The present invention relates to a logic gate and a method of operation of this logic gate.
The information and communications technologies are always seeking increasingly smaller digital electronic devices with increasingly lower consumption. The recent development of so-called “spintronic” devices has enabled the industry of mass consumer products to be revolutionized with regard to data storage. A passive spintronic device comprises two spin-polarized magnetic electrodes for injecting and/or receiving a spin-polarized current and a charge transport medium interposed between the two electrodes for transporting the spin-polarized current from one electrode to the other. In this document, the term passive device is intended as a device where the electrical output power is less than the electrical input power. The parallel or antiparallel alignment of magnetization of the two electrodes produces a different measurable electrical resistance between the electrodes. This effect, which is known as the giant magnetoresistance or tunnel magnetoresistance effect, is advantageously exploited in the read heads of modern hard disks.
However, known passive spintronic devices do not permit the creation of logic gates, or rather those base elements that, opportunely combined by the hundreds or thousands in logic circuits, permit the creation of digital memories and processing units.
The object of the present invention is to provide, in a simple and inexpensive manner, a logic gate comprising a spintronic device, and in particular a spintronic memristor device.
In accordance with the present invention, a logic gate and a logic gate operation method are provided as defined in the appended claims.
The present invention will now be described with reference to the attached drawings, which illustrate a non-limitative embodiment, where:
In
In particular, the spintronic memristor device 2 comprises a substrate 6 of neodymium gallate (NGO) or strontium titanate (STO), upon which electrode 3, the layer of material 5 and electrode 4 are deposited, in the order just indicated. The electrodes 3 and 4 are made of two different magnetic materials, i.e. having different coercive magnetic fields. In particular, electrode 3 is composed of a layer of spin-polarized magnetic oxide and electrode 4 is composed of a layer of spin-polarized magnetic metal or metal alloy. For example, electrode 3 is composed of a layer of lanthanum strontium manganite, the chemical formula of which is La0.7Sr0.3Mn03 (LSMO) and electrode 4 is composed of a layer of cobalt (Co). The layer of material 5 is composed of a layer of organic semiconductor, and in particular of aluminium quinoline, the abbreviated chemical formula of which is Alq3. The spintronic memristor device 2 also comprises a thin layer of aluminium oxide 7 (AlOx) interposed between the electrode 4 and the layer of material 5. The electrode 3, the layer of material 5, the layer of aluminium oxide 7 and electrode 4 are consequently deposited in this order, one on top of the other.
The electrodes 3 and 4 have a thickness of between 10 and 50 nm. The layer of organic semiconductor 5 has a thickness of between 100 and 250 nm. The layer of aluminium oxide 7 has a thickness of between 1 and 3 nm, i.e. relatively thin with respect to the other layers 3, 4 and 7 because its only purpose is to improve the growth of the layer of cobalt 4 on the layer of organic semiconductor 5.
The spin-polarized current that passes through the spintronic memristor device 2 is composed of spin-polarized charge carriers, which are injected, via the so-called “tunnel” effect, by an electrode 3 or 4 into the layer of organic semiconductor 5, propagate, via the so-called “diffusive-hopping” effect, across the layer of organic semiconductor 5 and are received, via the “tunnel” effect, by the other electrode 4 or 3.
It is worthwhile to underline yet again that the spintronic memristor device 2 can present more than two electrical resistance states that can be selected via respective voltage values at the electrodes 3 and 4. In this regard,
Taking the voltage applied to the electrodes 3 and 4 towards more negative values does not give a further increase in electrical resistance. It should be noted that the programming voltage value of the R6 resistance state does not coincide with the programming voltage value of the high-resistance state RH because the curves in
To observe a magnetoresistive effect, it is necessary to have two electrodes 3 and 4 that are spin polarized, but this is still not sufficient. From the literature, it is known that there are other conditions that must be satisfied to be able to observe a magnetoresistive effect, such as very precise ratios between the resistances of the electrodes 3 and 4 and the resistance of the charge transport medium for example. In the case where the charge transport medium comprises a layer of inorganic semiconductor, these resistance ratios must not less than 0.001 for an ideal quality of the spin-polarized electrodes (99% with respect to the technologically achievable 30-40%). Consequently, a strong change in the resistance of at least one of the components of the device 2 can “switch off” the magnetoresistance.
Essentially, by applying a positive voltage to the electrodes 3 and 4 that is greater than voltage threshold VT1, the spintronic memristor device 2 switches to the low-resistance state RL and consequently “switches on” the magnetoresistance of the spintronic memristor device 2; instead, by applying a negative voltage to the electrodes 3 and 4 that is less than voltage threshold VT2, the spintronic memristor device 2 switches to the high-resistance state RH and consequently “switches off” the magnetoresistance of the spintronic memristor device 2. These effects of switching the magnetoresistance on and off are reproducible and experimentally observable.
With reference to
The logic gate 1 enables the truth table of any fundamental logic function to be reproduced according to how the resistance states RH and RL are encoded, in binary logic, the alignments in parallel and antiparallel of the magnetizations of the electrodes 3 and 4 and the values of current IG with respect to a predetermined current threshold IT.
Operation of the logic gate 1 as an AND gate and as an OR gate is illustrated schematically in
First of all, the programming voltage VP is applied to terminals 8 and 9 to select one of the resistance states RH and RL and, in consequence, to “switch on” or “switch off” the magnetoresistance of the spintronic memristor device 2. The programming voltage VP is a voltage pulse of predetermined duration that assumes two voltage values VH and VL. Voltage value VH is approximately equal to +1.5 V, i.e. greater than voltage threshold VT1, to “switch on” the, magnetoresistance and voltage value VL is approximately equal to −2.5 V, i.e. less than voltage threshold VT2, to “switch off” the magnetoresistance.
Following application of the programming voltage VP, the magnetic field source 10 is switched on and controlled to apply a magnetic field H such as to align the magnetization of the electrodes 3 and 4 in the desired manner. In the example shown in
Finally, after application of the magnetic field H, the current IG at terminals 11 and 12 is measured by applying a measuring voltage VM (
If the magnetoresistance of the spintronic memristor device 2 is “on” (low-resistance state RL), then the intensity of current IG depends of the parallel or antiparallel alignment of the magnetization of the electrodes 3 and 4. In particular, the current IG that is measured with the magnetizations aligned in parallel is approximately twice that which is measured with the magnetizations aligned in antiparallel. Instead, if the magnetoresistance of the spintronic memristor device 2 is “off” (high-resistance state RH), then the current IG is at least an order of magnitude smaller, i.e. at least ten times smaller, than the current IG in the low-resistance state RL. The current threshold IT has an intermediate value with respect to the measurable current IG values when the magnetoresistance is on. In the example shown in
With reference to
With reference to
From the foregoing description, it is evident that by changing the logic encoding of the resistance states RL and RH of the parallel and antiparallel alignment of the magnetizations of the electrodes 3 and 4 and the current IG values with respect to the current threshold IT and/or choosing an opportune value for the current threshold IT, it is possible to reproduce the truth table of other fundamental logic functions, for example NAND, EXOR, etc.
Although the above-described invention makes special reference to a quite specific embodiment, it should not be considered as limited this embodiment, but with all those variants, changes or simplifications that would be evident to an expert in the field falling within its scope, such as the following examples.
According to a further embodiment of the present invention, the electrode 3 is composed of a layer of ferromagnetic manganite having the chemical formula RE1-xMxMn03, where RE is a rare earth, in particular selected from a group comprising lanthanum (La) and neodymium (Nd), M is a divalent metal, selected from the alkaline earth group and, in particular, selected from a group comprising calcium (Ca), strontium (Sr) and lead (Pb), and the value of x is between 0.15 and 0.4.
According to a further embodiment of the present invention, the electrode 4 is made of another metal or metal alloy selected from a group comprising iron (Fe), nickel (Ni), cobalt (Co) and respective alloys, or a ferromagnetic oxide selected from a group comprising iron oxides and mixed oxides of ferro-cobalt and ferro-nickel.
According to a further embodiment of the present invention, the layer of aluminium oxide 7 is absent.
According to a further embodiment of the present invention, the organic semiconductor is selected from a group comprising pi-conjugated organic semiconductors, quinolines, polycyclic aromatic hydrocarbons, ftalocianines, thiophenes and fullerenes.
According to a further embodiment of the present invention, the voltage values VH and VL, in having to depend on the voltage thresholds VT1 and VT2 that, in turn, are defined by the materials with which the spintronic memristor device 2 is made, are generally, in absolute value, greater than 1 V and, in particular, voltage value VH is greater than +1 V and voltage value VL is less than −1 V.
According to a further embodiment of the present invention, the measuring voltage VM has an absolute value, in general between 10 mV and 500 mV, which depends on the materials with which the spintronic memristor device 2 is made.
The main advantage of the above-described logic gate 1 is to enable reproducing the truth table of any fundamental logic function with a single spintronic memristor device 2. Furthermore, the logic gate 1 has very low power consumption thanks to the fact that it can be powered by input signals (VP) having low voltage values (approximately 1 V).
Number | Date | Country | Kind |
---|---|---|---|
B02011A000571 | Oct 2011 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2012/055393 | 10/5/2012 | WO | 00 |