LOGISTICS OF STRESS TESTING

Abstract
A method of validating the end to end performance of a mobile device including performance of applications, related services, and the mobile device by automating the conditions of the End User environment. The method is accomplished by leveraging stress models and applying these to automate the stressing of applications, their related services, while the device performance is being monitored by varying the emulated radio network and packet data network conditions.
Description
FIELD OF INVENTION

The present invention relates to mobile wireless communication devices, systems, networks, and methods of determining mobile device behavior when being stressed in a lab environment.


BACKGROUND OF THE INVENTION

This invention describes remote management of automated mobile application tests to be executed on the mobile devices, tablets or any wireless computing device that may be connected to network emulators or on live networks. This invention primarily focuses on the mobile device behavior when being stressed in a lab environment.


End to End monitoring and troubleshooting of mobile applications on smartphones can show the exactly how the end users see and perceive as to how the application behaves in the real world. Pre-market lab testing minimizes known quality risks, but cannot account for all end user scenarios. Carriers/OEMs have increasing return costs for smartphones when end users return them without a specific issue “No Trouble Found” or “No Fault Found”. Returned devices can be stress tested to isolate end user challenges with specific models. Stress can be in the form of OS or application stress testing and/or stress of network performance.


Traditionally these tests are manually performed due to fast pace software changes and the rate mobile applications are being introduced. Simulating different radio and IP network conditions concurrently while performing application specific actions is complex and requires coordination and synchronization of systems through a central system.


SUMMARY OF THE INVENTION

The current invention is a method of validating the end to end performance of a mobile device including performance of applications, related services, and the device by automating the conditions of the End User environment. This includes automation of the device, End User, and specific network conditions. This is accomplished by leveraging stress models and applying these to automate the stressing of applications, their related services, while the device performance is being monitored by varying the emulated radio network and packet data network conditions. The emulated network conditions are synchronously varied to simulate everything from normal and edge conditions of the network, to low performance scenarios. This invention's intent is to validate the device and application behavior that is representative of typical end user scenarios in a predictable and consistent way. Stress isolation results can be applied in Pre-Market test plans.


An objective of the invention is to create a predictable starting point profile from returned devices: Capturing the state of the returned End User device (loaded applications, memory utilization and content, processing utilization, etc.) and mirroring for DUT (Device Under Test).


Another objective of the invention is to capture offending device configuration, as well as isolate poor performing applications (SIP/IMS etc.) and services for MTBF, MTFF etc.


Still another objective of the invention is to provide method of testing that is applicable across the mobile industry, specifically the testing groups across the mobile operators, device manufacturers, application developers, testing services, and content providers.


Yet another objective of the invention is to provide reverse stress testing to allow Carriers/OEMs to confidently market their mobile devices with applications intended to behave in a predictable pattern.


Still another objective of the invention is to allow aggregators and developers to accelerate the time to market their mobile applications.


Still another objective of the invention is to provide a benchmark for the maximum load of an application usage that the mobile device can sustain before experiencing system failure while the objective of stress testing is to validate an application's stability and reliability over an extended period of time.


Another objective of the invention is to manage the end to end test execution process from a single graphical user interface that manages the target mobile device, the applications on the device, the emulated radio network conditions, the simulated mobile services (e.g. IP Multi Media Services), and the connectivity to external internet.


Still another objective of the invention is to provide Test Automation that allows Repeatable test sequence (built from random track)—Allowing for a random process to simulate End User events, record these events, and create a test sequence that can be repeated across the same device many times, or many devices.


Yet still another objective of the invention is to assure the user that the application features are supported by the devices as per specifications.


Other objectives and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of a Stress Test Model;



FIG. 2 is a diagram of an Automation Workflow Model; and



FIG. 3 is a diagram of the functional components defining the engines;



FIG. 4 is a diagram of the functional design;



FIG. 5 is a diagram of the record and playback engine;



FIG. 6 is a diagram of the workflow engine; and



FIG. 7 is a diagram of the scripting engine.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, the current invention is a method of validating the end to end performance of device (includes mobile devices, tablets or any wireless computing device) including performance of applications, related services, and the device by automating the conditions of the End User environment. This includes automation of the device, End User, and specific network conditions. This is accomplished by leveraging stress models and applying these to automate the stressing of applications, their related services, while the device performance is being monitored by varying the emulated radio network and packet data network conditions. The method works for new phones such as those provided by the device manufacturer/OEM 10 as well as the device end user/consumer 12.


Stress testing determines the ability of a mobile device to maintain a certain level of effectiveness under unfavorable conditions. The process can involve quantitative tests done in a lab, such as measuring the frequency of errors or system crashes. The term also refers to qualitative evaluation of factors such as availability of the device. Stress testing is often done in conjunction with the more general process of performance testing.


Stress testing can be applied in Pre-Market and R&D engineering 12 by use of a Forward Stress Testing Model 14 suing test scenarios 16 that include conformance to user requirements. Stress testing can also be applied in Reverse Logistics Centers by use of a Reverse Stress Testing Model 20 by creating typical scenarios 22 that led to the device failure. Stress testing can be applied in Field Testing 24 by use of a Field Trial Stress Model 26. Stress testing can be applied in Customer Care Diagnostics 28 by use of Diagnostics based upon the Trial Stress Model 26. The Trial Stress Model is modeled after device logs, field test results, device behavioral patterns, application usage statistics and the like gathered information collected in memory.


Forward Stress Testing Model 14 employs an adverse environment that is deliberately created and maintained. The adverse condition is progressively and methodically worsened, until the performance level falls below a certain minimum or the system fails altogether. In order to obtain the most meaningful results, individual stressors are varied one by one, leaving the others constant. This makes it possible to pinpoint specific weaknesses and vulnerabilities. Once the testing process has caused a failure, the final component of stress testing is determining how well or how fast a system can recover after an adverse event.


Reverse Stress Testing Mode 20 is used as Carriers/OEMs have increasing return costs for smartphones when end users return them without a specific issue “No Trouble Found” or “No Fault Found”. Hence Carriers/OEMs need a well-planned Reverse Logistics Solution to reduce the volume of device returns. It can be achieved only through the identification and elimination of common issues that plague the consumers which force them to return their devices. Reverse Stress Testing is a process of identifying the point at which the mobile device seizes to function normally and then identifying the scenarios that might cause this to occur. Reverse Stress Testing helps Carriers/OEMs to build better benchmarking model by applying different stress scenarios and viewing the impact each scenario has on the mobile device.


Field Testing 24 is performed in the carrier's live market. Extensive call processing testing is performed with the mobile phone under test in parallel with a ‘benchmark’ mobile phone to determine call processing statistics. Statistics are collected and analyzed.


Device Diagnostics 28 allows Carriers to monitor the health and performance of the mobile devices in the network. Diagnostics process uniquely models the results to isolate the offending issue. While stress automation is being conducted, automatic gathering of the device vitals allows for data to be oriented in a database for direct comparison.


In order to make Application recorded sessions to work across device life cycle, different models, different mobile device operating systems and varying network conditions, have to be abstracted so it is agnostic to the underlying device platforms and network state.


Referring to FIG. 2, set forth is an automation workflow model wherein test automation software is responsible to apply the abstracted sequence of application actions and modify the network conditions across multiple network emulators synchronously, and to manage the end to end process of initiating, coordinating and collecting the end results. Test Automation allows Repeatable test sequence (built from random track)—allowing for a random process to simulate End User events, record these events, and create a test sequence that can be repeated across the same device many times, or many devices. Under the record sequence 30, a test type 32 is chosen, the test sequence 34 can be edited and the edited test added 36 to provide system stress. Under the play sequence 40, the playback is setup 42, the playback is executed 44 and the playback iteration 46 for repeating the process to reach a desired stress goal. Under the analyze sequence 50, basic analytics is run 52, advanced analytics is run 54 and proof of correction is monitored 56.


Referring to FIG. 3, depicted are the functional components comprising a Workflow Engine 60 to extract the requirements from the test plan 62 and create a test case. The Workflow Engine having a test module editor 64, a recording tool 66 and a profile scanner 68. Each test case can be saved as a profile and can be recorded for future use. The Playback Engine 70 loads these profiles and creates a typical stress environment as required. The Playback Engine 70 having a test sequence selector 72, a stress engine 74 function and an execution summary 76. Once the test case is executed the reports are collected by the Analytics engine 80 for Reporting 82, data mining 84 and data collection 86. The Analytics engine 80 lets the user measure the KPIs for the device performance like battery, CPU and memory.


The benefits of this invention are applicable across the mobile industry, specifically the testing groups across the mobile operators, device manufacturers, application developers, testing services, and content providers. The method of Reverse Stress Testing allows Carriers/OEMs to confidently market the mobile devices with applications intended to behave in a predictable pattern. Allows aggregators and developers to accelerate the time to market their mobile applications. Benchmark the maximum load of an application usage that the mobile device can sustain before experiencing system failure while the objective of stress testing is to validate an application's stability and reliability over an extended period of time. Manages the end to end test execution process from a single graphical user interface that manages the target mobile device, the applications on the device, the emulated radio network conditions, the simulated mobile services (e.g. IP Multi Media Services), and the connectivity to external internet. Test Automation allows Repeatable test sequence (built from random track)—Allowing for a random process to simulate End User events, record these events, and create a test sequence that can be repeated across the same device many times, or many devices and assures the user that the application features are supported by the devices as per specifications.



FIGS. 4 and 5 depict a Record & Playback Engine 90 which contains the necessary tools to communicate and execute a function on a remote device and encompasses tool library 92 and a device driver library 94. The Record & Playback Engine communicate with a Workflow engine 96 having stress tools 98 for operating. The Workflow engine 96 coupled to an analytics engine 100 and report generator 102. The Tool Library 92 is a collection of tools used to execute a command/function on the device. The device driver library 94 chooses from the current phones on the market such as the Android 104, Windows 106, iPhone 108, and the like 110 cellular telephones. The tool library choosing from a voice call 112, SMS 114, Stress 116 or KPis 118. The device driver library 92 is a collection of device drivers for different OS type used to communicate with the device.


Referring now to FIGS. 6 and 7, the Workflow Engine further constitutes a Scripting Engine 120 and Execution Modules 122. The scripting engine 120 provides the framework for the user to perform a structured or non-structured script execution and consists of two modules, templates 124 which is a collection of pre-defined scripts 126 which will be executed as part of structured testing, and the Editor 128 which provides the user interface for creating/editing custom scripts and consists of editor commands 130 to create/modify scripts. In execution, it executes the scripts/commands sent by the scripting engine.


Detailed embodiments of the instant invention are disclosed herein, however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific functional and structural details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representation basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.


One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.

Claims
  • 1. A method of validating end to end performance of a mobile device by automating the conditions of an End User environment comprising the steps of: creating stress models;automating said stress models to assimilate an End User environment;applying said stress models to a mobile device; andmonitoring mobile device performance to determine effectiveness under unfavorable conditions.
  • 2. The method of validating according to claim 1 wherein said stress testing is applied in Pre-Market and R&D engineering by use of a Forward Stress Testing Model means.
  • 3. The method of validating according to claim 2 wherein said Forward Stress Testing Model means is further defined as adverse conditions that are progressively worsened until the performance level of the mobile device falls below a predetermined acceptable level.
  • 4. The method of validating according to claim 1 wherein said stress testing is applied in Reverse Logistics Centers by use of a Reverse Stress Testing Model means.
  • 5. The method of validating according to claim 4 wherein said Reverse Stress Testing Model means is based upon common issues that cause mobile devices to seize from functioning normally.
  • 6. The method of validating according to claim 1 wherein said stress testing is a Field Trial Stress Model means.
  • 7. The method of validating according to claim 6 wherein said Field Trial Stress Model means is defined as extensive call processing testing of said mobile phone under test in parallel with a ‘benchmark’ mobile phone to determine call processing statistics.
  • 8. The method of validating according to claim 1 wherein said stress testing is applied to pre-used mobile devices by a Diagnostics means.
  • 9. The method of validating according to claim 8 wherein said Diagnostics means allows Carriers to monitor the performance of the mobile devices in a network.
  • 10. The method of validating according to claim 1 wherein test automation software applies an abstracted sequence of application actions and network conditions across multiple network emulators synchronously.
  • 11. The method of validating according to claim 1 wherein test automation allows Repeatable test sequences to allow a random process to simulate End User events, record these events, and create a test sequence that can be repeated across at least one mobile device.
  • 12. The method of validating according to claim 1 including a Workflow Engine to extract the requirements from a test plan and create a test case.
  • 13. The method of validating according to claim 1 wherein including a Playback Engine to load test cases to create a stress environment.
  • 14. The method of validating according to claim 1 wherein said mobile device is defined as any wireless computing device.
PRIORITY CLAIM

In accordance with 37 C.F.R. §1.76, a claim of priority is included in an Application Data Sheet filed concurrently herewith. Accordingly, the present invention claims priority under 35 U.S.C. §§119(e), 120, 121, and/or 365(c) to U.S. Provisional Patent Application No. 61/635,125, entitled “LOGISTICS OF STRESS TESTING”, filed on Apr. 18, 2012. The contents of which the above referenced application is incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61635125 Apr 2012 US