix Dsubjects. One of the advantages of multilinear analysis is that the core tensor Z can transform the eigenimages in Upixels into a set of eigenmodes, which represent the principal axes of variation across the various modes (subject, viewpoints, illuminations, expressions), and represent how the various factors interact with each other to create the facial images. This can be accomplished by generating the product Z×5Upixels. In contrast, the PCA basis vectors or eigenimages represent only the principal axes of variation across images.
The facial image database can include V·I·E images for each subject which vary with viewpoint, illumination and expression. The PCA output represents each subject as a set of V·I·E vector-valued coefficients, one from each image in which the subject appears.
Multilinear analysis allows each subject to be represented, regardless of viewpoint, illumination, and expression, with the same coefficient vector of dimension G relative to the bases comprising the G×V×I×E×P tensor
D=Z×2Uviews×3Uillum×4Uexpress×5Upixels.
Each column in the tensor D is a basis matrix that comprises N eigenvectors. In any column, the first eigenvector depicts the average subject, and the remaining eigenvectors capture the variability across subjects for the particular combination of viewpoint, illumination and expression associated with that column. Each image is represented with a set of coefficient vectors representing the subject, view point, illumination and expression factors that generated the image. Multilinear decomposition allows the multilinear data analysis application 800 to construct different types of basis depending on the instruction received from the client interface application.
In particular step 814 of
Thereafter, in step 822, the multilinear data analysis application 800 determines whether the client interface application has instructed the multilinear data analysis application 800 to dimensionally reduce the amount of data describing illuminations. If the multilinear data analysis application 800 has received such instruction, the multilinear data analysis application 800 advances to a data reduction procedure of step 824, as shown in greater detail in
Then, in step 910, the subtensor Bv,i,e is flattened along the subject mode. The subtensor Bv,i,e is flattened along the subject mode to obtain the G×P matrix Bv,i,e (subject). It should be noted that a specific training image dd of subject p in viewpoint v, illumination i, and expression e can be written as dp,v,i,e=Bv,i,e(subject)Tcp; hence, cp=Bv,i,e(subject)−T dp,v,i,e.
Then, in step 912, an index variable p and a variable match are initialized. For example, the index variable p is initialized to one (1), and the variable match is initialized to negative one (−1). Once these variables are initialized, the procedure of step 816 advances to step 914, in which. the projection operator Bv,i,e(subject)−T is used to project the new data vector d into a set of candidate coefficient vectors. Given the new data vector d, the projection operator Bv,i,e(subject)−T is used to project the new data vector d into a set of candidate coefficient vectors Cv,i,e=Bv,i,e(subject)−Td for every v, i, e combination. In step 916, each of the set of candidate coefficient vectors cv,i eis compared against the person-specific coefficient vectors cp. The comparison can be made according to the following equation:
∥cv,i,e−cp∥.
In step 918, it is determined whether the set of candidate coefficient vectors cv,i,e is the closest match to the subject-specific coefficient vectors cp up to this point. The best matching vector cp can be the one that yields the smallest value of ∥cv,i,e,−cp∥ among all viewpoints, illuminations, and expressions. If the magnitude of the difference between the set of candidate coefficient vectors cv,i,e and the subject-specific coefficient vectors cp is smaller than any difference computed up to this point, the procedure of step 816 advances to step 920. Otherwise, the magnitude of the difference between the set of candidate coefficient vectors cv,i,e and the procedure of step 816 is forwarded to step 922. Step 920 provides that the variable match is set to be equal to the index p. The variable match signifies the index of the most closely matched subject, such that the set of candidate coefficient vectors cv,i,e most closely matches the subject-specific coefficient vectors cmatch.
Thereafter, in step 922, it is determined if the index p is equal to G. If that is the case, the procedure of step 816 sets the index p is set equal to one (1) and advances to step 928; otherwise, the procedure of step 816 advances to step 924. In step 924, the index p is incremented by one (1), and the procedure of step 816 advances to step 914, such that the procedure tests each of the subjects in the subject matrix Usubject from 1 to G.
In step 928, it is determined if the index e is equal to E. If that is the case, the procedure of step 816 sets the index e equal to one (1) and advances to step 930; otherwise, the procedure of step 816 advances to step 934. In step 934, the index e is incremented by one (1), and the procedure of step 816 advances to step 908, such that the procedure tests each of the subjects in the subject matrix Uexpress from 1 to E.
In step 930, it is determined if the index i is equal to I. If that is the case, the procedure of step 816 sets the index i equal to one (1) and advances to step 932; otherwise, the procedure of step 816 advances to step 936. In step 936, the index is incremented by one (1), and the procedure of step 816 advances to step 908, such that the procedure tests each of the subjects in the subject matrix Uillum from 1 to I.
In step 932, it is determined if the index v is equal to V. If that is the case, the procedure of step 816 advances to step 926; otherwise, the procedure of step 816 advances to step 938. In step 938, the index v is incremented by one (1), and the procedure of step 816 advances to step 908, such that the procedure tests each of the subjects in the subject matrix Uviews from 1 to V. Finally, in step 926, the subject match can be identified as the subject portrayed in the new data vector d. In a preferred embodiment of the present invention, the variable match can be an indexed array, that records the indices of multiple subjects most closely matching the subjects portrayed in the new data vector d. Once the subject match is identified, the procedure of step 816 is completed.
Then, in step 1010, the subtensor Bp,v,i is flattened along the expression mode. The subtensor Bp,v,i is flattened along the expression mode to obtain the E×P matrix Bp,v,i(express). It should be noted that a specific training image dd of subject p in viewpoint v, illumination i, and expression e can be written as dp,v,i,e=Bp,v,i(subject)Tce; hence, ce=Bp,v,i(subject)−Tdp,v,i,e.
Then, in step 1012, an index variable e and a variable match are initialized. For example, the index variable e is initialized to one (1), and the variable match is initialized to negative one (−1). Once these variables are initialized, the procedure of step 820 advances to step 1014, in which the projection operator Bp,v,i(subject)−T is used to project the new data vector d into a set of candidate coefficient vectors. Given the new data vector d, the projection operator Bp,v,i(subject)−T is used to project the new data vector d into a set of candidate coefficient vectors cp,v,i=Bp,v,i(subject)−T d for every p, v, i combination. In step 1016, each of the set of candidate coefficient vectors cp,v,i is compared against the person-specific coefficient vectors Ce. The comparison can be made according to the following equation:
∥cp,v,i−ce∥.
In step 1018, it is determined whether the set of candidate coefficient vectors cp,v,i is the closest match to the expression coefficient vectors ce up to this point. The best matching vector ce can be the one that yields the smallest value of ∥cp,v,i−ce∥ among all viewpoints, illuminations, and expressions. If the magnitude of the difference between the set of candidate coefficient vectors cp,v,i and the expression coefficient vectors ce is smaller than any difference computed up to this point, the procedure of step 820 advances to step 1020. Otherwise, the magnitude of the difference between the set of candidate coefficient vectors cp,v,i and the procedure of step 820 is forwarded to step 1022. Step 1020 provides that the variable match is set to be equal to the index p. The variable match signifies the index of the most closely matched expression, such that the set of candidate coefficient vectors cp,v,i most closely matches the expression coefficient vectors cmatch.
Thereafter, in step 1022, it is determined if the index e is equal to E. If that is the case, the procedure of step 820 sets the index p is set equal to one (1) and advances to step 1028; otherwise, the procedure of step 820 advances to step 1024. In step 1024, the index p is incremented by one (1), and the procedure of step 820 advances to step 1014, such that the procedure tests each of the expressions in the expression matrix Uexpress from 1 to E.
In step 1028, it is determined if the index p is equal to G. If that is the case, the procedure of step 820 sets the index e equal to one (1) and advances to step 1030; otherwise, the procedure of step 820 advances to step 1034. In step 1034, the index p is incremented by one (1), and the procedure of step 820 advances to step 1008, such that the procedure tests each of the subjects in the subject matrix Usubject from 1 to G.
In step 1030, it is determined if the index i is equal to I. If that is the case, the procedure of step 820 sets the index i equal to one (1) and advances to step 1032; otherwise, the procedure of step 820 advances to step 1036. In step 1036, the index i is incremented by one (1), and the procedure of step 820 advances to step 1008, such that the procedure tests each of the illuminations in the illumination matrix Uillum from 1 to I.
In step 1032, it is determined if the index v is equal to V. If that is the case, the procedure of step 820 advances to step 1026; otherwise, the procedure of step 820 advances to step 1038. In step 1038, the index v is incremented by one (1), and the procedure of step 820 advances to step 1008, such that the procedure tests each of the views in the view matrix Uviews from 1 to V. Finally, in step 1026, the subject match can be identified as the subject portrayed in the new data vector d. In a preferred embodiment of the present invention, the variable match can be an indexed array, that records the indices of multiple subjects most closely matching the subjects portrayed in the new data vector d. Once the subject match is identified, the procedure of step 820 is completed.
where the smallest mode-n singular values that were discarded are defined as σi
In another exemplary dimensionality reduction procedure for use on the tensors is to compute for a tensor D a best rank-(R1, R2, . . . , RN) approximation D′=z′×1U′1×2 . . . ×NU′N, with orthonormal In×Rn mode matrices U′n, for n=1, 2, . . . , N, which can minimize the least-squares error function ∥D−D′∥2. For example, N can equal to five (5). The data reduction procedure step 824 begins in step 1102, where an index n is initialized to one (1).
In step 1104, the mode matrix Un is truncated to Rn columns. All data in the mode matrix Un beyond the Rn column can be removed from the matrix Un. After the matrix Un is truncated, the procedure step 824 advances to step 1106, in which it is determined whether the index n is equal to N. If that is the case, the procedure step 824 advances to step 1110; otherwise, the procedure step 824 is forwarded to step 1108. In step 1108, the index n is incremented by one (1), and the procedure step 824 proceeds to step 1104. Then, in step 1110, the index n is initialized to one (1), and the procedure step 824 advances to step 1112, in which the tensor is calculated Ũnk+1=D×2U2k
In step 1118, it is determined whether the index n is equal to N. If that is the case, the procedure step 824 advances to step 1122; otherwise the procedure step 824 advances to step 1120, in which the index n is incremented by one (1) and the procedure step 824 advances to step 1112. Then in step 1122, it is determined whether the mode matrices have converged. The mode matrices have converged if ∥Unk+1
C. Motion Signature Using a Matrix Representation of a Corpus of Data
Turning to further particulars of
The columns of the matrix Di are the average walk, ascend and descend of stairs of the ith subject. Each motion is defined as the angles by every joint over time.
At step 1304, the process 1300 decomposes the matrix D into a core matrix Z, a subject matrix P, and an action matrix A. The core matrix Z can be used for defining the inter-relationships between a subjects matrix P and an action matrix A. This step represents a singular value decomposition (“SVD”) process 1304, shown in
where I is the identity matrix. When this procedure of step 1304 determines the core matrix Z, the process 1300 advances to step 1305.
In step 1305, the process 1300 analyzes the data collected in the step 1302. The SVD procedure of step 1304 decomposes the matrix D into the product of a core matrix Z, and two orthogonal matrices as follows:
where the VT-operator is a matrix transpose T followed by a “vec” operator that creates a vector by stacking the columns of the matrix. The subject matrix P=[p1 . . . pn . . . pG]T, whose row vectors pi are person specific, encodes the invariancies across actions for each person. Thus, the subject matrix P contains the subject or human motion signatures pi. The action matrix
whose row vectors ac, contain the coefficients for the different action classes c, encodes the invariancies across subjects for each action. The core matrix Z1=[Z1 . . . Zi]T represents the basis motions which are independent of people and of actions. It governs the relationship between the orthonormal matrices P and A. A matrix
S=(ZVTPT)VT=[S1 . . . Si . . . Sn]T
is composed of person-specific signature matrices S.
In step 1306, the process 1300 determines whether it has been instructed by the client interface application to synthesize new data describing at least one known action that was never before recorded as being performed by a subject. If the process 1300 has received such instruction, step 1308 is executed to perform advances to an individual generation procedure, as shown in further detail in
As shown in
Only a portion of the action classes c are represented the matrix Dnew. The linear combination of known signatures is:
where W is a weight matrix. The individual generation procedure of step 1308 solves for the weight matrix W of the new subject using iterative gradient descent of the error function
E=∥Dnew−WSAincT∥,
where AincT has only columns corresponding to the motion examples available in the matrix Dnew. In particular, step 1502 of this procedure initializes an index t to one (1). In step 1504, the procedure of step 1308 obtains the matrix Q by calculating Q=SAincT. Once this procedure obtains the matrix Q, step 1506 of the procedure of step 1308 calculates the matrix W(t+1) in the following manner: W(t+1)=W(t)+γ(Dnew−WQ)QT. The step 1508 then calculates Snew(t+1) by calculating Snew(t+1)=W(t+1)S, then this procedure advances to step 1510.
In step 1510, it is determined whether the error function E has converged. If the error function E has not converged, the procedure of step 1308 continues to step 1512, where the index t is incremented by one (1) and this procedure advances to step 1504. If the error function E has converged, this procedure advances to step 1514. In step 1514 the procedure of step 1308 synthesizes new data from one of the action parameters c. For example, if the action parameter c represents the action of walking. The new data for walking is synthesized by multiplying the newly extracted signature matrix Snew and the action parameters for walking, awalk, as follows:
{right arrow over (walk)}new=Snew{right arrow over (a)}walk.
Once the new data is synthesized, the procedure of step 1308 is complete and it exits.
While the invention has been described in connecting with preferred embodiments, it will be understood by those of ordinary skill in the art that other variations and modifications of the preferred embodiments described above may be made without departing from the scope of the invention. Other embodiments will be apparent to those of ordinary skill in the art from a consideration of the specification or practice of the invention disclosed herein. It is intended that the specification and the described examples are considered as exemplary only, with the true scope and spirit of the invention indicated by the following claims.
The present application is a continuation of U.S. patent application Ser. No. 10/498,279 filed Jun. 4, 2004, now U.S. Pat. No. 7,280,985 which is U.S. National Phase of International Application PCT/US02/39257 filed Dec. 6, 2002, the entire disclosures of which are incorporated herein by reference. The present application also claims priority from U.S. Patent Application Ser. Nos. 60/337,912 filed Dec. 6, 2001, 60/383,300 filed May 23, 2002 and 60/402,374 filed Aug. 9, 2002, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5170455 | Goossen et al. | Dec 1992 | A |
5301350 | Rogan et al. | Apr 1994 | A |
5321816 | Rogan et al. | Jun 1994 | A |
5347653 | Fylnn et al. | Sep 1994 | A |
5428731 | Powers, III | Jun 1995 | A |
5493682 | Tyra et al. | Feb 1996 | A |
5560003 | Nilsen et al. | Sep 1996 | A |
5692185 | Nilsen et al. | Nov 1997 | A |
5717919 | Kodavalla et al. | Feb 1998 | A |
5740425 | Povilus | Apr 1998 | A |
5784294 | Platt et al. | Jul 1998 | A |
5794256 | Bennett et al. | Aug 1998 | A |
5799312 | Rigoutsos | Aug 1998 | A |
5802525 | Rigoutsos | Sep 1998 | A |
5845285 | Klein | Dec 1998 | A |
5852740 | Estes | Dec 1998 | A |
5870749 | Adusumilli | Feb 1999 | A |
5884056 | Steele | Mar 1999 | A |
5890152 | Rapaport et al. | Mar 1999 | A |
5913186 | Byrnes et al. | Jun 1999 | A |
5931779 | Arakaki et al. | Aug 1999 | A |
5974416 | Anand et al. | Oct 1999 | A |
5974418 | Blinn et al. | Oct 1999 | A |
5995999 | Bharadhwaj | Nov 1999 | A |
6003038 | Chen | Dec 1999 | A |
6029169 | Jenkins | Feb 2000 | A |
6105041 | Bennett et al. | Aug 2000 | A |
6208992 | Bruckner | Mar 2001 | B1 |
6219444 | Shashua et al. | Apr 2001 | B1 |
6349265 | Pitman et al. | Feb 2002 | B1 |
6381507 | Shima et al. | Apr 2002 | B1 |
6404743 | Meandzija | Jun 2002 | B1 |
6408321 | Platt | Jun 2002 | B1 |
6441821 | Nagasawa | Aug 2002 | B1 |
6470360 | Vaitheeswaran | Oct 2002 | B1 |
6501857 | Gotsman et al. | Dec 2002 | B1 |
6510433 | Sharp et al. | Jan 2003 | B1 |
6535919 | Inoue et al. | Mar 2003 | B1 |
6549943 | Spring | Apr 2003 | B1 |
6591004 | VanEssen et al. | Jul 2003 | B1 |
6631364 | Rioux et al. | Oct 2003 | B1 |
6631403 | Deutsch et al. | Oct 2003 | B1 |
6691096 | Staats | Feb 2004 | B1 |
6701305 | Holt et al. | Mar 2004 | B1 |
6721454 | Qian et al. | Apr 2004 | B1 |
6724931 | Hsu | Apr 2004 | B1 |
6732124 | Koseki et al. | May 2004 | B1 |
6738356 | Russell et al. | May 2004 | B1 |
6741744 | Hsu | May 2004 | B1 |
6782051 | Pesquet-Popescu | Aug 2004 | B2 |
6789128 | Harrison et al. | Sep 2004 | B1 |
6856945 | Thomas et al. | Feb 2005 | B2 |
6873724 | Brand | Mar 2005 | B2 |
7006683 | Brand | Feb 2006 | B2 |
7085426 | August | Aug 2006 | B2 |
7130484 | August | Oct 2006 | B2 |
7193544 | Fitelson et al. | Mar 2007 | B1 |
7280985 | Vasilescu | Oct 2007 | B2 |
7379925 | Vasilescu et al. | May 2008 | B2 |
7400736 | Dedieu et al. | Jul 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20080109474 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60337912 | Dec 2001 | US | |
60383300 | May 2002 | US | |
60402374 | Aug 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10498279 | US | |
Child | 11868852 | US |