Logic components comprising organic field effect transistors

Information

  • Patent Grant
  • 7223995
  • Patent Number
    7,223,995
  • Date Filed
    Friday, March 14, 2003
    21 years ago
  • Date Issued
    Tuesday, May 29, 2007
    17 years ago
Abstract
The invention makes it possible, for the first time, to produce, despite conventional p-type MOS technology, fast logical gates based on organic field effect transistors. This is primarily due to the early saturation effect of OFETs having very thin semi-conducting layers, and, furthermore, to the use of OFETs having specific properties as the organic logic components and to a novel layout of the circuit containing these logic components.
Description

This application is a 371 of PCT/DE03/00843 filed on Mar. 14, 2003


The invention relates to logic components comprising organic field effect transistors, the switching speed of which is increased by replacing the resistors.


Logical gates such as NAND, NOR, or inverters are the elementary components of an integrated digital electronic circuit. The switching speed of the integrated circuit depends on the speed of the logical gates and not on the speed of the individual transistors. In conventional silicon semiconductor technology these gates are made using both n-type and p-type transistors and are thus very quick-acting. In the case of organic circuits this cannot be achieved because there are no adequately stable n-type semiconductors. This means that organic circuits have to include a conventional resistor instead of the n-type transistor.


A disadvantage of these logical gates made up of organic field effect transistors is that either they switch slowly (when the switching current, ie the integrals below the current voltage characteristic, differ considerably) or they cannot be switched off (when the voltage level difference in the current-voltage diagram is too small.


It is thus an object of the present invention to provide a logical gate made up of organic field effect transistors, in which the missing “classical” n-type transistors are replaced by components other than classical resistors.


The present invention relates to a logical gate comprising at least one first and one second organic field effect transistor (OFET), in which the first OFET is a p-type OFET and the second OFET can serve in the logical gate as a resistor.


According to one embodiment, the first OFET has an extremely thin semi-conducting layer or a negative threshold voltage.


According to another embodiment the logical gate comprises first and second OFETs each having an extremely thin semi-conducting layer or a negative threshold voltage.


According to a further embodiment, the second OFET without gate potential in the logical gate has OFF currents that are only approximately one order of magnitude lower than the ON currents so that the second OFET can be switched off by applying a positive gate potential.


According to one embodiment, the logical gate comprises at least four OFETs (cf FIG. 6).


According to another embodiment, the logical gate 2 has data lines (input and output), which have different potentials. By an “OFET that can serve in the gate as a resistor” is meant in this case either an OFET which has an extremely thin organic semi-conducting layer (ca from 5 to 30 nm) or an OFET in which the conductivity of the organic semi-conducting layer is reduced by special treatment (for example hydrazine treatment and/or special oxidation) such that the OFF currents are lower than the ON currents by only approximately one order of magnitude.


The “OFF current” is the current which flows when there is no potential between the gate electrode and the source electrode and the “ON current” (for p-type OFETs) is the current which flows when there is a negative potential difference between the gate electrode and the source electrode.


By a “classical resistor” we mean here a component having a linear current-voltage curve.


The invention is explained in greater detail below with reference to the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1 and 2 shows the prior art



FIG. 1-7 shows an embodiment of the present invention





When a classical resistor is used (cf FIGS. 1 and 2, prior art) the logical gates switch either too slowly (FIG. 1) or cannot be switched off(FIG. 2).



FIG. 1 depicts a current-voltage diagram showing the ON curve 1 and the OFF curve 2. These characteristic curves correspond to the switched-on and the switched-off states respectively. The points of intersection 3 and 4 of the curves with the resistance curve 5 correspond to the switching points of the inverter. The output voltage swing 6 of the inverter is very large, which means that the inverter can be readily switched on and off. However, the switching currents 7 and 8 are different (the shaded areas below the curves correspond to the switching current). This means that the inverter can be quickly switched to “high” but only slowly to “low”.



FIG. 2 again shows the prior art, the second case thereof, in which although the switching currents 9 and 10 are of an equal order of magnitude the voltage level difference 11 is too small. As a result, the corresponding inverter cannot be fully switched off.



FIG. 3 finally shows a current-voltage curve of a logical gate of the invention.


The current voltage diagram of a logical gate such as is shown in FIG. 3 comprises at least one OFET with an extremely thin semi-conducting layer as substitute for a classical resistor.


Due to an observed but not fully explained effect (very early saturation by reason of a very thin semiconductor layer or a negative threshold voltage), OFETs having extremely thin semi-conducting layers of from 5 to 30 nm, preferably from 7 to 25 nm, and more preferably from 10 to 20 nm have a specific output characteristic field as shown diagrammatically in FIG. 3.


The voltage level difference 12 is large enough to make it possible to completely switch off the inverter and the switching currents 13 and 14 are identical in size so that the inverter can switch quickly. Another advantage is the value of the switching current, which is very high on this type of transistor. Due to the thin semi-conducting layers, the transistors pass from the rising edge 15 very steeply into the saturation region 16. This behavior of the output characteristic makes it possible to construct logical circuits in conventional p-type MOS technology which show large charging voltages. As a result, the switching speed of the components is high. The purpose of the invention is to utilize this effect for the production of fast logical gates. These gates are fast and can at the same time be easily switch off, despite the use of conventional p-type MOS technology.


The replacement of the classical resistor can alternatively be accomplished by special treatment of the semi-conducting layer of an OFET and the use of a special circuit layout for the logic devices.


Typical OFETs have very low OFF currents when operated without gate potential.


Special treatment of the organic semi-conductor can cause the OFF currents to be only approximately one order of magnitude lower than the ON currents (for example by hydrazine treatment or by special oxidation). These particular OFETs can then still be switched off by the application of a positive gate potential. This provides an OFET that can be switched on by a negative gate potential and switched off by a positive gate potential (like an n-type transistor). This effect is utilized by the invention (in addition to the aforementioned effect arising from extremely thin semi-conducting layers), in order to produce fast logic devices. The basic element of these logic devices is the connection of at least two OFETs in series of which the flow channels are of different dimensions such that without a gate potential the flow channel of one of the OFETs is distinctly more conductive than that of the other OFET. As a result, the supply voltage applied to the two flow channels only drops in the case of the less conductive flow channel.


Switching takes place by the application of a negative gate potential to the OFET having the less conductive flow channel and the simultaneous application of a positive gate potential to the OFET having the more conductive flow channel.



FIG. 5 shows the current voltage diagram of such a logical gate. In FIG. 5, the 0 V characteristic curve 31 illustrates a first point A′ at high current corresponding to the currents in the OFET transistors A1, A2, FIG. 6 and a second point B′ at a low current corresponding to the low currents in the OFET transistors B1, B2 FIG. 6. Due to the special circuit layout or the special circuit layout in conjunction with a treatment of the semi-conducting layer, both characteristic curves are subjected to a shift, which results in a high voltage level difference and at the same time a high switching current. An inverter comprises two of these basic elements, i.e., it has at least four transistors. The switching operation of the inverter is achieved by switching on two of the transistors, e.g., OFET transistors A1, A2 and at the same time switching off the other two, e.g., OFET transistors B1 and B2.


The invention is explained below with reference to a number of embodiments:


First of all we will deal with two embodiments relating to the current voltage diagram shown in FIG. 5:



FIG. 6 shows the circuit of an inverter and FIG. 7 the circuit of a ring oscillator. In order to obtain logically functional components, two pairs of transistors are required, since a positive voltage is required to switch off one transistor and at the same time a negative voltage to switch on the other. In order to obtain these different voltages, two of the aforementioned basic elements are interconnected such that one will provide a positive voltage at its output and the other a negative voltage. An inverter based on this novel circuit technology thus has two inputs and two outputs, the potential at the outputs of each will be zero (0V) or a positive or negative voltage (+/−V).


In FIG. 6, an inverter circuit is shown comprising four series connected OFET transistors A1, A2, B1 and B2. Representative transistor A1 comprises a semiconductor layer 32, a gate electrode 30, a drain electrode 34 and a source electrode 36 all supported on a substrate (not shown). The other transistors A2, B1 and B2 are constructed similarly. The drain/source electrodes are connected in series as shown. FIG. 6 shows the inverter embodiment, in which the circuitry is an important factor. The supply voltage is available at point 1, which in this case is +/−V. Point 4 is the ground connection. The gate electrodes receive the applied switching signals at the points denoted by 3 which symbolize the inputs and the junction between the respective source and drain electrodes of adjacent transistors such as transistors A1, B1 are those denoted by points 2 which symbolize the outputs of the inverter. Logical “low” is achieved when no potential is available at the outputs 2. Logical “high” means that +/−V are available at the output 2 of the inverter. That is to say, the data line comprises two lines, on which different potentials are available.


C-type MOSs use an input which is split, but the potential is the same after splitting.


Unlike the aforementioned inverter, which has at least four OFETs, a conventional c-type MOS inverter, for example, consists of two transistors. When there is 0V at the input, transistor 1 is conductive and the other, 2, is non-conductive (the supply voltage thus drops at 2). When there is a negative potential, 1 will be non-conductive and 2 will be conductive (the supply voltage is thus available at 1)



FIG. 7 shows a ring oscillator. For this circuit an uneven number of inverters are interconnected by connecting the output of one to the input of the next inverter. The last inverter is then connected in like fashion to the first inverter so as to form a ring. The purpose of a ring oscillator is to allow the signal to pass continuously through the ring by constant switching of the succeeding inverter.



FIG. 4 shows some embodiments of the logic components comprising OFETs having extremely thin semi-conducting layers:


Inverter 22, NOT-OR 23, NOT-AND 24, ring oscillator 25. The graphical symbol 21 symbolizes a p-type OFET.


An inverter 22 can be a transistor connected to a resistor. A signal (“high” or “low”) applied to the input is reversed (inverted) and then made available at the output (as “low” or “high”). In order to obtain a logical NOT-OR, two transistors can be connected in parallel. The states are passed on to the output by the application of an input voltage according to the table “low ”=“0 ”; “high ”=“1 ”). A NOT-AND can be realized in analogous manner by connecting the transistors in series.


Another embodiment (not shown) is a logical gate, eg, a flip-flop, which could be formed from these OFETs.


Advantageously, the logical gates are produced by (spray) coating, knife coating, printing or some other manufacturing process, which may be carried out as a continuous process.


The invention makes it possible, for the first time, to produce, despite conventional p-type MOS technology, fast logical gates built up of organic field effect transistors. This is primarily due to the early saturation effect of OFETs having very thin semi-conducting layers, and, furthermore, to the use of OFETs having specific properties as the organic logic components and to a novel layout of the circuit containing these logic components.

Claims
  • 1. A logic gate, comprising: at least one first and one second interconnected organic field effect transistor (OFET) forming said logic gate, each OFET transistor including an organic semi-conductor layer, said at least one first and at least one second OFET each including a gate, of which transistors said at least one first and one second OFET are each a p-type OFET, said at least one second OFET having an organic semi-conductor layer exhibiting a thickness sufficiently thin that reduces the conductivity of this layer so that said organic semiconductor layer serves as a resistor of such an increased value in the logic gate or, wherein, the at least one second OFET semi-conductor layer is treated to reduce its conductivity to a value that is equivalent of the conductivity of said sufficiently thin organic semiconductor layer such that the reduction in conductivity of the organic semi-conductor layer of said at least one second OFET and the corresponding increase in the resistance of said organic semi-conductor layer of said at least one second OFET due to the reduced conductivity is such that said at least one second OFET without a gate potential exhibits OFF currents that are approximately one order of magnitude lower than the ON currents of the first OFET so that said at least one second OFET is switched off by an applied positive gate potential and switched on by an applied negative gate potential.
  • 2. The logic gate as defined in claim 1, in which said first OFET semi-conductor layer has a thickness of from about 5 to about 30 nm.
  • 3. The logic gate as defined in claim 1, wherein the organic semi-conductor layer of said first and second OFETs each have a thickness of from about 5 to about 30 nm.
  • 4. The logic gate as defined in claim 1 which comprises at least four of said OFETs.
  • 5. The logic gate as defined in claim 2 which comprises at least four of said OFETs.
  • 6. The logic gate as defined in claim 3 which comprises at least four of said OFETs.
  • 7. The logic gate as defined in any one of the previous claims having two data lines forming a respective input and an output, summing up to four data lines total, and which have different potentials.
  • 8. The logic gate as defined in claim 1, in which said first OFET organic semi-conducting layer has a negative threshold voltage.
  • 9. The logic gate as defined in claim 1, wherein the organic semiconducting layer of said first and second OFETs each have a negative threshold voltage.
Priority Claims (1)
Number Date Country Kind
102 12 640 Mar 2002 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE03/00843 3/14/2003 WO 00 4/18/2005
Publishing Document Publishing Date Country Kind
WO03/081671 10/2/2003 WO A
US Referenced Citations (91)
Number Name Date Kind
3512052 MacIver et al. Dec 1970 A
3769096 Ashkin Oct 1973 A
3955098 Kawamoto May 1976 A
4302648 Sado et al. Nov 1981 A
4340657 Rowe Jul 1982 A
4442019 Marks Apr 1984 A
4865197 Craig Sep 1989 A
4926052 Hatayama May 1990 A
4937119 Nickles et al. Jun 1990 A
5173835 Cornett et al. Dec 1992 A
5206525 Yamamoto et al. Apr 1993 A
5259926 Kuwabara et al. Nov 1993 A
5321240 Takahira Jun 1994 A
5347144 Garnier et al. Sep 1994 A
5364735 Akamatsu et al. Nov 1994 A
5395504 Hoffman et al. Mar 1995 A
5480839 Ezawa et al. Jan 1996 A
5486851 Gehner et al. Jan 1996 A
5502396 Desarzens et al. Mar 1996 A
5546889 Wakita et al. Aug 1996 A
5569879 Gloton et al. Oct 1996 A
5574291 Dodabalapur et al. Nov 1996 A
5578513 Maegawa Nov 1996 A
5580794 Allen Dec 1996 A
5625199 Baumbach et al. Apr 1997 A
5629530 Brown et al. May 1997 A
5630986 Miller May 1997 A
5652645 Jain Jul 1997 A
5691089 Smayling Nov 1997 A
5705826 Aratani et al. Jan 1998 A
5729428 Sakata et al. Mar 1998 A
5854139 Kondo et al. Dec 1998 A
5869972 Birch et al. Feb 1999 A
5883397 Isoda et al. Mar 1999 A
5892244 Tanaka et al. Apr 1999 A
5946551 Dimitrakopoulos et al. Aug 1999 A
5967048 Fromson et al. Oct 1999 A
5970318 Choi et al. Oct 1999 A
5973598 Beigel Oct 1999 A
5997817 Crismore et al. Dec 1999 A
5998805 Shi et al. Dec 1999 A
6036919 Thym et al. Mar 2000 A
6045977 Chandross et al. Apr 2000 A
6060338 Tanaka et al. May 2000 A
6072716 Jacobson et al. Jun 2000 A
6083104 Choi Jul 2000 A
6087196 Sturm et al. Jul 2000 A
6133835 De Leeuw et al. Oct 2000 A
6150668 Bao et al. Nov 2000 A
6197663 Chandross et al. Mar 2001 B1
6207472 Callegari et al. Mar 2001 B1
6215130 Dodabalapur Apr 2001 B1
6221553 Wolk et al. Apr 2001 B1
6251513 Hyatt Jun 2001 B1
6284562 Batlogg et al. Sep 2001 B1
6300141 Segal et al. Oct 2001 B1
6321571 Themont et al. Nov 2001 B1
6322736 Bao et al. Nov 2001 B1
6329226 Jones et al. Dec 2001 B1
6330464 Colvin et al. Dec 2001 B1
6335539 Dimitrakopoulos et al. Jan 2002 B1
6340822 Brown et al. Jan 2002 B1
6344662 Dimitrakopoulos et al. Feb 2002 B1
6362509 Hart Mar 2002 B1
6384804 Dodabalapur et al. May 2002 B1
6403396 Gudesen et al. Jun 2002 B1
6429450 Mutsaers et al. Aug 2002 B1
6498114 Amundson et al. Dec 2002 B1
6517955 Takada et al. Feb 2003 B1
6555840 Hudson et al. Apr 2003 B1
6593690 McCormick et al. Jul 2003 B1
6603139 Tessler et al. Aug 2003 B1
6621098 Jackson et al. Sep 2003 B1
6852583 Bernds et al. Feb 2005 B2
6903958 Bernds et al. Jun 2005 B2
20020018911 Bemius et al. Feb 2002 A1
20020022284 Heeger Feb 2002 A1
20020025391 Angelopoulos Feb 2002 A1
20020053320 Duthaler May 2002 A1
20020056839 Joo et al. May 2002 A1
20020068392 Lee et al. Jun 2002 A1
20020130042 Stiene Sep 2002 A1
20020170897 Hall Nov 2002 A1
20020195644 Dodabalapur et al. Dec 2002 A1
20030059967 Henning et al. Mar 2003 A1
20030112576 Brewer et al. Jun 2003 A1
20040002176 Xu Jan 2004 A1
20040013982 Jacobsen et al. Jan 2004 A1
20040026689 Bernds et al. Feb 2004 A1
20040084670 Tripsas et al. May 2004 A1
20040211329 Funahata et al. Oct 2004 A1
Foreign Referenced Citations (143)
Number Date Country
33 38 597 May 1985 DE
4243832 Jun 1994 DE
198 52 312 May 1999 DE
198 16 860 Nov 1999 DE
199 18 193 Nov 1999 DE
100 06 257 Sep 2000 DE
199 21 024 Nov 2000 DE
695 19 782 Jan 2001 DE
19933757 Jan 2001 DE
199 35 527 Feb 2001 DE
199 37 262 Mar 2001 DE
100 12204 Sep 2001 DE
100 33112 Jan 2002 DE
100 45 192 Apr 2002 DE
100 47 171 Apr 2002 DE
100 43204 Apr 2002 DE
100 58 559 May 2002 DE
100 61297 Jun 2002 DE
101 17 663 Oct 2002 DE
101 20 687 Oct 2002 DE
102 19 905 Dec 2003 DE
0 108850 May 1984 EP
0 128 529 Dec 1984 EP
0 268 370 May 1988 EP
0 268 370 May 1988 EP
0 350 179 Jan 1990 EP
0 418504 Mar 1991 EP
0 442123 Aug 1991 EP
0460242 Dec 1991 EP
0 501 456 Sep 1992 EP
0 501 456 Sep 1992 EP
0 511807 Nov 1992 EP
0 528682 Feb 1993 EP
0685985 Dec 1995 EP
0 785 578 Jul 1997 EP
0 785 578 Jul 1997 EP
0 786820 Jul 1997 EP
0 615 258 Sep 1998 EP
0716458 Jun 1999 EP
0 966 182 Dec 1999 EP
0962984 Dec 1999 EP
0 979715 Feb 2000 EP
0981165 Feb 2000 EP
0 989 614 Mar 2000 EP
1 048 912 Nov 2000 EP
1 052 594 Nov 2000 EP
1 065 725 Jan 2001 EP
1 065 725 Jan 2001 EP
1 083 775 Mar 2001 EP
1 102 335 May 2001 EP
1 104 035 May 2001 EP
1 103916 May 2001 EP
1 134 694 Sep 2001 EP
1 224 999 Jul 2002 EP
1 237 207 Sep 2002 EP
1 318 084 Jun 2003 EP
2793089 Nov 2000 FR
723598 Feb 1955 GB
2 058 462 Apr 1981 GB
54069392 Jun 1979 JP
61001060 Jan 1986 JP
61167854 Jul 1986 JP
362065477 Mar 1987 JP
05152560 Jun 1993 JP
05259434 Oct 1993 JP
05347422 Dec 1993 JP
08197788 Aug 1995 JP
09083040 Mar 1997 JP
09320760 Dec 1997 JP
10026934 Jan 1998 JP
2969184 Nov 1999 JP
2001085272 Mar 2001 JP
WO 93 16491 Aug 1993 WO
WO 9417556 Aug 1994 WO
WO 9506240 Mar 1995 WO
WO 9531831 Nov 1995 WO
WO 9602924 Feb 1996 WO
WO 9619792 Jun 1996 WO
WO 9712349 Apr 1997 WO
WO 9718944 May 1997 WO
WO 9818156 Apr 1998 WO
WO 9840930 Sep 1998 WO
WO 9907189 Feb 1999 WO
WO 9910929 Mar 1999 WO
WO 99 10939 Mar 1999 WO
WO 99 21233 Apr 1999 WO
WO 99 30432 Jun 1999 WO
WO 99 39373 Aug 1999 WO
WO 99 40631 Aug 1999 WO
WO 9953371 Oct 1999 WO
WO 99 54936 Oct 1999 WO
WO 9954936 Oct 1999 WO
WO 9966540 Dec 1999 WO
198 51703 May 2000 WO
WO 0033063 Jun 2000 WO
WO 0036666 Jun 2000 WO
WO 0103126 Jan 2001 WO
WO 0106442 Jan 2001 WO
WO 0108241 Feb 2001 WO
WO 01 15233 Mar 2001 WO
WO 0117029 Mar 2001 WO
WO 0117041 Mar 2001 WO
WO 0127998 Apr 2001 WO
WO 0146987 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 0147044 Jun 2001 WO
WO 01 47045 Jun 2001 WO
WO 0173109 Oct 2001 WO
WO 0173109 Oct 2001 WO
WO 0205360 Jan 2002 WO
WO 0205361 Jan 2002 WO
WO 0215264 Feb 2002 WO
WO 02 19443 Mar 2002 WO
WO 0219443 Mar 2002 WO
WO 0229912 Apr 2002 WO
WO 0243071 May 2002 WO
WO 0247183 Jun 2002 WO
WO 02065557 Aug 2002 WO
WO 02065557 Aug 2002 WO
WO 02071139 Sep 2002 WO
WO 02071505 Sep 2002 WO
WO 02076924 Oct 2002 WO
WO 02091495 Nov 2002 WO
WO 02095805 Nov 2002 WO
WO 02099907 Dec 2002 WO
WO 0299907 Dec 2002 WO
WO 02099908 Dec 2002 WO
WO 03046922 Jun 2003 WO
WO 03067680 Aug 2003 WO
WO 03069552 Aug 2003 WO
WO 03081671 Oct 2003 WO
WO 03095175 Nov 2003 WO
WO 2004032257 Apr 2004 WO
WO 2004042837 May 2004 WO
WO 2004042837 May 2004 WO
WO 2004042837 May 2004 WO
WO 20047194 Jun 2004 WO
WO 20047194 Jun 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004047144 Jun 2004 WO
WO 2004083859 Sep 2004 WO
WO 00 79617 Dec 2004 WO
Related Publications (1)
Number Date Country
20050277240 A1 Dec 2005 US