This application is a U.S. National Stage Application of PCT Application No. PCT/US2019/058006, filed Oct. 25, 2019, entitled “LOGIC CIRCUITRY PACKAGE,” which claims priority to PCT Application No. PCT/US2019/026133, filed Apr. 5, 2019, entitled “LOGIC CIRCUITRY”; PCT Application No. PCT/US2019/026152, filed Apr. 5, 2019, entitled “FLUID PROPERTY SENSOR”; PCT Application No. PCT/US2019/026161, filed Apr. 5, 2019, entitled “LOGIC CIRCUITRY”; and PCT Application No. PCT/US2018/063631, filed Dec. 3, 2018, entitled “LOGIC CIRCUITRY”; all of which are incorporated herein by reference.
Subcomponents of apparatus may communicate with one another in a number of ways. For example, Serial Peripheral Interface (SPI) protocol, Bluetooth Low Energy (BLE), Near Field Communications (NFC) or other types of digital or analog communications may be used.
Some two-dimensional (2D) and three-dimensional (3D) printing systems include one or more replaceable print apparatus components, such as print material containers (e.g., inkjet cartridges, toner cartridges, ink supplies, 3D printing agent supplies, build material supplies etc.), inkjet printhead assemblies, and the like. In some examples, logic circuitry associated with the replaceable print apparatus component(s) communicate with logic circuitry of the print apparatus in which they are installed, for example communicating information such as their identity, capabilities, status and the like. In further examples, print material containers may include circuitry to execute one or more monitoring functions such as print material level sensing.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific examples in which the disclosure may be practiced. It is to be understood that other examples may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims. It is to be understood that features of the various examples described herein may be combined, in part or whole, with each other, unless specifically noted otherwise.
Some examples of applications described herein are in the context of print apparatus. Not all the examples, however, are limited to such applications, and at least some of the principles set out herein may be used in other contexts. The contents of other applications and patents cited in this disclosure are incorporated by reference.
In certain examples, Inter-integrated Circuit (I2C, or I2C, which notation is adopted herein) protocol allows at least one ‘master’ integrated circuit (IC) to communicate with at least one ‘slave’ IC, for example via a bus. I2C, and other communications protocols, communicate data according to a clock period. For example, a voltage signal may be generated, where the value of the voltage is associated with data. For example, a voltage value above X volts may indicate a logic “1” whereas a voltage value below X volts may indicate a logic “0”, where X is a predetermined numerical value. By generating an appropriate voltage in each of a series of clock periods, data can be communicated via a bus or another communication link.
Certain example print material containers have slave logic that utilize I2C communications, although in other examples, other forms of digital or analog communications could also be used. In the example of I2C communication, a master IC may generally be provided as part of the print apparatus (which may be referred to as the ‘host’) and a replaceable print apparatus component would comprise a ‘slave’ IC, although this need not be the case in all examples. There may be a plurality of slave ICs connected to an I2C communication link or bus (for example, containers of different colors of print agent). The slave IC(s) may include a processor to perform data operations before responding to requests from logic circuitry of the print system.
Communications between print apparatus and replaceable print apparatus components installed in the apparatus (and/or the respective logic circuitry thereof) may facilitate various functions. Logic circuitry within a print apparatus may receive information from logic circuitry associated with a replaceable print apparatus component via a communications interface, and/or may send commands to the replaceable print apparatus component logic circuitry, which may include commands to write data to a memory associated therewith, or to read data therefrom.
One example of logic circuitry associated with a replaceable print apparatus component may include a clock generation circuit. The clock generation circuit may include a ring oscillator to generate a ring oscillator clock signal, a system clock divider to generate a system clock signal by dividing the ring oscillator signal based on a system clock divider parameter, and a successive approximation register (SAR) clock divider to generate a SAR clock signal by dividing the ring oscillator signal based on a SAR clock divider parameter. The logic circuitry may also include an oscillator test controller and a counter to sample a selected clock signal by counting the cycles of the selected clock signal during a predetermined number of cycles of a reference clock (e.g., I2C clock) signal. The cycle count may be used to determine the frequency of the selected clock signal and to configure the clock dividers. The clock generation circuit may also include a dither counter to enable a dithered ring oscillator clock signal to reduce electromagnetic interference (EMI).
In one example, a system integrity test may be performed by obtaining cycle counts for a selected clock signal during a predetermined number of cycles of a first reference clock signal having a first frequency and during the predetermined number of cycles of a second reference clock signal having a second frequency. The obtained cycle counts should correspond to the respective reference clock frequencies. In another example, a system integrity test may be performed by obtaining cycle counts for a selected clock signal during a predetermined number of cycles of a reference clock signal for a first dither point and a second dither point of the selected clock signal. The obtained cycle counts should correspond to the respective dither points. These two system integrity tests may also be combined into a single system integrity test.
Another example of logic circuitry associated with a replaceable print apparatus component may include a clock generation circuit to generate an internal clock signal, and a test controller to replace the internal clock signal with an external clock signal in response to a received request. The logic circuitry may use an I2C serial interface to communicate with a print apparatus. The logic circuitry may include a test mode that, when selected via the I2C interface, causes the internal clock signal to be replaced by an external clock signal provided to the I2C interface. The internal clock signal may operate at a higher frequency than the external clock signal. The test mode may be exited by taking a data line of the I2C interface low, and then high again. The logic circuitry provides a low-overhead method to enter/exit the test mode and enables some tests to run quickly by clocking the logic circuitry using the external clock signal and checking the output of a test pad. The external clock signal may also be stopped to check values, and then restarted, without exiting the test mode.
In at least some of the examples described below, a logic circuitry package is described. The logic circuitry package may be associated with a replaceable print apparatus component, for example being internally or externally affixed thereto, for example at least partially within the housing, and is adapted to communicate data with a print apparatus controller via a bus provided as part of the print apparatus.
A ‘logic circuitry package’ as the term is used herein refers to one logic circuit, or more logic circuits that may be interconnected or communicatively linked to each other. Where more than one logic circuit is provided, these may be encapsulated as a single unit, or may be separately encapsulated, or not encapsulated, or some combination thereof. The package may be arranged or provided on a single substrate or a plurality of substrates. In some examples, the package may be directly affixed to a cartridge wall. In some examples, the package may include an interface, for example including pads or pins. The package interface may be intended to connect to a communication interface of the print apparatus component that in turn connects to a print apparatus logic circuit, or the package interface may connect directly to the print apparatus logic circuit. Example packages may be configured to communicate via a serial bus interface. Where more than one logic circuit is provided, these logic circuits may be connected to each other or to the interface, to communicate through the same interface.
In some examples, each logic circuitry package is provided with at least one processor and memory. In one example, the logic circuitry package may be, or may function as, a microcontroller or secure microcontroller. In use, the logic circuitry package may be adhered to or integrated with the replaceable print apparatus component. A logic circuitry package may alternatively be referred to as a logic circuitry assembly, or simply as logic circuitry or processing circuitry.
In some examples, the logic circuitry package may respond to various types of requests (or commands) from a host (e.g., a print apparatus). A first type of request may include a request for data, for example identification and/or authentication information. A second type of request from a host may be a request to perform a physical action, such as performing at least one measurement. A third type of request may be a request for a data processing action. There may be additional types of requests.
In some examples, there may be more than one address associated with a particular logic circuitry package, which is used to address communications sent over a bus to identify the logic circuitry package which is the target of a communication (and therefore, in some examples, with a replaceable print apparatus component). In some examples, different requests are handled by different logic circuits of the package. In some examples, the different logic circuits may be associated with different addresses. For example, cryptographically authenticated communications may be associated with secure microcontroller functions and a first I2C address, while other communications may be associated with a sensor circuit and a second and/or reconfigured I2C address. In certain examples, these other communications via the second and/or reconfigured address can be scrambled or otherwise secured, not using the encryption key used for the secure microcontroller functions.
In at least some examples, a plurality of such logic circuitry packages (each of which may be associated with a different replaceable print apparatus component) may be connected to an I2C bus. In some examples, at least one address of the logic circuitry package may be an I2C compatible address (herein after, an I2C address), for example in accordance with an I2C protocol, to facilitate directing communications between master to slaves in accordance with the I2C protocol. In other examples, other forms of digital and/or analog communication can be used.
The replaceable print apparatus component 104 may include, for example, a print material container or cartridge (which could be a build material container for 3D printing, a liquid or dry toner container for 2D printing, or an ink or liquid print agent container for 2D or 3D printing), which may in some examples include a print head or other dispensing or transfer component. The replaceable print apparatus component 104 may, for example, contain a consumable resource of the print apparatus 102, or a component which is likely to have a lifespan which is less (in some examples, considerably less) than that of the print apparatus 102. Moreover, while a single replaceable print apparatus component 104 is shown in this example, in other examples, there may be a plurality of replaceable print apparatus components, for example including print agent containers of different colors, print heads (which may be integral to the containers), or the like. In other examples, the print apparatus components 104 could include service components, for example to be replaced by service personnel, examples of which could include print heads, toner process cartridges, or logic circuit package by itself to adhere to corresponding print apparatus component and communicate to a compatible print apparatus logic circuit.
In some examples, the logic circuitry package 204 may be further configured to encode data for transmission via the data interface 202. In some examples, there may be more than one data interface 202 provided. In some examples, the logic circuitry package 204 may be arranged to act as a ‘slave’ in I2C communications.
In some examples, controller 304 may be configured to act as a host, or a master, in I2C communications. The controller 304 may generate and send commands to at least one replaceable print apparatus component 200, and may receive and decode responses received therefrom. In other examples the controller 304 may communicate with the logic circuitry package 204 using any form of digital or analog communication.
The print apparatus 102, 300 and replaceable print apparatus component 104, 200, and/or the logic circuitry thereof, may be manufactured and/or sold separately. In an example, a user may acquire a print apparatus 102, 300 and retain the apparatus 102, 300 for a number of years, whereas a plurality of replaceable print apparatus components 104, 200 may be purchased in those years, for example as print agent is used in creating a printed output. Therefore, there may be at least a degree of forwards and/or backwards compatibility between print apparatus 102, 300 and replaceable print apparatus components 104, 200. In many cases, this compatibility may be provided by the print apparatus 102, 300 as the replaceable print apparatus components 104, 200 may be relatively resource constrained in terms of their processing and/or memory capacity.
In some examples, the logic circuitry package 400a is addressable via a first address and includes a first logic circuit 402a, wherein the first address is an I2C address for the first logic circuit 402a. In some examples, the first address may be configurable. In other examples, the first address is a fixed address (e.g., “hard-wired”) intended to remain the same address during the lifetime of the first logic circuit 402a. The first address may be associated with the logic circuitry package 400a at and during the connection with the print apparatus logic circuit, outside of the time periods that are associated with a second address, as will be set out below. In example systems where a plurality of replaceable print apparatus components are to be connected to a single print apparatus, there may be a corresponding plurality of different first addresses. In certain examples, the first addresses can be considered standard I2C addresses for logic circuitry packages 400a or replaceable print components.
In some examples, the logic circuitry package 400a is also addressable via a second address. For example, the second address may be associated with different logic functions or, at least partially, with different data than the first address. In some examples, the second address may be associated with a different hardware logic circuit or a different virtual device than the first address. In some examples, the logic circuitry package 400a may include a memory to store the second address (in some examples in a volatile manner). In some examples, the memory may include a programmable address memory register for this purpose. The second address may have a default second address while the second address (memory) field may be reconfigurable to a different address. For example, the second address may be reconfigurable to a temporary address by a second address command, whereby it is set (back) to the default second address after or at each time period command to enable the second address. For example, the second address may be set to its default address in an out-of-reset state whereby, after each reset, it is reconfigurable to the temporary (i.e., reconfigured) address.
In some examples, the package 400a is configured such that, in response to a first command indicative of a first time period sent to the first address (and in some examples a task), the package 400a may respond in various ways. In some examples, the package 400a is configured such that it is accessible via at least one second address for the duration of the time period. Alternatively or additionally, in some examples, the package may perform a task, which may be the task specified in the first command. In other examples, the package may perform a different task. The first command may, for example, be sent by a host such as a print apparatus in which the logic circuitry package 400a (or an associated replaceable print apparatus component) is installed. As set out in greater detail below, the task may include obtaining a sensor reading.
Further communication may be directed to memory addresses to be used to request information associated with these memory addresses. The memory addresses may have a different configuration than the first and second address of the logic circuitry package 400a. For example, a host apparatus may request that a particular memory register is read out onto the bus by including the memory address in a read command. In other words, a host apparatus may have a knowledge and/or control of the arrangement of a memory. For example, there may be a plurality of memory registers and corresponding memory addresses associated with the second address. A particular register may be associated with a value, which may be static or reconfigurable. The host apparatus may request that the register be read out onto the bus by identifying that register using the memory address. In some examples, the registers may include any or any combination of address register(s), parameter register(s) (for example to store clock enable, clock source replacement, clock divider, and/or dither parameters), sensor identification register(s) (which may store an indication of a type of sensor), sensor reading register(s) (which may store values read or determined using a sensor), sensor number register(s) (which may store a number or count of sensors), version identity register(s), memory register(s) to store a count of clock cycles, memory register(s) to store a value indicative of a read/write history of the logic circuitry, or other registers.
In one example, the logic circuitry package 400b may receive a first command including two data fields. A first data field is a one byte data field setting a requested mode of operation. For example, there may be a plurality of predefined modes, such as a first mode, in which the logic circuitry package 400b is to ignore data traffic sent to the first address (for example, while performing a task), and a second mode in which the logic circuitry package 400b is to ignore data traffic sent to the first address and to transmit an enable signal to the second logic circuit 406a, as is further set out below. The first command may include additional fields, such as an address field and/or a request for acknowledgement.
The logic circuitry package 400b is configured to process the first command. If the first command cannot be complied with (for example, a command parameter is of an invalid length or value, or it is not possible to enable the second logic circuit 406a), the logic circuitry package 400b may generate an error code and output this to a communication link to be returned to host logic circuitry, for example in the print apparatus.
If, however, the first command is validly received and can be complied with, the logic circuitry package 400b measures the duration of the time period included in the first command, for example utilizing the timer 404a. In some examples, the timer 404a may include a digital “clock tree”. In other examples, the timer 404a may include an RC circuit, a ring oscillator (as will be described below with reference to
In this example, the second logic circuit 406a is enabled by the first logic circuit 402b sending a signal via a signal path 408, which may or may not be a dedicated signal path 408, that is, dedicated to enable the second logic circuit 406a. In one example, the first logic circuit 402b may have a dedicated contact pin or pad connected to the signal path 408, which links the first logic circuit 402b and the second logic circuit 406a. In a particular example, the dedicated contact pin or pad may be a General Purpose Input/Output (a GPIO) pin of the first logic circuit 402b. The contact pin/pad may serve as an enablement contact of the second logic circuit 406a.
In this example, the second logic circuit 406a is addressable via at least one second address. In some examples, when the second logic circuit 406a is activated or enabled, it may have an initial, or default, second address, which may be an I2C address or have some other address format. The second logic circuit 406a may receive instructions from a master or host logic circuitry to change the initial address to a temporary second address. In some examples, the temporary second address may be an address which is selected by the master or host logic circuitry. This may allow the second logic circuit 406a to be provided in one of a plurality of packages 400 on the same I2C bus which, at least initially, share the same initial second address. This shared, default, address may later be set to a specific temporary address by the print apparatus logic circuit, thereby allowing the plurality of packages to have different second addresses during their temporary use, facilitating communications to each individual package. At the same time, providing the same initial second address may have manufacturing or testing advantages.
In some examples, the second logic circuit 406a may include a memory. The memory may include a programmable address register to store the initial and/or temporary second address (in some examples in a volatile manner). In some examples, the second address may be set following, and/or by executing, an I2C write command. In some examples, the second address may be settable when the enablement signal is present or high, but not when it is absent or low. The second address may be set to a default address when an enablement signal is removed and/or on restoration of enablement of the second logic circuit 406a. For example, each time the enable signal over the signal path 408 is low, the second logic circuit 406a, or the relevant part(s) thereof, may be reset. The default address may be set when the second logic circuit 406a, or the relevant part(s) thereof, is switched out-of-reset. In some examples, the default address is a 7-bit or 10-bit identification value. In some examples, the default address and the temporary second address may be written in turn to a single, common, address register.
In the example illustrated in
The first cells 416a-416f, 414a-414f and the at least one second cell 412 can include resistors. The first cells 416a-416f, 414a-414f and the at least one second cell 412 can include sensors. In one example, the first cell array 410 includes a print material level sensor and the at least one second cell 412 includes another sensor and/or another sensor array, such as an array of strain sensing cells. Further sensor types may include temperature sensors, resistors, diodes, crack sensors, etc.
In this example, the first cell array 410 includes a sensor configured to detect a print material level of a print supply, which may in some examples be a solid but in examples described herein is a liquid, for example, an ink or other liquid print agent. The first cell array 410 may include a series of temperature sensors (e.g., cells 414a-414f) and a series of heating elements (e.g., cells 416a-416f), for example similar in structure and function as compared to the level sensor arrays described in WO2017/074342, WO2017/184147, and WO2018/022038. In this example, the resistance of a resistor cell 414 is linked to its temperature. The heater cells 416 may be used to heat the sensor cells 414 directly or indirectly using a medium. The subsequent behavior of the sensor cells 414 depends on the medium in which they are submerged, for example whether they are in liquid (or in some examples, encased in a solid medium) or in air. Those which are submerged in liquid/encased may generally lose heat quicker than those which are in air because the liquid or solid may conduct heat away from the resistor cells 414 better than air. Therefore, a liquid level may be determined based on which of the resistor cells 414 are exposed to the air, and this may be determined based on a reading of their resistance following (at least the start of) a heat pulse provided by the associated heater cell 416.
In some examples, each sensor cell 414 and heater cell 416 are stacked with one being directly on top of the other. The heat generated by each heater cell 416 may be substantially spatially contained within the heater element layout perimeter, so that heat delivery is substantially confined to the sensor cell 414 stacked directly above the heater cell 416. In some examples, each sensor cell 414 may be arranged between an associated heater cell 416 and the fluid/air interface.
In this example, the second cell array 412 includes a plurality of different cells that may have a different function such as different sensing function(s). For example, the first and second cell array 410, 412 may include different resistor types. Different cells arrays 410, 412 for different functions may be provided in the second logic circuit 406a.
Each of the circuits 402c, 406b has a contact pin 420, which are connected by a common signal line 422. The contact pin 420 of the second circuit serves as an enablement contact thereof.
In this example, each of the first logic circuit 402c and the second logic circuit 406b include a memory 423a, 423b. The memory 423a of the first logic circuit 402c stores information including cryptographic values (for example, a cryptographic key and/or a seed value from which a key may be derived) and identification data and/or status data of the associated replaceable print apparatus component. In some examples, the memory 423a may store data representing characteristics of the print material, for example, any part, or any combination of its type, color, color map, recipe, batch number, age, etc.
The memory 423b of the second logic circuit 406b includes a programmable address register to contain an initial address of the second logic circuit 406b when the second logic circuit 406b is first enabled and to subsequently contain a further (temporary) second address (in some examples in a volatile manner). The further, e.g., temporary, second address may be programmed into the second address register after the second logic circuit 406b is enabled, and may be effectively erased or replaced at the end of an enablement period. In some examples, the memory 423b may further include programmable registers to store any, or any combination of a read/write history data, cell (e.g., resistor or sensor) count data, Analog to Digital converter data (ADC and/or DAC), and a clock count, in a volatile or non-volatile manner. The memory 423b may also receive and/or store calibration parameters, such as offset and gain parameters. Use of such data is described in greater detail below. Certain characteristics, such as cell count or ADC or DAC characteristics, could be derivable from the second logic circuit instead of being stored as separate data in the memory.
In one example, the memory 423b of the second logic circuit 406b stores any or any combination of an address, for example the second I2C address; an identification in the form of a revision ID; and the index number of the last cell (which may be the number of cells less one, as indices may start from 0), for example for each of different cell arrays or for multiple different cell arrays if they have the same number of cells.
In use of the second logic circuit 406b, in some operational states, the memory 423b of the second logic circuit 406 may store any or any combination of timer control data, which may enable a timer of the second circuit, and/or enable frequency dithering therein in the case of some timers such as ring oscillators; a dither control data value (to indicate a dither direction and/or value); and a timer sample test trigger value (to trigger a test of the timer by sampling the timer relative to clock cycles measureable by the second logic circuit 406b).
While the memories 423a, 423b are shown as separate memories here, they could be combined as a shared memory resource, or divided in some other way. The memories 423a, 423b may include a single or multiple memory devices, and may include any or any combination of volatile memory (e.g., DRAM, SRAM, registers, etc.) and non-volatile memory (e.g., ROM, EEPROM, Flash, EPROM, memristor, etc.).
While one package 400c is shown in
In this example, the processing circuitry 424 includes a memory 426 and a first logic circuit 402d which enables a read operation from memory 426. The processing circuitry 424 is accessible via an interface bus of a print apparatus in which the print material container is installed and is associated with a first address and at least one second address. The bus may be an I2C bus. The first address may be an I2C address of the first logic circuit 402d. The first logic circuit 402d may have any of the attributes of the other examples circuits/packages described in this disclosure.
The first logic circuit 402d is adapted to participate in authentication of the print materials container by a print apparatus in which the container is installed. For example, this may include a cryptographic process such as any kind of cryptographically authenticated communication or message exchange, for example based on an encryption key stored in the memory 426, and which can be used in conjunction with information stored in the printer. In some examples, a printer may store a version of a key which is compatible with a number of different print material containers to provide the basis of a ‘shared secret’. In some examples, authentication of a print material container may be carried out based on such a shared secret. In some examples, the first logic circuit 402d may participate in a message to derive a session key with the print apparatus and messages may be signed using a message authentication code based on such a session key. Examples of logic circuits configured to cryptographically authenticate messages in accordance with this paragraph are described in US patent publication No. 9619663.
In some examples, the memory 426 may store data including: identification data and read/write history data. In some examples, the memory 426 further includes cell count data (e.g., sensor count data) and clock count data. Clock count data may indicate a clock speed of a first and/or second timer 404a, 404b (i.e., a timer associated with the first logic circuit or the second logic circuit). In some examples, at least a portion of the memory 426 is associated with functions of a second logic circuit, such as a second logic circuit 406a as described in relation to
The memory 426 may, for example, include data representing characteristics of the print material, for example any or any combination of its type, color, batch number, age, etc. The memory 426 may, for example, include data to be communicated in response to commands received via the first address. The processing circuitry may include a first logic circuit to enable read operations from the memory and perform processing tasks.
In some examples, the processing circuitry 424 is configured such that, following receipt of the first command indicative of a task and a first time period sent to the first logic circuit 402d via the first address, the processing circuitry 424 is accessible by at least one second address for a duration of the first time period. Alternatively or additionally, the processing circuitry 424 may be configured such that in response to a first command indicative of a task and a first time period sent to the first logic circuit 402d addressed using the first address, the processing circuitry 424 is to disregard (e.g., ‘ignore’ or ‘not respond to’) I2C traffic sent to the first address for substantially the duration of the time period as measured by a timer of the processing circuitry 424 (for example a timer 404a, 404b as described above). In some examples, the processing circuitry may additionally perform a task, which may be the task specified in the first command. The term ‘disregard’ or ‘ignore’ as used herein with respect to data sent on the bus may include any or any combination of not receiving (in some examples, not reading the data into a memory), not acting upon (for example, not following a command or instruction) and/or not responding (i.e., not providing an acknowledgement, and/or not responding with requested data).
The processing circuitry 424 may have any of the attributes of the logic circuitry packages 400 described herein. In particular, the processing circuitry 424 may further include a second logic circuit wherein the second logic circuit is accessible via the second address. In some examples, the second logic circuit may include at least one sensor which is readable by a print apparatus in which the print material container is installed via the second address. In some examples, such a sensor may include a print materials level sensor.
In this example, the first logic circuit 402e includes a microcontroller 430, a memory 432, and a timer 434. The microcontroller 430 may be a secure microcontroller or customized integrated circuitry adapted to function as a microcontroller, secure or non-secure.
In this example, the second logic circuit 406c includes a transmit/receive module 436, which receives a clock signal and a data signal from a bus to which the package 400d is connected, data registers 438, a multiplexer 440, a digital controller 442, an analog bias and analog to digital converter 444, at least one sensor or cell array 446 (which may in some examples include a level sensor with one or multiple arrays of resistor elements), and a power-on reset (POR) device 448. The POR device 448 may be used to allow operation of the second logic circuit 406c without use of a contact pin 420.
The analog bias and analog to digital converter 444 receives readings from the sensor array(s) 446 and from additional sensors. For example, a current may be provided to a sensing resistor and the resultant voltage may be converted to a digital value. That digital value may be stored in a register and read out (i.e., transmitted as serial data bits, or as a ‘bitstream’) over the I2C bus. The analog to digital converter 444 may utilize parameters, for example, gain and/or offset parameters, which may be stored in registers.
In this example, there are different additional single sensors, including for example at least one of an ambient temperature sensor 450, a crack detector 452, and/or a fluid temperature sensor 454. These may sense, respectively, an ambient temperature, a structural integrity of a die on which the logic circuitry is provided, and a fluid temperature.
Placing logic circuitry within a print material cartridge may create challenges for the reliability of the cartridge due to the risks that electrical shorts or damage can occur to the logic circuitry during shipping and user handling, or over the life of the product.
A damaged sensor may provide inaccurate measurements, and result in inappropriate decisions by a print apparatus when evaluating the measurements. Therefore, a method may be used to verify that communications with the logic circuitry based on a specific communication sequence provide expected results. This may validate the operational health of the logic circuitry.
In other examples, a replaceable print apparatus component includes a logic circuitry package of any of the examples described herein, wherein the component further includes a volume of liquid. The component may have a height H that is greater than a width W and a length L that is greater than the height, the width extending between two sides. Interface pads of the package may be provided at the inner side of one of the sides facing a cut-out for a data interconnect to be inserted, the interface pads extending along a height direction near the top and front of the component, and the data pad being the bottom-most of the interface pads, the liquid and air interface of the component being provided at the front on the same vertical reference axis parallel to the height H direction wherein the vertical axis is parallel to and distanced from the axis that intersects the interface pads (i.e., the pads are partially inset from the edge by a distance D). The rest of the logic circuitry package may also be provided against the inner side.
Clock generator 604 generates a first clock signal. Clock generator 604 may include a ring oscillator or another suitable clock generation circuit. In one example, clock generator test controller 606 receives a reference clock signal (e.g., an I2C clock signal) through the interface 602. Counter 608 is controlled by the clock generator test controller 606 to count cycles of the first clock signal generated by clock generator 604 during a predetermined number of cycles of the reference clock signal. The frequency of the first clock signal may then be determined by dividing the cycle count by the predetermined number of cycles of the reference clock signal times the period of the reference clock signal. The frequency of the first clock signal may be used to determine whether processing circuitry 600 is operating as expected and/or as part of a validation process. The frequency of the first clock signal may also be used to determine clock divider parameters for setting the frequencies of a second clock signal and/or a third clock signal based on the first clock signal as will be described below with reference to
In another example, clock generator test controller 606 may receive a request through the interface 602 to replace the first clock signal generated by clock generator 604 with an external clock signal (e.g., and I2C clock signal) received through the interface 602. Clock generator test controller 606 outputs a clock signal 609, which, in one mode, is the first clock signal from the clock generator 604, and in another mode (e.g., a test mode entered in response to a received request to replace the first clock signal with an external clock signal), is an external clock signal (e.g., and I2C clock signal) received through the interface 602.
The system clock divider parameter, the SAR clock divider parameter, the dither parameter, and the clock source replacement parameter may be written to memory 612 by a print apparatus logic circuit via an interface (e.g., an I2C interface). The cycle count most significant bits and the cycle count least significant bits may be read by a print apparatus logic circuit via the interface. In one example, each register 613-618 is an 8-bit register.
Dither register/counter 624 may receive a dither enable signal and/or a dither parameter via I2C interface 622. Dither register/counter 624 controls multiplexer 626 to select feedback paths 6300 to 6307 to generate the ring oscillator clock signal having slightly different frequencies. With dithering enabled, electromagnetic interference (EMI) is reduced. When dithering is enabled, an auto-reversing up/down counter (e.g., a 3-bit counter) of dither register/counter 624 may be clocked by the ring oscillator output to control the feedback path based on the counter value. For example, a triangle wave type of dithering may be used, where the feedback points over time (periods) of the 128 stage ring oscillator would be (by stage number): 120, 121, 122, 123, 124, 125, 126, 127, 126, 125, 124, 123, 122, 121, 120, 121, 122, etc. This results in a (mathematical) frequency dither of +/−2.81% from the average (dithered) frequency. The actual dither may be around +/−3.2%, since the circuit may include some additional fixed delays. When dithering is disabled, the feedback path may be selected based on the dither parameter stored in the dither register of dither register/counter 624.
Ring oscillator 620 may be sensitive to process, voltage, and temperature (PVT) variations, but may be divided down to generate internal clock signals having desired frequencies as will be described below with reference to
To enter the test mode, an I2C write may be performed to the clock source replacement register 618 (
The output of the AND gate 635 is coupled to a data input (D) of the flip-flop 636. Thus, when both of the inputs of the AND gate 635 are at a logic high, a logic high signal will be provided to the data input (D) of the flip-flop 636. After the I2C transaction initiated by the I2C write command completes, an I2C stop signal is provided to a clock input of the flip-flop 636, which causes the logic high signal at the data input (D) of the flip-flop 636 to be output at a data output (Q) of the flip-flop 636. After the I2C transaction completes, the logic circuitry package may be in a stopped state and waiting for I2C clocks.
The high signal at the data output (Q) of the flip-flop 636 is a test mode enabled signal that is provided to a control input of multiplexer 650. A first input of the multiplexer 650 receives the internal ring oscillator clock signal, and a second input of the multiplexer 650 receives the external I2C clock signal. In a normal mode of operation, the control input of multiplexer 650 is at a logic low, and the multiplexer 650 outputs the internal ring oscillator clock signal. In the test mode, the control input of the multiplexer 650 is set to a logic high, and the multiplexer 650 outputs the external I2C clock signal. In one example, the ring oscillator may be set to not enabled (via register) prior to using this test mode.
The data output (Q) of the flip-flop 636 is also provided to an input of inverter 637, which inverts the output, and provides it to a first input of OR gate 638. A second input of OR gate 638 is coupled to the SDATA line of the I2C interface. The I2C interface can be recovered (e.g., by a print apparatus) by driving the SDATA line low, then high again. This will result in the OR gate 638 outputting a logic high to a first input of the AND gate 639. A second input of the AND gate will also receive a logic high NReset signal, which results in the AND gate 639 sending a logic high to a reset input (RSTB) to reset the flip-flop 636. This results in the external I2C clock signal being disabled, and re-enables the logic circuitry package for I2C transactions.
Dither counter 648 receives an enable signal through an enable dithering signal path 672. An output of dither counter 648 is electrically coupled to a control input of ring oscillator 646 through a signal path 674, and in input of dither counter 648 is electrically coupled to an output of ring oscillator 646 through a signal path 676. An enable input of ring oscillator 646 receives an enable signal through an enable oscillator signal path 678. The clock output of ring oscillator 646 is electrically coupled to a first data input (i.e., input 0) of multiplexer 650 through a signal path 680. A second data input (i.e., input 1) of multiplexer 650 receives an I2C test clock through an I2C test clock signal path 682. The control input of multiplexer 650 receives a test mode enable signal through a test mode enable signal path 684. In one example, the test mode enable signal is generated by logic circuitry 633 (
The output of multiplexer 650 is electrically coupled to a clock input of system clock divider 652, a second data input (i.e., input 1) of multiplexer 656, and a clock input of SAR clock divider 654 through a signal path 686. The control input of system clock divider 652 receives a system clock divider value through a system clock divider value signal path 688. The clock output of system clock divider 652 provides the system clock and is electrically coupled to a first data input (i.e., input 0) of multiplexer 656 through a system clock signal path 690. The control input of SAR clock divider 654 receives a SAR clock divider value through a SAR clock divider value signal path 692. The clock output of SAR clock divider 654 provides the SAR clock and is electrically coupled to a third data input (i.e., input 2) of multiplexer 656 through a SAR clock signal path 694. The control input of multiplexer 656 receives a test clock select signal on a test clock select signal path 696. The output of multiplexer 656 is electrically coupled to the input of counter 658 through a signal path 698. The output of counter 658 is electrically coupled to the input of result register(s) 660 through a signal path 699.
I2C interface 642 may receive write commands from a print apparatus logic circuit that include a system clock divider parameter, a SAR clock divider parameter, an enable oscillator parameter, an enable dithering parameter, a test mode enable parameter, and a test clock select parameter. The parameters may be stored in a memory (not shown), such as registers, of the processing circuitry 640. The parameters are passed to the respective signal paths 688, 692, 678, 672, 684, and 696 to control the respective components 652, 654, 646, 648, 650, and 656.
Ring oscillator 646 may be provided by ring oscillator 620 previously described and illustrated with reference to
Dither counter 648 is enabled in response to an enable dithering signal on signal path 672. With dithering enabled, dither counter 648 is active and varies the feedback path of ring oscillator 646 based on the current counter value output on signal path 674 to generate a dithered ring oscillator clock signal. With dithering enabled, the count of dither counter 648 is updated with every cycle of the ring oscillator clock signal on signal path 676. When dithering is disabled, the feedback path of ring oscillator 646 may be selected based on a dither parameter written to processing circuitry 640 (e.g., via I2C interface 642) by a print apparatus logic circuit.
Multiplexer 650 passes one of the ring oscillator clock single and the I2C test clock signal to signal path 686 based on the test mode enable signal on signal path 684. In response to a first value of the test mode enable signal on signal path 684 corresponding to input 0 of multiplexer 650, multiplexer 650 passes the ring oscillator clock signal on signal path 680 to signal path 686. In response to a second value of the test mode enable signal on signal path 684 corresponding to input 1 of multiplexer 650, multiplexer 650 passes the I2C test clock signal on signal path 682 to signal path 686.
The I2C test clock signal may be received through an SCLK line of the I2C interface 642, and may be used to test processing circuitry 640 to determine whether processing circuitry 640 is operating as expected, or as part of a validation process of processing circuitry 640. As an example, in the test mode in which the ring oscillator clock signal has been replaced by the I2C test clock signal, a print apparatus logic circuit may send a predetermined number of I2C clock cycles to I2C interface 642 of processing circuitry 640 to advance at least one state machine of the circuitry 640 to a desired stopping point. The print apparatus logic circuit may then drive the SDATA line of the I2C interface 642 to a logic low, and then to a logic high, which results in the external I2C clock signal being disabled (e.g., disconnected from the processing circuitry 640), and re-enables the processing circuitry 640 for I2C transactions without changing the internal states of state machines. The print apparatus logic circuit can determine a state of the processing circuitry 640 by issuing I2C reads and writes of status/result registers of the circuitry 640. The at least one state machine can be re-started by re-issuing an I2C write command, and providing additional I2C clocks. The processing circuitry 640 may also be reset to clear the at least one state machine. In some examples, test data (analog or digital) may be output via a test pad as I2C clocks are received, thereby allowing the print apparatus logic circuit to monitor the test data bit by bit as it changes with the clock cycles.
For the testing described herein, the processing circuitry may communicate with either a print apparatus or an external testing apparatus. Examples disclosed herein provide a low-overhead method to synchronize a print apparatus or an external testing apparatus to the internal state machines of processing circuitry using the I2C SCLK and SDATA pads of the I2C interface, and a low-overhead method to enter/exit the test mode.
System clock divider 652 provides a first clock divider to generate a system clock (i.e., a second clock signal) on system clock signal path 690 based on the ring oscillator clock signal on signal path 686 (i.e., with multiplexer 650 passing the ring oscillator clock signal). System clock divider 652 divides the ring oscillator clock signal based on the system clock divider value on signal path 688. In one example, system clock divider 652 is an 8-bit divider. The system clock is the main clock used to operate the logic circuitry package.
SAR clock divider 654 provides a second clock divider to generate a SAR clock (i.e., a third clock signal) on SAR clock signal path 694 based on the ring oscillator clock signal on signal path 686 (i.e., with multiplexer 650 passing the ring oscillator clock signal). SAR clock divider 654 divides the ring oscillator clock signal based on the SAR clock divider value on signal path 692. In one example, SAR clock divider 654 is a 6-bit divider. The SAR clock is used to operate a successive approximation analog to digital converter of the logic circuitry package.
Multiplexer 656 provides a selection circuit to pass one of the ring oscillator clock signal (i.e., the first clock signal with multiplexer 650 passing the ring oscillator clock signal), the system clock signal (i.e., the second clock signal), and the SAR clock signal (i.e., the third clock signal) to the counter 658 based on the test clock select signal on signal path 696. In response to a first value of the test clock select signal on signal path 696 corresponding to input 0 of multiplexer 656, multiplexer 656 passes the system clock signal on signal path 690 to signal path 698. In response to a second value of the test clock select signal on signal path 696 corresponding to input 1 of multiplexer 656, multiplexer 656 passes the ring oscillator clock signal on signal path 686 to signal path 698. In response to a third value of the test clock select signal on signal path 696 corresponding to input 2 of multiplexer 656, multiplexer 656 passes the SAR clock signal on signal path 694 to signal path 698.
Counter 658 is controlled by oscillator test controller 644 through signal path 670 to count cycles of the selected clock signal on signal path 698 during a predetermined number of cycles of a reference clock signal. The reference clock signal may be an I2C clock signal received through the I2C interface 642. In one example, the I2C clock signal may be provided as part of the command to sample the selected clock signal. In one example, the predetermined number of cycles is 8 cycles. In other examples, the predetermined number of cycles may include another suitable number of cycles.
The cycle count for the selected clock signal is written to result register(s) 660. In one example, result register(s) 660 includes a first 8-bit register to store the most significant bits of the cycle count and a second 8-bit register to store the least significant bits of the cycle count. In this case, a first read command from a print apparatus logic circuit may be received through the I2C interface 642 to read the first 8-bit register, and a second read command from the print apparatus logic circuit may be received through the I2C interface 642 to read the second 8-bit register.
The cycle count of the selected clock signal may be used by the print apparatus logic circuit to determine the frequency of the selected clock signal by dividing the cycle count by the predetermined number of cycles of the I2C clock signal times the I2C clock period. The frequency of the selected clock signal may be used by the print apparatus logic circuit to adjust and/or verify the system clock divider parameter and the SAR clock divider parameter such that the system clock and the SAR clock have the desired frequencies. In one example, the system clock divider parameter and the SAR clock divider parameter are selected such that the system clock and the SAR clock both have a frequency of about 1 MHz. In other examples, the system clock divider parameter and the SAR clock divider parameter are selected such that the system clock and the SAR clock have other suitable frequencies.
In some examples, processing circuitry 640 may be used to first measure the frequency of the ring oscillator clock signal. Based on the ring oscillator clock frequency, the system clock divider parameter and the SAR clock divider parameter may be calculated and transmitted to processing circuitry 640 to generate the desired system clock and SAR clock. Next, processing circuitry 640 may be used to individually measure the resultant system clock frequency and the resultant SAR clock frequency to verify they are running at the correct frequencies. Dithering may be enabled or disabled during these measurements, but should be enabled if reducing possible EMI is desired.
In some examples, the clock generator includes a ring oscillator (e.g., ring oscillator 646 of
As illustrated in
Calculating the frequency of the selected internal clock signal includes dividing the cycle count by the predetermined number of cycles times the clock period of the reference clock signal. In one example, initiating the sampling of the selected internal clock signal includes transmitting a command from the print apparatus logic circuit to the logic circuitry package through an I2C interface. In this case, the reference clock may include an I2C clock of the command. In one example, selecting the internal clock signal includes selecting one of a ring oscillator clock signal, a system clock signal derived from the ring oscillator clock signal, or a successive approximation register (SAR) clock signal derived from the ring oscillator clock signal.
As illustrated in
In some examples, the request includes a first read request and a second read request, the first read request and the second read requests including a different read address. In this case, as illustrated in
As illustrated in
In one example, the first request is to select an internal clock signal to sample. In this case, the first digital value indicates a first count of cycles of the selected internal clock signal during the predetermined number of cycles of the first reference clock signal. Also in this case, the second request is to select the internal clock signal to sample and the second digital value indicates a second count of cycles of the selected internal clock signal during the predetermined number of cycles of the second reference clock signal. In some examples, the first reference clock signal has a first frequency and the second reference clock signal has a second frequency different from the first frequency. In one example, the first frequency is greater than the second frequency, and the first digital value is less than the second digital value. In another example, the first frequency is less than the second frequency, and the first digital value is greater than the second digital value.
The at least one logic circuit may include a clock generator to generate an internal clock signal. As illustrated in
In some examples, the request may include a first read request and a second read request, the first and second read requests including a different read address. In this case, as illustrated in
As illustrated in
In one example, the first request is to select an internal clock signal to sample. In this case, the first digital value indicates a first count of cycles of the selected internal clock signal during the predetermined number of cycles of the reference clock signal. Also in this case, the second request is to select the internal clock signal to sample, and the second digital value indicates a second count of cycles of the selected internal clock signal during the predetermined number of cycles of the reference clock signal.
In some examples, the first dither parameter corresponds to a first frequency and the second dither parameter corresponds to a second frequency different from the first frequency. In one example, the first frequency is greater than the second frequency, and the first digital value is greater than the second digital value. In another example, the first frequency is less than the second frequency, and the first digital value is less than the second digital value.
In one example, the at least one logic circuit includes a clock generator to generate an internal clock signal. In this case as illustrated in
In some examples, the first reference clock signal has a first frequency and the second reference clock signal has a second frequency different from the first frequency. In some examples, the first dither parameter corresponds to a third frequency and the second dither parameter corresponds to a fourth frequency different from the third frequency. In one example, the first frequency is greater than the second frequency, and the third frequency is less than the fourth frequency.
In some examples, the at least one logic circuit includes a clock generator to generate an internal clock signal. In this case as illustrated in
As illustrated in
As illustrated in
As illustrated in
Some examples are directed to a logic circuitry package, which includes an I2C interface, and an internal clock generator to generate a first clock signal. The logic circuitry package includes a clock generator test controller to receive a second clock signal through the I2C interface, and replace the first clock signal with the second clock signal in response to a request received through the I2C interface.
The logic circuitry package may include a first clock divider to generate a third clock signal based on the second clock signal. The logic circuitry package may include a second clock divider to generate a fourth clock signal based on the second clock signal. The logic circuitry package may include a memory to store a first clock divider parameter to configure the first clock divider and a second clock divider parameter to configure the second clock divider. The clock generator test controller may be configured to receive, via the I2C interface, a stop signal to disable use of the second clock signal by the logic circuitry package. The logic circuitry package may be configured to receive, via the I2C interface, a request to read information from at least one register of the logic circuitry package while the second clock signal is disabled; and transmit, via the I2C interface, the information read from the at least one register. The logic circuitry package may be provided on a replaceable print apparatus component.
Some examples are directed to a replaceable print apparatus component which includes any of the logic circuitry packages described herein. The replaceable print apparatus component also includes a housing having a height, a width less than the height, and a length greater than the height, the height parallel to a vertical reference axis, and the width extending between two sides; a print liquid reservoir within the housing; a print liquid output; an air input above the print liquid output; and an interface comprising interface pads for communicating with a print apparatus logic circuit, the interface pads provided at an inner side of one of the sides facing a cut-out for a data interconnect to be inserted, the interface pads extending along a height direction near a top and front of the component above the air input, wherein the air input is provided at the front on the same vertical reference axis parallel to the height direction, and wherein the vertical reference axis is parallel to and distanced from an axis that intersects the interface pads.
As illustrated in
For example, the logic circuitry package 1000 may include at least one sensor 1010, or multiple sensors of different types. The logic circuit may be configured to consult a respective sensor 1010, in combination with the LUT(s)/list(s) 1006 and/or algorithm(s) 1008, based on the sensor ID and calibration parameters, to generate the digital output. The at least one sensor 1010 may include a sensor to detect an effect of a pneumatic actuation of the print apparatus upon the replaceable print component, and/or a sensor to detect an approximate temperature, and/or other sensors. The logic circuitry package 1000 may include a plurality of sensors of different types, for example, at least two sensors of different types, wherein the logic circuit may be configured to select and consult one of the sensors based on the sensor ID, and output a digital value based on a signal of the selected sensor.
Different sets of all the parameters are related to the different output count values as already explained above. The output count values and test result data may be generated using the LUT(s) and or list(s) 1006 and/or algorithm(s) 1008 whereby the parameters may be used as input. In addition, a signal of at least one sensor 1010 may be consulted as input for the LUT. In this case, the output count values may be digitally generated, rather than obtained from analog sensor measurements or tasks. For example, logic circuitry package 1000 may implement the methods 740 and 800 of
Logic circuitry package 1000 may be configured to output a digital value indicating a count in response to a request and a reference clock signal, wherein the digital value varies based on variations of the reference clock signal. The reference clock signal may be an I2C reference clock signal. In one example, logic circuitry package 1000 may include a clock generator to derive the count based on the received reference clock signal. In another example, as illustrated in
Logic circuitry package 1000 may be configured to output a digital value indicating test result data in response to a request and an external clock signal. The external clock signal may be an I2C clock signal. The request may be to replace an internal clock signal from an internal clock generator of the logic circuitry package 1000 with the external test clock signal. The logic circuitry package 1000 may replace the internal clock signal with the external clock signal in the logic circuitry package, and output test result data (e.g., data stored in registers of the logic circuitry package 1000 that is produced as a result of the external clock signal).
In one example, the logic circuitry packages described herein mainly include hardwired routings, connections, and interfaces between different components. In another example, the logic circuitry packages may also include at least one wireless connection, wireless communication path, or wireless interface, for internal and/or external signaling, whereby a wirelessly connected element may be considered as included in the logic circuitry package and/or replaceable component. For example, certain sensors may be wireless connected to communicate wirelessly to the logic circuit/sensor circuit. For example, sensors such as pressure sensors and/or print material level sensors may communicate wirelessly with other portions of the logic circuit. These elements, which communicate wirelessly with the rest of the logic circuit, may be considered part of the logic circuit or logic circuitry package. Also, the external interface of the logic circuitry package, to communicate with the print apparatus logic circuit, may include a wireless interface. Also, while reference may be made to power routings, power interfaces, or charging or powering certain cells, certain examples of this disclosure may include a power source such as a battery or a power harvesting source that may harvest power from data or clock signals.
Certain example circuits of this disclosure relate to outputs that vary in a certain way in response to certain commands, events and/or states. It is also explained that, unless calibrated in advance, responses to these same events and/or states may be “clipped”, for example so that they cannot be characterized or are not relatable to these commands, events and/or states. For these example circuits where the output needs to be calibrated to obtain the characterizable or relatable output, it should be understood that also before required calibration (or installation) occurred these circuits are in fact already “configured” to provide for the characterizable output, that is, all means are present to provide for the characterizable output, even where calibration is yet to occur. It may be a matter of choice to calibrate a logic circuit during manufacture and/or during customer installation and/or during printing, but this does not take away that the same circuit is already “configured” to function in the calibrated state. For example, when sensors are mounted to a reservoir wall, certain strains in that wall over the lifetime of the component may vary and may be difficult to predict while at the same time these unpredictable strains affect the output of the logic circuit. Different other circumstances such as conductivity of the print material, different packaging, in-assembly-line-mounting, etc. may also influence how the logic circuit responds to commands/events/states so that a choice may be made to calibrate at or after a first customer installation. In any of these and other examples, it is advantageous to determine (operational) calibration parameters in-situ, after first customer installation and/or between print jobs, whereby, again, these should be considered as already adapted to function in a calibrated state. Certain alternative (at least partly) “virtual” embodiments discussed in this disclosure may operate with LUTs or algorithms, which may similarly generate, before calibration or installation, clipped values, and after calibration or installation, characterizable values whereby such alternative embodiment, should also be considered as already configured or adapted to provide for the characterizable output, even before calibration/installation.
In one example, the logic circuitry package outputs count values in response to read requests. In many examples, the output of count values is discussed. In certain examples, each separate count value is output in response to each read request. In another example, a logic circuit is configured to output a series or plurality of count values in response to a single read request. In other examples, output may be generated without a read request.
Each of the logic circuitry packages 400a-400d, 1000 described herein may have any feature of any other logic circuitry packages 400a-400d, 1000 described herein or of the processing circuitry 424, 600, 640. Any logic circuitry packages 400a-400d, 1000 or the processing circuitry 424, 600, 640 may be configured to carry out at least one method block of the methods described herein. Any first logic circuit may have any attribute of any second logic circuit, and vice versa.
Examples in the present disclosure can be provided as methods, systems or machine readable instructions, such as any combination of software, hardware, firmware or the like. Such machine readable instructions may be included on a machine readable storage medium (including but not limited to disc storage, CD-ROM, optical storage, etc.) having machine readable program codes therein or thereon.
The present disclosure is described with reference to flow charts and block diagrams of the method, devices and systems according to examples of the present disclosure. Although the flow diagrams described above show a specific order of execution, the order of execution may differ from that which is depicted. Blocks described in relation to one flow chart may be combined with those of another flow chart. It shall be understood that at least some blocks in the flow charts and block diagrams, as well as combinations thereof can be realized by machine readable instructions.
The machine readable instructions may, for example, be executed by a general purpose computer, a special purpose computer, an embedded processor or processors of other programmable data processing devices to realize the functions described in the description and diagrams. In particular, a processor or processing circuitry may execute the machine readable instructions. Thus, functional modules of the apparatus and devices (for example, logic circuitry and/or controllers) may be implemented by a processor executing machine readable instructions stored in a memory, or a processor operating in accordance with instructions embedded in logic circuitry. The term ‘processor’ is to be interpreted broadly to include a CPU, processing unit, ASIC, logic unit, or programmable gate array etc. The methods and functional modules may all be performed by a single processor or divided amongst several processors.
Such machine readable instructions may also be stored in a machine readable storage (e.g., a tangible machine readable medium) that can guide the computer or other programmable data processing devices to operate in a specific mode.
Such machine readable instructions may also be loaded onto a computer or other programmable data processing devices, so that the computer or other programmable data processing devices perform a series of operations to produce computer-implemented processing, thus the instructions executed on the computer or other programmable devices realize functions specified by block(s) in the flow charts and/or in the block diagrams.
Further, the teachings herein may be implemented in the form of a computer software product, the computer software product being stored in a storage medium and comprising a plurality of instructions for making a computer device implement the methods recited in the examples of the present disclosure.
The word “comprising” does not exclude the presence of elements other than those listed in a claim, “a” or “an” does not exclude a plurality, and a single processor or other unit may fulfil the functions of several units recited in the claims.
Although specific examples have been illustrated and described herein, a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/058006 | 10/25/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/117396 | 6/11/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4074284 | Dexter et al. | Feb 1978 | A |
4506276 | Kyser et al. | Mar 1985 | A |
4639738 | Young et al. | Jan 1987 | A |
4734787 | Hayashi | Mar 1988 | A |
5001596 | Hart | Mar 1991 | A |
5045811 | Lewis | Sep 1991 | A |
5079570 | Mohr et al. | Jan 1992 | A |
5142909 | Baughman | Sep 1992 | A |
5329254 | Takano | Jul 1994 | A |
5438351 | Trenchard et al. | Aug 1995 | A |
5471176 | James et al. | Nov 1995 | A |
5583544 | Stamer et al. | Dec 1996 | A |
5680960 | Keyes et al. | Oct 1997 | A |
5682184 | Stephany et al. | Oct 1997 | A |
5699091 | Bullock et al. | Dec 1997 | A |
5731824 | Kneezel et al. | Mar 1998 | A |
5751323 | Swanson | May 1998 | A |
5757406 | Kaplinsky et al. | May 1998 | A |
5777646 | Barinaga et al. | Jul 1998 | A |
5788388 | Cowger et al. | Aug 1998 | A |
5861780 | Fukuda | Jan 1999 | A |
5975688 | Kanaya et al. | Nov 1999 | A |
6068363 | Saito | May 2000 | A |
6098457 | Poole | Aug 2000 | A |
6151039 | Hmelar et al. | Nov 2000 | A |
6164766 | Erickson | Dec 2000 | A |
6175929 | Hsu et al. | Jan 2001 | B1 |
6219933 | Taniguchi et al. | Apr 2001 | B1 |
6299273 | Anderson et al. | Oct 2001 | B1 |
6312074 | Walker | Nov 2001 | B1 |
6341853 | Scheffelin et al. | Jan 2002 | B1 |
6386693 | Michele | May 2002 | B1 |
6402299 | DeMeerleer | Jun 2002 | B1 |
6412901 | Su et al. | Jul 2002 | B2 |
6431670 | Schantz et al. | Aug 2002 | B1 |
6456802 | Phillips | Sep 2002 | B1 |
6457355 | Philipp | Oct 2002 | B1 |
6494553 | Donahue et al. | Dec 2002 | B1 |
6494568 | Hou et al. | Dec 2002 | B2 |
6598963 | Yamamoto et al. | Jul 2003 | B1 |
6641240 | Hsu et al. | Nov 2003 | B2 |
6641243 | Anderson et al. | Nov 2003 | B2 |
6648434 | Walker et al. | Nov 2003 | B2 |
6685290 | Farr et al. | Feb 2004 | B1 |
6736497 | Jung | May 2004 | B2 |
6796644 | Anderson, Jr. et al. | Sep 2004 | B1 |
6802581 | Hasseler et al. | Oct 2004 | B2 |
6802602 | Sakai et al. | Oct 2004 | B2 |
6811250 | Buchanan et al. | Nov 2004 | B2 |
6848762 | King | Feb 2005 | B2 |
6902256 | Anderson et al. | Jun 2005 | B2 |
6908179 | Pan et al. | Jun 2005 | B2 |
6959599 | Feldstein et al. | Nov 2005 | B2 |
6966222 | Carson et al. | Nov 2005 | B2 |
6969137 | Maeda | Nov 2005 | B2 |
7039734 | Sun et al. | May 2006 | B2 |
7077506 | Chen | Jul 2006 | B2 |
7171323 | Shipton et al. | Jan 2007 | B2 |
7240130 | Larson | Jul 2007 | B2 |
7260662 | Moriwaki et al. | Aug 2007 | B2 |
7328115 | Shipton et al. | Feb 2008 | B2 |
7380042 | Wang et al. | May 2008 | B2 |
7458656 | Smith | Dec 2008 | B2 |
7533960 | Yasuda et al. | May 2009 | B2 |
7547082 | Lee et al. | Jun 2009 | B2 |
7630304 | Larson et al. | Dec 2009 | B2 |
7686423 | Sato et al. | Mar 2010 | B2 |
7740347 | Silverbrook et al. | Jun 2010 | B2 |
7775638 | Hirosawa et al. | Aug 2010 | B2 |
7841712 | Muyskens et al. | Nov 2010 | B2 |
7886197 | Wegman | Feb 2011 | B2 |
7890690 | Naderi et al. | Feb 2011 | B2 |
7970042 | Hardin et al. | Jun 2011 | B2 |
8040215 | Zakriti | Oct 2011 | B2 |
8161224 | Laurencin et al. | Apr 2012 | B2 |
8215018 | Morita et al. | Jul 2012 | B2 |
8220910 | Wanibe | Jul 2012 | B2 |
8224602 | Lory | Jul 2012 | B2 |
8289788 | Asauchi | Oct 2012 | B2 |
8331581 | Pennock | Dec 2012 | B2 |
8348377 | Asauchi | Jan 2013 | B2 |
8350628 | George et al. | Jan 2013 | B1 |
8364859 | Sato | Jan 2013 | B2 |
8386657 | Adkins et al. | Feb 2013 | B2 |
8393718 | Kida et al. | Mar 2013 | B2 |
8393721 | Katoh et al. | Mar 2013 | B2 |
8429437 | Asauchi | Apr 2013 | B2 |
8432421 | Muraki et al. | Apr 2013 | B2 |
8438919 | Phillips et al. | May 2013 | B2 |
8454137 | Price et al. | Jun 2013 | B2 |
8556394 | Chen | Oct 2013 | B2 |
8558577 | Soriano Fosas et al. | Oct 2013 | B1 |
8562091 | Sabanovic et al. | Oct 2013 | B2 |
8591012 | Yoshino et al. | Nov 2013 | B2 |
8608276 | Oohashi et al. | Dec 2013 | B2 |
8621116 | Fister et al. | Dec 2013 | B2 |
8651614 | Sakamoto et al. | Feb 2014 | B2 |
8651643 | Harvey et al. | Feb 2014 | B2 |
8721059 | Kodama et al. | May 2014 | B2 |
8721203 | Ehrhardt, Jr. | May 2014 | B2 |
8752943 | Hirano et al. | Jun 2014 | B2 |
8864277 | Rice et al. | Oct 2014 | B2 |
8876257 | Harada et al. | Nov 2014 | B2 |
8888207 | Furness, III et al. | Nov 2014 | B2 |
8892798 | Tailliet et al. | Nov 2014 | B2 |
8898358 | DeCesaris et al. | Nov 2014 | B2 |
8978487 | Fergusson et al. | Mar 2015 | B2 |
8990467 | Saito | Mar 2015 | B2 |
9079414 | Lester et al. | Jul 2015 | B2 |
9108448 | Bergstedt | Aug 2015 | B1 |
9132656 | Nicholson, III et al. | Sep 2015 | B2 |
9137093 | Abraham et al. | Sep 2015 | B1 |
9176921 | Fister et al. | Nov 2015 | B2 |
9194734 | Mehrer | Nov 2015 | B2 |
9213396 | Booth et al. | Dec 2015 | B1 |
9213927 | Ahne et al. | Dec 2015 | B1 |
9254661 | Otaka et al. | Feb 2016 | B2 |
9298908 | Booth et al. | Mar 2016 | B1 |
9370934 | Asauchi et al. | Jun 2016 | B2 |
9400204 | Schoenberg | Jul 2016 | B2 |
9413356 | McKinley | Aug 2016 | B1 |
9413359 | Stirk | Aug 2016 | B2 |
9454504 | Evans | Sep 2016 | B2 |
9483003 | Thacker, III | Nov 2016 | B2 |
9487017 | Ge et al. | Nov 2016 | B2 |
9496884 | Azenkot et al. | Nov 2016 | B1 |
9511596 | Anderson et al. | Dec 2016 | B2 |
9561662 | Ward et al. | Feb 2017 | B2 |
9582443 | Switzer et al. | Feb 2017 | B1 |
9599500 | Ge et al. | Mar 2017 | B2 |
9619663 | Refstrup | Apr 2017 | B2 |
9671820 | Maruyama et al. | Jun 2017 | B2 |
9734121 | Pitigoi-Aron et al. | Aug 2017 | B2 |
9738087 | Kato et al. | Aug 2017 | B2 |
9746799 | Jeran | Aug 2017 | B2 |
9770914 | Harvey et al. | Sep 2017 | B2 |
9776412 | Ge et al. | Oct 2017 | B2 |
9789697 | Knierim et al. | Oct 2017 | B1 |
9796178 | Maxfield | Oct 2017 | B2 |
9852282 | Jeran et al. | Dec 2017 | B2 |
9876794 | Adkins et al. | Jan 2018 | B2 |
9895917 | Corvese et al. | Feb 2018 | B2 |
9914306 | Jeran | Mar 2018 | B2 |
9922276 | Fister et al. | Mar 2018 | B2 |
9994036 | Angulo Navarro et al. | Jun 2018 | B2 |
10031882 | Srivastava et al. | Jul 2018 | B2 |
10052878 | Benneton | Aug 2018 | B2 |
10107667 | Cumbie et al. | Oct 2018 | B2 |
10146608 | Giovannini et al. | Dec 2018 | B2 |
10155379 | Ng et al. | Dec 2018 | B2 |
10214018 | Nozawa et al. | Feb 2019 | B2 |
10214019 | Campbell-Brown et al. | Feb 2019 | B2 |
10259230 | Asauchi | Apr 2019 | B2 |
10279594 | Horade | May 2019 | B2 |
10338838 | Olarig | Jul 2019 | B2 |
10471725 | Esterberg et al. | Nov 2019 | B2 |
10875318 | Gardner et al. | Dec 2020 | B1 |
10894423 | Gardner et al. | Jan 2021 | B2 |
11034157 | Gardner et al. | Jun 2021 | B2 |
20010029554 | Namba | Oct 2001 | A1 |
20010033316 | Eida | Oct 2001 | A1 |
20020012016 | Wilson et al. | Jan 2002 | A1 |
20020012616 | Zhou et al. | Jan 2002 | A1 |
20020033855 | Kubota et al. | Mar 2002 | A1 |
20020109761 | Shimizu et al. | Aug 2002 | A1 |
20020129650 | Zimmermann | Sep 2002 | A1 |
20020154181 | Kubota et al. | Oct 2002 | A1 |
20030009595 | Collins | Jan 2003 | A1 |
20030018300 | Duchon et al. | Jan 2003 | A1 |
20030071862 | Tsukada et al. | Apr 2003 | A1 |
20030202024 | Corrigan | Oct 2003 | A1 |
20040021711 | Hasseler | Feb 2004 | A1 |
20040036733 | Kubota et al. | Feb 2004 | A1 |
20040085382 | Kosugi et al. | May 2004 | A1 |
20040155913 | Kosugi et al. | Aug 2004 | A1 |
20040252146 | Naka et al. | Dec 2004 | A1 |
20050010910 | Lindhorst et al. | Jan 2005 | A1 |
20050093910 | Im | May 2005 | A1 |
20050125105 | Halstead et al. | Jun 2005 | A1 |
20050126282 | Maatuk | Jun 2005 | A1 |
20050185595 | Lee | Aug 2005 | A1 |
20050229699 | Chai et al. | Oct 2005 | A1 |
20060007253 | Kosugi | Jan 2006 | A1 |
20060007295 | Ueda | Jan 2006 | A1 |
20060072952 | Walmsley | Apr 2006 | A1 |
20060110199 | Walmsley et al. | May 2006 | A1 |
20060181583 | Usuda | Aug 2006 | A1 |
20060181719 | Aoki et al. | Aug 2006 | A1 |
20060221386 | Brooks et al. | Oct 2006 | A1 |
20060244795 | Hayasaki et al. | Nov 2006 | A1 |
20060268030 | Walmsley et al. | Nov 2006 | A1 |
20060274103 | Kim | Dec 2006 | A1 |
20060290723 | Jeong et al. | Dec 2006 | A1 |
20070024650 | Reinten et al. | Feb 2007 | A1 |
20070068249 | Eguchi et al. | Mar 2007 | A1 |
20070088816 | Hrustemovic et al. | Apr 2007 | A1 |
20070115307 | Smith | May 2007 | A1 |
20070146409 | Kubota et al. | Jun 2007 | A1 |
20070247497 | Buchanan et al. | Oct 2007 | A1 |
20080024555 | Kimura | Jan 2008 | A1 |
20080041152 | Schoenberg | Feb 2008 | A1 |
20080107151 | Khadkikar et al. | May 2008 | A1 |
20080129779 | Walmsley et al. | Jun 2008 | A1 |
20080143476 | Cheung et al. | Jun 2008 | A1 |
20080165232 | Yuen | Jul 2008 | A1 |
20080192074 | Dubois et al. | Aug 2008 | A1 |
20080211838 | Zhang | Sep 2008 | A1 |
20080246626 | Sheafor et al. | Oct 2008 | A1 |
20080298455 | Ilia et al. | Dec 2008 | A1 |
20080307134 | Geissler et al. | Dec 2008 | A1 |
20090013779 | Usui | Jan 2009 | A1 |
20090021766 | Yamazaki | Jan 2009 | A1 |
20090177823 | Chao | Jul 2009 | A1 |
20090179678 | Hardin | Jul 2009 | A1 |
20090290005 | Wanibe | Nov 2009 | A1 |
20090309941 | Price | Dec 2009 | A1 |
20100082271 | McCann et al. | Apr 2010 | A1 |
20100138745 | McNamara | Jun 2010 | A1 |
20100205350 | Bryant-Rich | Aug 2010 | A1 |
20100220128 | Zaba | Sep 2010 | A1 |
20100248208 | Okubo et al. | Sep 2010 | A1 |
20100254202 | Asauchi | Oct 2010 | A1 |
20100257327 | Kosugi | Oct 2010 | A1 |
20100306431 | Adkins et al. | Dec 2010 | A1 |
20110009938 | Dowling | Jan 2011 | A1 |
20110029705 | Evans | Feb 2011 | A1 |
20110050793 | Kumagai et al. | Mar 2011 | A1 |
20110087914 | Files et al. | Apr 2011 | A1 |
20110113171 | Radhakrishnan et al. | May 2011 | A1 |
20110131441 | Asauchi | Jun 2011 | A1 |
20110279530 | Love | Nov 2011 | A1 |
20110285027 | Lee | Nov 2011 | A1 |
20120128379 | Takeda | May 2012 | A1 |
20120243559 | Pan et al. | Sep 2012 | A1 |
20120284429 | Adkins et al. | Nov 2012 | A1 |
20120299989 | Prothon | Nov 2012 | A1 |
20130018513 | Metselaar | Jan 2013 | A1 |
20130054933 | Fister | Feb 2013 | A1 |
20130067015 | Vasters | Mar 2013 | A1 |
20130067016 | Adkins | Mar 2013 | A1 |
20130155142 | Browning et al. | Jun 2013 | A1 |
20130250024 | Kakishima | Sep 2013 | A1 |
20130295245 | Gardner | Nov 2013 | A1 |
20140040517 | Fister et al. | Feb 2014 | A1 |
20140095750 | Tailliet | Apr 2014 | A1 |
20140164660 | DeCesaris et al. | Jun 2014 | A1 |
20140211241 | Rice et al. | Jul 2014 | A1 |
20140260520 | Schoenberg | Sep 2014 | A1 |
20140265049 | Burris et al. | Sep 2014 | A1 |
20140337553 | Du et al. | Nov 2014 | A1 |
20140351469 | Fister et al. | Nov 2014 | A1 |
20140354729 | Vanbrocklin et al. | Dec 2014 | A1 |
20140372652 | Shu | Dec 2014 | A1 |
20140375321 | Ikeya | Dec 2014 | A1 |
20140375730 | Campbell-Brown | Dec 2014 | A1 |
20150028671 | Ragaini et al. | Jan 2015 | A1 |
20150052996 | Niemann | Feb 2015 | A1 |
20150074304 | Adkins et al. | Mar 2015 | A1 |
20150089630 | Lee | Mar 2015 | A1 |
20150239254 | Muyskens et al. | Aug 2015 | A1 |
20150285526 | Smith et al. | Oct 2015 | A1 |
20150343792 | Refstrup | Dec 2015 | A1 |
20160055402 | Fister et al. | Feb 2016 | A1 |
20160098359 | Adkins et al. | Apr 2016 | A1 |
20160110535 | Booth et al. | Apr 2016 | A1 |
20160114590 | Arpin | Apr 2016 | A1 |
20160279962 | Ishida et al. | Sep 2016 | A1 |
20160357691 | Ahne | Dec 2016 | A1 |
20160364305 | Pitigou-Aron | Dec 2016 | A1 |
20160368273 | Ishikawa | Dec 2016 | A1 |
20170032135 | Refstrup | Feb 2017 | A1 |
20170050383 | Bell et al. | Feb 2017 | A1 |
20170087860 | Harvey et al. | Mar 2017 | A1 |
20170100941 | Kuribayashi | Apr 2017 | A1 |
20170144448 | Smith | May 2017 | A1 |
20170157929 | Yokoo et al. | Jun 2017 | A1 |
20170168976 | Yost et al. | Jun 2017 | A1 |
20170169623 | Chen et al. | Jun 2017 | A1 |
20170182786 | Angulo Navarro | Jun 2017 | A1 |
20170189011 | Stone et al. | Jul 2017 | A1 |
20170194913 | Wilson et al. | Jul 2017 | A1 |
20170230540 | Sasaki | Aug 2017 | A1 |
20170330449 | Lunardhi | Nov 2017 | A1 |
20180050537 | Bakker et al. | Feb 2018 | A1 |
20180100753 | Cumbie et al. | Apr 2018 | A1 |
20180143935 | Cox | May 2018 | A1 |
20180157943 | Fister et al. | Jun 2018 | A1 |
20180162137 | Van Brocklin et al. | Jun 2018 | A1 |
20180212593 | Usuda | Jul 2018 | A1 |
20180264808 | Bakker et al. | Sep 2018 | A1 |
20180281394 | Horade et al. | Oct 2018 | A1 |
20180281438 | Horade | Oct 2018 | A1 |
20180290457 | Ge et al. | Oct 2018 | A1 |
20180302110 | Solan | Oct 2018 | A1 |
20180304640 | Horne | Oct 2018 | A1 |
20190004991 | Foust | Jan 2019 | A1 |
20190011306 | Cumbie et al. | Jan 2019 | A1 |
20190012663 | Masters | Jan 2019 | A1 |
20190013731 | Gritti | Jan 2019 | A1 |
20190023020 | Anderson | Jan 2019 | A1 |
20190061347 | Bakker et al. | Feb 2019 | A1 |
20190064408 | Smit | Feb 2019 | A1 |
20190097785 | Elenes | Mar 2019 | A1 |
20190111694 | Cumbie et al. | Apr 2019 | A1 |
20190111695 | Anderson et al. | Apr 2019 | A1 |
20190111696 | Anderson et al. | Apr 2019 | A1 |
20190118527 | Anderson et al. | Apr 2019 | A1 |
20190126631 | Anderson et al. | May 2019 | A1 |
20190137316 | Anderson et al. | May 2019 | A1 |
20190138484 | De Santiago Dominguez et al. | May 2019 | A1 |
20190217628 | Horade et al. | Jul 2019 | A1 |
20190226930 | Cumbie et al. | Jul 2019 | A1 |
20190240985 | Ge et al. | Aug 2019 | A1 |
20200159689 | Koshisaka et al. | May 2020 | A1 |
20210334392 | Panshin et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
2014202104 | May 2014 | AU |
2507422 | Jan 2002 | CA |
1195821 | Oct 1998 | CN |
2603934 | Feb 2004 | CN |
2734479 | Oct 2005 | CN |
101859235 | Oct 2010 | CN |
201761148 | Mar 2011 | CN |
102231054 | Nov 2011 | CN |
203651218 | Jun 2014 | CN |
102736627 | Dec 2014 | CN |
103879149 | Jun 2015 | CN |
105760318 | Jul 2016 | CN |
106443422 | Feb 2017 | CN |
107209743 | Sep 2017 | CN |
107407943 | Nov 2017 | CN |
108819486 | Nov 2018 | CN |
209014461 | Jun 2019 | CN |
3712699 | Nov 1988 | DE |
0015954 | Jun 1984 | EP |
0720916 | Jul 1996 | EP |
0994779 | Apr 2000 | EP |
1164022 | Dec 2001 | EP |
1238811 | Sep 2002 | EP |
1285764 | Feb 2003 | EP |
1314565 | May 2003 | EP |
1389531 | Feb 2004 | EP |
1524120 | Apr 2005 | EP |
1800872 | Jun 2007 | EP |
1839872 | Oct 2007 | EP |
2237163 | Oct 2010 | EP |
2385468 | Nov 2011 | EP |
2854063 | Apr 2015 | EP |
3208736 | Aug 2017 | EP |
2519181 | Apr 2015 | GB |
H04220353 | Aug 1992 | JP |
2001292133 | Oct 2001 | JP |
2002026471 | Jan 2002 | JP |
2003326726 | Nov 2003 | JP |
2005262458 | Sep 2005 | JP |
2009258604 | Nov 2009 | JP |
2010079199 | Apr 2010 | JP |
2011113336 | Jun 2011 | JP |
2012063770 | Mar 2012 | JP |
2013197677 | Sep 2013 | JP |
5644052 | Dec 2014 | JP |
2014534917 | Dec 2014 | JP |
2016185664 | Oct 2016 | JP |
2017196842 | Nov 2017 | JP |
2018049141 | Mar 2018 | JP |
2018136774 | Aug 2018 | JP |
2018161785 | Oct 2018 | JP |
2018531394 | Oct 2018 | JP |
20080003539 | Jan 2008 | KR |
101785051 | Oct 2017 | KR |
200707209 | Feb 2007 | TW |
201202948 | Jan 2012 | TW |
201546620 | Dec 2015 | TW |
WO-2007107957 | Sep 2007 | WO |
WO-2008117194 | Oct 2008 | WO |
WO-2009145774 | Dec 2009 | WO |
WO-2012020443 | Feb 2012 | WO |
WO-2012054050 | Apr 2012 | WO |
WO-2012057755 | May 2012 | WO |
WO-2013048430 | Apr 2013 | WO |
WO-2015116092 | Aug 2015 | WO |
WO-2016061480 | Apr 2016 | WO |
WO-2016114759 | Jul 2016 | WO |
WO-2016130157 | Aug 2016 | WO |
WO-2017074334 | May 2017 | WO |
WO-2017074342 | May 2017 | WO |
WO-2017174363 | Oct 2017 | WO |
WO-2017184147 | Oct 2017 | WO |
WO-2017189009 | Nov 2017 | WO |
WO-2017189010 | Nov 2017 | WO |
WO-2017189011 | Nov 2017 | WO |
WO-2017189013 | Nov 2017 | WO |
WO-2018017066 | Jan 2018 | WO |
WO-2018022038 | Feb 2018 | WO |
WO-2018186847 | Oct 2018 | WO |
WO-2018199886 | Nov 2018 | WO |
WO-2018199891 | Nov 2018 | WO |
WO-2018199895 | Nov 2018 | WO |
WO-2018217185 | Nov 2018 | WO |
WO-2019017963 | Jan 2019 | WO |
WO-2019078834 | Apr 2019 | WO |
WO-2019078835 | Apr 2019 | WO |
WO-2019078839 | Apr 2019 | WO |
WO-2019078840 | Apr 2019 | WO |
WO-2019078843 | Apr 2019 | WO |
WO-2019078844 | Apr 2019 | WO |
WO-2019078845 | Apr 2019 | WO |
Entry |
---|
Machine translation of Japanese Pat. Publ. No. 2003-326726 to Oba, published 2003-11. (Year: 2003). |
Arnostech, “Thermal Inkjet Printers,” http://www.arnostech.com/machines/coding-systems/thermal-inkjet-printers/, retrieved Jul. 1, 2019, 3 pgs. |
Epson, “Epson Provides the Best Inks for the Job,” https://www.epson.co.nz/microsite/excellence/inks_why.asp, retrieved Jul. 1, 2019, 3 pgs. |
Platform Development Team, “Development of the HP DeskJet 1200C Print Cartridge Platform,” Hewlett-Packard Journal, Feb. 1994, pp. 46-54. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2019/026159, dated Aug. 13, 2019, 15 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2018/063624, dated Aug. 23, 2019, 13 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2018/063630, dated Aug. 22, 2019, 15 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2018/063633, dated Jul. 23, 2019, 12 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2018/063638, dated Aug. 26, 2019, 13 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2018/063643, dated Aug. 20, 2019, 13 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2019/017511, dated Jul. 25, 2019, 12 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2019/026124, dated Aug. 26, 2019, 15 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2019/026133, dated Aug. 26, 2019, 18 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2019/026145, dated Sep. 5, 2019, 16 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2019/026161, dated Aug. 26, 2019, 20 pgs. |
International Searching Authority, “International Search Report and Written Opinion,” issued in connection with PCT/US2018/063631, dated Aug. 23, 2019, 13 pgs. |
Maxim Integrated Products, “1-to-8 I2C Bus Switches/Multiplexers with Bus Lock-Up Detection, Isolation, and Notification,” Sep. 2008, 22 pgs. |
NXP, “Introducing A10006 Secure Authenticator Tamper-Resistant Anti Counterfeit Solution”, retreived Jul. 3, 2019, 29 pgs. |
NXP B.V., “NXP 2-, 4-, and 8-Channel I2C/SMBus Muxes and Switches PCA954x,” Jul. 2008, 4 pgs. |
NXP Semiconductors N.V., “PCA9641: 2-Channel I2C-Bus Master Arbiter,” Oct. 27, 2015, 55 pgs. |
Laureto, John et al., “Open Source Multi-Head 3D Printer for Polymer-Metal Composite Component Manufacturing,” Technologies, MDPI, 2017, 5 (2), pp. 36, 23 pgs. |
NXP Semiconductors N.V., “PCA9547: 8-Channel I2C-Bus Multiplexer with Reset,” Apr. 1, 2014, 34 pgs. |
NXP Semiconductors N.V., “An 11593: How to Design in and Program the PCA9641 I2C Arbiter,” Oct. 23, 2014, 22 pgs. |
Reddit, “Use an Accelerometer to Measure Z wobble”, retrieved Jul. 1, 2019, 3 pgs, https://www.reddit.com/r/Reprap/comments/6qsoyd/use_an_accelerometer_to_measure_z_wobble/. |
Phillips Semiconductors, “The I2C-Bus Specification”, Version 2.1, Jan. 2000, 46 pgs. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/502,479, dated Dec. 11, 2019, 13 pgs. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/460,016, dated Sep. 12, 2019, 12 pgs. |
United States Patent and Trademark Office, “Non-Final Office Action,” issued in connection with U.S. Appl. No. 16/505,090, dated Sep. 10, 2019, 20 pgs. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/502,479, dated Apr. 9, 2020, 9 pgs. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/460,016, dated Mar. 25, 2020, 10 pgs. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/505,090, dated Feb. 12, 2020, 9 pgs. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/505,090, dated Oct. 22, 2019, 5 pgs. |
United States Patent and Trademark Office, “Notice of Allowance,” issued in connection with U.S. Appl. No. 16/728,207, dated Feb. 19, 2020, 19 pgs. |
United States Patent and Trademark Office, “Restriction Requirement,” issued in connection with U.S. Appl. No. 16/502,479, dated Aug. 15, 2019, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20210224219 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2019/026133 | Apr 2019 | US |
Child | 16767584 | US | |
Parent | PCT/US2019/026161 | Apr 2019 | US |
Child | PCT/US2019/026133 | US | |
Parent | PCT/US2019/026152 | Apr 2019 | US |
Child | PCT/US2019/026161 | US | |
Parent | PCT/US2018/063631 | Dec 2018 | US |
Child | PCT/US2019/026152 | US |