The present invention generally relates to logistic storage systems, and more particularly relates to scalable logistic storage systems.
As cities and metro areas are becoming more populated, the need for last mile logistics services is becoming even more necessary. One of the main challenges is fitting enough items in a tightly confined area. With these footprint constraints, an innovative solution is necessary. The logistics tower is an essential piece in providing enough stock-keeping units (SKUs) in the smallest amount of space, with the average tower being around 900 square feet and 100 feet tall.
Some storage units utilize elevator systems that slide back and forth on a track, retrieving bins from two sides. The setback with this approach is the stability of the storage unit beyond certain heights. More specially, elevators that slide back and forth on a track in a horizontal plane to retrieve bins sway or could cause the storage unit to sway and become unstable. To limit the swaying effect, the velocity at which the elevators travel is substantially limited (e.g., slow) when operating above certain heights. Accordingly, such storage units can be slow and unstable.
Some storage units utilize single bot bin retrieval systems using rack and pinion through multiple columns. The setback with this approach is that the time to retrieve bins significantly decreases as the bin leaves the column with the bin thus slowing the retrieval of another bin in the column. Energy consumed by a single bot to traverse high heights makes single bot applications unsustainable. Having a dedicated elevator allows for continuous power to the winch system. It also allows for the elevator to be optimized for high speed vertical travel, reaching rapid speeds at high heights. Optimization of both the elevator and shuttle systems for max speed on their respective Z and Y plans yields extraordinarily bin to pick station times. In markets like grocery, fast bin retrieval time is critical.
Loading and unloading storage units often is time consuming. Truck deliveries to stores and storage units happen on a daily basis to restock items that are low and need to be replenished. One of the main challenges is having a large enough space to unload the items that need restocking in dense urban areas. There is also a human cost of moving hundreds of boxes over a sustained period of time both physically and economically. There have been some solutions to address this burden, notably the dolly and ramp system, common on many trucks, but this is still time consuming, costly and strenuous on the person unloading the goods. With this understanding, an innovative solution is necessary to streamline the loading and unloading process.
Accordingly, there is a need for parcel storage and loading systems that are fast and stable, while maximizing storage capacity.
It is an object of the present invention to provide a logistics tower for storing items.
It is another object of the present invention to provide a logistics tower that is scalable to maximize storage capacity.
It is a further object of the present invention to provide an automated logistics tower that is selectively loadable and unloadable by a plurality of robotic systems.
In accordance with one form of the present invention, a logistics tower includes at least one vertical storage cell column and at least one vertical retrieval system. The vertical storage cell column comprises a plurality of storage cells and storage cell modules containing storage bins. The vertical retrieval system includes a winch and a robotic bin handler that selectively traverses the vertical storage cell column and selectively loads and unloads storage bins therefrom. The vertical retrieval system retrieves and delivers storage bins from a horizontal shuttle system that comprises a rail system and one or more robotic flatbed shuttles. The flatbed shuttles transport storage bins to one or more delivery points.
These and other objects, features and advantages of the present invention will be apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
Initially referring to
As can be seen in
For example, if the parcel has variances prohibiting structures over a certain height, the logistics tower 2 may be horizontally scaled to maximize storage capacity by adding additional vertical storage cell columns 18 of storage cells 4. If there are no height restrictions on the parcel where the logistics tower 2 is constructed, but the footprint of the property is small, the logistics tower 2 may be vertically scaled by increasing the number of storage cells 4 in the vertical storage cell columns 18 to maximize storage capacity. As explained previously, the number of storage modules 6 in each storage cell 4 can be adjusted. Accordingly, to maximize the storage capacity of the logistics tower 2, some vertical storage cell columns 18 may comprise storage cells 4 having three storage modules 6 while other vertical storage cell columns 18 in the logistics tower 2 may comprise storage cells 4 having four storage modules 6.
In an exemplary form, as shown in
The storage capacity of the logistics tower 2 can be varied depending on the shape of the logistics tower 2, any height restrictions on the logistics tower and the footprint of the logistics tower 2 by varying the number of vertical storage cell columns 18, the number of storage cells 4 in each vertical storage cell column 18 or the number of storage modules 6 in each storage cell 4. Additionally, if the logistics tower 2 has a shape that is not square or rectangular, some portions of the logistics tower 2 can be filled with vertical storage cell columns 18 having a first number of storage cells 4 (e.g., storage cell levels) while other portions of the logistics tower 2 can be filled with vertical storage cell columns 18 having a second number of storage cells 4 (e.g., storage cell levels). For example, the logistics tower 2 may have a first portion extending to a first height and a second portion extending to a second height. Accordingly, various storage cells 4 and vertical storage cell columns 18 can be arranged in the logistics tower 2 depending on the shape and dimensions thereof.
The storage bin 16 includes an open top end 22, a closed bottom end 24 and a sidewall 26 extending therebetween, the open top end 22, the sidewall 26 and the bottom end 24 defining an internal cavity 28 or compartment into which at least one parcel or item is received. A plurality of flanges comprising at least a first flange 30 and a second flange 32 extend outwardly from the sidewall 26 at least partially around the periphery of the storage bin 16. The first flange 30 and the second flange 32 are situated in proximity to the open top end 22 of the storage bin 16. The first flange 30 and the second flange 32 define a channel 34 therebetween that extends at least partially around the periphery of the storage bin 16. A plurality of ridges 36 extend outwardly from the sidewall 26 of the storage bin 16 between the first flange 30 and the second flange 32. The ridges 36 divide the channel 34 into a plurality of receptacles 38 that are engaged by the robotic bin handler 10. The storage bin 16 may further include a mounting flange 42 situated in proximity to the bottom end 24 thereof. The mounting flange 42 extends outwardly from the sidewall 26 at least partially around the periphery of the storage bin 16. The storage bin 16 formed in accordance with the present invention may be constructed using standard manufacturing techniques, such as molding.
The storage bin 16 is generally rectangular or square in shape and includes a first sidewall 44, a second sidewall 46, a third sidewall 48 and a fourth sidewall 50, each of which extends between the closed bottom end 24 and the open top end 22. The first sidewall 44 is situated opposite and generally parallel to the third sidewall 48, and the second sidewall 46 is situated opposite and generally parallel to the fourth sidewall 50. Preferably, one receptacle 38 is situated on each of the second sidewall 44 and the fourth sidewall 48.
As can be seen in
It is envisioned to be within the scope of the present invention to form the storage bin 16 as any type of container or packaging capable of holding goods.
Each storage module 6 preferably includes an outer frame 12 defining an internal cavity 14 or compartment into which a storage bin 16 is received. In one form, the outer frame 12 comprises a plurality of vertical members 52 and horizontal members 54. More specifically, the outer frame 12 includes a first vertical member 56, a second vertical member 58, a third vertical member 60 and a fourth vertical member 62, each of the first through fourth vertical members 56, 58, 60, 62 having a first axial end 64 and an oppositely disposed second axial end 66.
A first horizontal member 68 interconnects the first axial ends 64 of the first vertical member 56 and the second vertical member 58. A second horizontal member 70 interconnects the first axial ends 64 of the second vertical member 58 and the third vertical member 60. A third horizontal member 72 interconnects the first axial ends 64 of the third vertical member 60 and the fourth vertical member 62. A fourth horizontal member 74 interconnects the first axial ends 64 of the fourth vertical member 62 and the first vertical member 56. A fifth horizontal member 76 interconnects the second axial ends 66 of the first vertical member 56 and the second vertical member 58. A sixth horizontal member 78 interconnects the second axial ends 66 of the second vertical member 58 and the third vertical member 60. A seventh horizontal member 80 interconnects the second axial ends 66 of the third vertical member 60 and the fourth vertical member 62. An eighth horizontal member 82 interconnects the second axial ends 66 of the fourth vertical member 62 and the first vertical member 56.
The first through fourth horizontal members 68, 70, 72, 74 define a top side 84 of the storage module 6 and the fifth through eighth horizontal members 76, 78, 80, 82 define a bottom side 86 of the storage module 6. The first vertical member 56, first horizontal member 68, second vertical member 58 and fifth horizontal member 76 define a rear side 88 of the storage module 6. The third vertical member 60, third horizontal member 72, fourth vertical member 62 and seventh horizontal member 80 define a front side 90 of the storage module 6. The second vertical member 58, second horizontal member 70, third vertical member 60 and sixth horizontal member 78 define a first lateral side 92 of the storage module 6. The fourth vertical member 62, fourth horizontal member 74, first vertical member 56 and eighth horizontal member 82 define a second lateral side 94 of the storage module 6.
The rear side 88 of the storage module 6 is situated opposite to the front side 90 of the storage module 6, the first lateral side 92 of the storage module 6 is situated opposite to the second lateral side 94 of the storage module 6 and the top side 84 of the storage module 6 is situated opposite to the bottom side 86 of the storage module 6. Preferably, the front side 90 of the storage module 6 is open so that a storage bin 16 may be inserted therethrough and withdrawn therefrom by the robotic bin handler 10; however, other sides of the storage module 6 may also be open. For example, to conserve materials and weight, each of the sides (e.g., the top side 84, the bottom side 86, the front side 90, the rear side 88, the first lateral side 92 and the second lateral side 94) of the storage module 6 may be open.
The storage module 6 and the storage bin 16 are generally complementary in shape so that the storage bin 16 can be situated within the internal cavity 14 or compartment thereof. The storage module 6 includes a storage bin support 96. In one form, the storage bin support 96 includes a first elongated member 98 and a second elongated member 100 on which the second flange 32 of the storage bin 16 rests when the storage bin 16 is situated within the internal cavity 14 of the storage module 6.
More specifically, each of the first elongated member 98 and the second elongated member 100 includes a first axial end and an oppositely disposed second axial end. The first elongated member 98 extends between the first vertical member 56 and the fourth vertical member 62 and is generally parallel to the fourth horizontal member 64 and eighth horizontal member 82. At least a portion of the first elongated member 98 extends inwardly into the internal cavity 14 of the storage module 6 and has a top surface 106 on which the second flange 32 of the storage bin 16 rests. The second elongated member 100 extends between the second vertical member 58 and the third vertical member 60 and is generally parallel to the second horizontal member 70 and the sixth horizontal member 78. At least a portion of the second elongated member 100 extends inwardly into the internal cavity 14 of the storage module 6 and has a top surface 108 on which the second flange 32 of the storage bin 16 rests.
The first elongated member 98 and the second elongated member 100 may also be formed as part of the second horizontal member 70 and fourth horizontal member 74, respectively. As can be seen in
As described previously, a storage cell 4 may comprise a plurality of storage modules 6. Preferably, each storage cell 4 includes three or four storage modules 6. As can be seen in
As can be seen in
In a vertical storage cell column 18 formed of storage cells 4 having three storage modules 6, wherein the second storage module 114 is situated between the first storage module 112 and the third storage module 116, the first storage module 112, second storage module 114 and third storage module 116 of the second storage cell 122 are aligned with and situated above the first storage module 112, second storage module 114 and third storage module 116 of the first storage cell 120, respectively. The first storage module 112, second storage module 114 and third storage module 116 of the third storage cell 124 are aligned with and situated above the first storage module 112, second storage module 114 and third storage module 116 of the second storage cell 122, respectively. Accordingly, the front sides 90 of each of the storage modules 6 of each storage cell 4 define a level or portion of the elevator shaft 8 through which the robotic bin handler 10 traverses. As shown in
Storage bins 16 are inserted and withdrawn from the storage modules 6 of the storage cells 4 by one or more vertical retrieval systems 20. In one form, the vertical retrieval system 20 comprises a winch 126 and a robotic bin handler 10 coupled thereto. As can be seen in
A robotic bin handler 10 is mechanically coupled to a free end 140 of the cable 132 of the winch 126 and is generally situated in the elevator shaft 8 of a particular vertical storage cell column 18. The robotic bin handler 10 is selectively, vertically movable within the elevator shaft 8 to deliver and retrieve storage bins 16 from the storage modules 6 of the storage cells 4 in a particular vertical storage cell column 18. More specifically, the winch 126 raises and lowers the robotic bin handler 10 to a particular storage cell 4 (e.g., storage cell level) in the vertical storage cell column 18 so that the robotic bin handler 10 may access the storage modules 6 of the storage cell 4.
As can be seen in
The robotic bin handler 10 further includes a gripping assembly 158 that inserts and removes storage bins 16 from the storage modules 6. More specifically, the gripping assembly 158 includes a base 160, a first arm 162 and a second arm 164. The base 160 is rotatably mounted to the bottom surface 146 of the housing 142. Each of the first arm 162 and the second arm 164 are mechanically coupled to the base 160 at opposite sides thereof by one or more actuators 166, such as a hydraulic actuator, a pneumatic actuator or an electrical actuator. The actuators 166 bias the first arm 162 and the second arm 164 between at least a first position and a second position, wherein in the second position, the distance between the arms 162, 164 is greater than the distance between the arms 162, 164 in the first position. As will be described in greater detail in the forthcoming paragraphs, the actuators 166 bias the arms 162, 164 outwardly from the base 160 to retrieve or deposit a storage bin 16 in a storage module 6. The base 160 is mechanically coupled to a motor 168 that is at least partially situated within the internal cavity 150 of the housing 142 of the robotic bin handler 10. The motor 158 selectively rotates the base 160 about the Z-axis (e.g., the vertical axis of the cable 132 within the elevator shaft 8). The base 160 is rotatable in 360 degrees so that the arms 162, 164 can access each of the storage modules 6 of a particular storage cell 4.
Each arm 162, 164 further includes one or more rail actuators 170 that are mechanically coupled to a rail slide 172. The rail actuator 170 of each of the first arm 162 and the second arm 164 drives the rail slide 172 inwardly and outwardly therefrom. The rail slide 172 may be formed as a single or multi-segmented elongated member. In a preferred form, the rail slide 172 includes a first elongated member 174 and a second elongated member 176. More specifically, as can be seen in
The first and second elongated members 174, 176 of the rail slide 172 may be joined together and may be slidable relative to one another by forming one of the members, such as the first elongated member 174, with a T-shaped rail 186 extending outwardly from the inner surface 184 of the first elongated member 174, and forming a complementary T-shaped slot 188 in the outer surface 182 of the second elongated member 176, which slot 188 receives the T-shaped rail 186 of the first elongated member 174. Such structure joins the first elongated member 174 and the second elongated member 176 together, but yet allows the second elongated member 176 to move reciprocatingly slidingly relative to the first elongated member 174 along the axial length thereof. Of course, it should be understood that the T-shaped rail 186 may be formed on the second elongated member 176, and that the T-shaped slot 188 may be formed in the first elongated member 174.
The inner surface 184 of the second elongated member 176 includes one or more engagement clamps 190 that extend outwardly therefrom. In one form, the engagement clamps 190 are formed as one or more protrusions that are generally rectangular in shape. More specifically, the engagement clamps 190 are formed to be generally complementary in shape to the receptacles 38 formed in the channel 34 of the storage bin 16. As will be described in greater detail in the forthcoming paragraphs, as the rail actuators 170 bias the arms 162, 164 and the rail slides 172 coupled thereto toward the storage bin 16, the engagement clamps 190 are engaged with the receptacles 38 in the storage bins 16. In particular, the engagement clamp 190 of the rail slide 172 of the first arm 162 engages a receptacle 38 formed in the channel 34 on the second sidewall 46 of the storage bin 16 and the engagement clamp 190 of the rail slide 172 of the second arm 164 engages a receptacle 38 formed in the channel 34 on the fourth sidewall 50 of the storage bin 16.
The locations of each of the storage modules 6 (e.g., the location within the vertical storage cell column 18 and storage cell 4 that the particular storage module 6 is located in) are stored in the central control system 136, as well as the identity and location of the storage bins 16 and any parcels contained therein. To retrieve a storage bin 16 from a storage module 6 of a storage cell 4 in the vertical storage cell column 18, the winch 126 extends the cable 132 so that the robotic bin handler 10 coupled thereto is lowered to the particular storage cell 4 (e.g., storage cell level) within the vertical storage cell column 18 containing the storage bin 16 to be retrieved. The motor 168 of the robotic bin handler 10 rotates the base 160 so that the arms 162, 164 are aligned with the storage module 6 containing the storage bin 16 to be retrieved. The robotic bin handler 10 may further include sensors, such as optical sensors utilized with a vision guidance system, to assist with aligning the robotic bin handler 10 and arms 162, 164 thereof with the storage module 6 containing the storage bin 16 to be retrieved.
After the robotic bin handler 10 has been positioned in front of the storage module 6 containing the storage bin 16 to be retrieved, the actuators 166 that couple the first arm 162 and the second arm 164 to the base 160 bias the arms 162, 164 outwardly therefrom to the second position (e.g., the widened position) such that first arm 162 and the second arm 164 may be positioned adjacent to the second sidewall 46 and fourth sidewall 50 of the storage bin 16, respectively. More specifically, after the arms 162, 164 are biased outwardly from the base 160 to the second position, the rail actuators 170 bias the rail slides 172 outwardly from the arms 162, 164 towards the storage module 6 and storage bin 16 contained therein. As can been seen in
More specifically, a first rail actuator 192 inserts the rail slide 172 of the first arm 162 into a space 196 defined by the top surface 106 of the second elongated member 100 of the bin support 96, the fourth horizontal member 74 of the outer frame 12 and the channel 34 of the storage bin 16. Similarly, a second rail actuator 194 inserts the rail slide 172 of the second arm 164 into a space 198 defined by the top surface 108 of the first elongated member 98 of the bin support 96, the second horizontal member 70 of the outer frame 12 and the channel 34 of the storage bin 16. Each of the rail slides 172 is advanced so that the engagement clamp 190 thereof is aligned with a respective receptacle 38 in the channel 34 of the storage bin 16. After the engagement clamps 190 of the rail slides 172 have been aligned with receptacles 38 in the channel 34 of the storage bin 16, the actuators 166 position the arms 162, 164 in the first position by biasing the arms 162, 164 inwardly towards the base 160. As the arms 162, 164 are biased inwardly, the engagement clamps 190 of the rail slides 172 engage the receptacles 38 in the channel 34 such that the storage bin 16 is mechanically coupled to the robotic bin handler 10.
Once the rail slides 172 of the robotic bin handler 10 have engaged the storage bin 16, the rail actuators 170 retract the rail slides 172 inwardly towards the robotic bin handler 10, thereby withdrawing the storage bin 16 from the storage module 6. As can be seen in
Similarly, the robotic bin handler 10 may also transport a storage bin 16 to a particular storage module 6 for storage. As will be described in greater detail in the forthcoming paragraphs, to pick up a storage bin 16 for transport to a storage module 6, the winch 126 lowers the robotic bin handler 10 to the level that the storage bin 16 is located (e.g., the ground floor or a subterranean loading station in the logistics tower 2). After the robotic bin handler 10 has been lowered to the storage bin 16, the actuators 166 that couple the first arm 162 and the second arm 164 to the base 160 bias the arms 162, 164 outwardly therefrom to the second position (e.g., the widened position) and the motor 168 of the robotic bin handler 10 rotates the base 160 so that the arms 162, 164 are aligned with the second sidewall 46 and fourth sidewall 50 of the storage bin 16. The winch 126 further lowers the robotic bin handler 10 so that the widened arms 162, 164 and the engagement clamps 190 of the rail slides 172 are aligned with the receptacles 38 in the channel 34 of the storage bin 16. Thereafter, the actuators 166 of the base 160 position the arms 162, 164 in the first position by biasing the arms 162, 164 inwardly towards the base 160. As the arms 162, 164 are biased inwardly, the engagement clamps 190 of the rail slides 172 engage the receptacles 38 in the channel 34 such that the storage bin 16 is mechanically coupled to the robotic bin handler 10. The winch 126 then retracts the cable 132 so that the robotic bin handler 10 moves upwardly through the elevator shaft 8 to a particular storage cell 4 (e.g., storage cell level) within the vertical storage cell column 18.
Once the winch 126 positions the robotic bin handler 10 at a desired storage cell 4, the motor 168 rotates the base 160 so that the arms 162, 164 are aligned with the particular storage module 6 that the storage bin 16 is to be stored in. The rail actuators 170 then bias the rail slides 172 and storage bin 16 engaged therewith into the storage module 6 so that the second flange 32 of the storage bin 16 rests on the storage bin support 96. After the storage bin 16 has been inserted into the storage module 6, the actuators 166 that couple the first arm 162 and the second arm 164 to the base 160 bias the arms 162, 164 outwardly therefrom to the second position (e.g., the widened position) to disengage the engagement clamps 190 from the receptacles 38 in the channel 34 and release the storage bin 16 from the robotic bin handler 10.
As described above, in one embodiment, as shown in
The logistics tower 2 may further include a horizontal shuttle system 202 situated below the vertical storage cell columns 18. As can be seen in
Each robotic flatbed shuttle 206 includes a generally rectangular housing 208 having a top surface 210, a bottom surface disposed opposite the top surface 210 and a sidewall 214 extending therebetween. The top surface 210, bottom surface and sidewall 214 define an internal cavity in which electronics, such as motors, wireless communications systems, control circuitry and a battery, are situated. One or more antennas 216 may be situated on the top surface 210 of the housing 208 and transmit signals to the central control system 136. A plurality of bi-directional wheels 218 are situated on the housing 208 and are coupled to one or more motors that are at least partially situated within the internal cavity of the housing 208. The bi-directional wheels and motors drive the robotic flatbed shuttle 206 on the rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200 in a plurality of directions (e.g., the robotic flatbed shuttle 206 can traverse the horizontal shuttle grid 200 in four directions).
The robotic flatbed shuttle 206 further includes electronic circuitry and control systems, such as optical sensors, radar, wireless communication systems and a wireless antenna 216, that assist the robotic flatbed shuttle 206 to navigate the rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200 and communicate the robotic flatbed shuttle's location to the central control system 136. The central control system 136 communicates and coordinates the movement of the one or more robotic flatbed shuttles 206 on rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200. The wireless communications systems of the robotic flatbed shuttle 206 further relays information to the central control system 136 such as tasks and the health of the robotic flatbed shuttle 206.
The robotic flatbed shuttle 206 further comprises a mounting platform 220 situated on the top surface 210 of the housing 208 on which a storage bin 16 is situated. The robotic flatbed shuttle 206 includes one or more rotatable clasps 222 on the top surface 210 of the housing 208. Each clasp 222 is mechanically coupled to an actuator or gearing that selectively rotates the clasp 222 between at least a first position and a second position. As will be described in greater detail in the forthcoming paragraphs, when the robotic bin handler 10 places a storage bin 16 on the mounting platform 220 of the robotic flatbed shuttle 206, the clasps 222 rotate and a latching mechanism engages the mounting flange 42 of the storage bin 16, thereby securing the storage bin 16 to the robotic flatbed shuttle 206. The top surface 210 of the housing 208 of the robotic flatbed shuttle 206 may also include one or more vents 224 in communication with the internal cavity thereof.
When the robotic bin handler 10 of the vertical retrieval system 20 retrieves a storage bin 16 from a storage module 6 in a storage cell 4, the central control system 136 signals one of the robotic flatbed shuttles 206 to position itself below the elevator shaft 8 of the vertical storage cell column 18 that the specific robotic bin handler 10 is traversing. The winch 126 lowers the robotic bin handler 10 and storage bin 16 engaged therewith through the elevator shaft 8 onto the mounting platform 220 of the robotic flatbed shuttle 206 situated therebelow. The robotic bin handler 10 may include a sensor, such as a weight sensor in the base 160 of the gripping assembly 158, that detects when the storage bin 16 is situated on the mounting platform 220 and supported thereby. As described previously, when the storage bin 16 is delivered (e.g., placed on the mounting platform 220 of the robotic flatbed shuttle 206), the actuators 166 bias the arms 162, 164 outwardly to release the storage bin 16 from the rail slides 172 of the robotic bin handler 10. After the storage bin 16 is situated on the mounting platform 220, the clasps 222 rotate and engage the mounting flange 42 on the storage bin 16 to secure the storage bin 16 thereto during transport to a pick station 226.
The robotic flatbed shuttles 206 may also be utilized to load storage bins 16 into the logistics tower 2. More specifically, the logistics tower 2 may also include a loading bay 228 that is accessible by the rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200. The loading bay 228 may include one or more loading stations 230 where operators load storage bins 16 onto the robotic flatbed shuttles 206. More specifically, a storage bin 16 is presented at a particular loading station 230 in the loading bay 228. The storage bin 16 is identified by the central control system 136 (e.g., by a barcode or a radio frequency identification tag embedded in or on the storage bin 16). The central control system 136 directs a robotic flatbed shuttle 206 to the loading station 230 and the storage bin 16 is placed on the mounting platform 220 and secured thereon by the clasps 222. After the storage bin 16 is secured to the robotic flatbed shuttle 206, the central control system 136 instructs the robotic flatbed shuttle 206 to navigate the rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200 and position itself below the elevator shaft 8 of the vertical storage cell column 18 that the storage bin 16 will be stored in. When the robotic flatbed shuttle 206 positions itself below the elevator shaft 8, it transmits a signal to the central control system 136 indicating such. The central control system 136 directs the winch 126 of the vertical retrieval system 20 of the particular vertical storage cell column 18 to lower the robotic bin handler 10 downwardly through the elevator shaft 8 to the robotic flatbed shuttle 206 positioned therebelow. As described previously, the robotic bin handler 10 engages the storage bin 16 and the robotic flatbed shuttle 206 disengages the latches of the clasps 222, thereby releasing the storage bin 16 therefrom. The winch 126 then retracts the robotic bin handler 10 and storage bin 16 coupled thereto through the elevator shaft 8 and positions the robotic bin handler 10 at the storage cell 4 (e.g., storage cell level) containing the storage module 6 that the storage bin 16 will be placed in.
In a further embodiment, the robotic flatbed shuttles 206 may be configured to vertically traverse the elevator shaft 8 of a particular vertical storage cell column 18 to access a particular storage module 6 and retrieve a storage bin 16 therefrom or insert a storage bin 16 therein. For example, as described previously, the robotic shuttle 206 may traverse the rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200 and align itself below the elevator shaft 8 of the vertical storage cell column 18 in which the storage bin 16 to be retrieved is situated. The robotic flatbed shuttle 206 may include means, such as extendible wheels, tracks or an extendable lift system, that enable the robotic flatbed shuttle 206 to climb from the rails 204 or removeable rail tiles 900 of the horizontal shuttle grid 200 into the elevator shaft 8. The robotic flatbed shuttle 206 then can drive itself through the elevator shaft 8 to the storage cell 4 (e.g., storage cell level) at which the storage bin 16 is situated. The robotic flatbed shuttle 206 further includes means for retrieving and/or inserting the storage bin 16 from the storage module 6. For example, the robotic flatbed shuttles 206 may be configured to include a gripping assembly similar to the gripping assembly 158 of the robotic bin handler 10, the gripping assembly being situated at least partially on the top surface 210 of the robotic flatbed shuttle 206. Accordingly, the robotic flatbed shuttle 206 can be used to retrieve and/or insert bins without the need of the robotic bin handler 10. Alternatively, the elevator shaft 8 may include portions that extend downwardly towards the horizontal shuttle grid 200 that enable the robotic flatbed shuttles 206 to climb from the horizontal shuttle grid 200 to the elevator shaft 8.
The logistics tower 2 may also include a delivery bay 232. As can be seen in
As can be seen in
As can be seen in
The elevator lift 252 preferably comprises an elevator shaft 256 that extends between the delivery bay 232 and a parcel transit system 258 situated at a lower level of the logistics tower 2. The parcel transit system 258 includes a plurality of conveyors 260 and elevators 262 that transport storage bins 16 from the elevator lift 252 to storage lockers 264 situated outside of the logistics tower 2. As can be seen in
In summary, when an order is placed for a particular item (e.g., via an ecommerce platform), the complete order is sent to the closest logistics tower 2 to the user via the cloud. Once the central control system 136 of the logistics tower 2 receives the order, it is either processed for immediate retrieval or scheduled to be retrieved at a later time defined by the user. When an order is processed, each item in each vertical storage cell column 18 is prepared for retrieval. The robotic bin handler 10 is moved up and down by a winch 126. The robotic bin handler 10 has the ability to rotate 360 degrees. The robotic bin handler 10 can access all of the storage modules 6 (e.g., two, three or four storage modules 6) of a particular storage cell 4. Once a storage bin 16 is picked, the rail slides 172 of the arms 162, 164 are retracted under and the robotic bin handler 10 brings the storage bin 16 down to the horizontal shuttle grid 200 and robotic flatbed shuttle 206 thereon. The robotic flatbed shuttle 206 includes bi-directional wheels 218. Vision systems and radar may be used to guide the robotic flatbed shuttle 206 over the horizontal shuttle grid 200. Once an order is picked, a designated robotic flatbed shuttle 206 moves in a single line and transports the order to a designated pick station. Each item is picked and placed into an outbound container. The container moves outbound to two pickup areas, as shown in
In another embodiment of the present invention, as shown in
As previously described a consumer can select a desired product from one or more kiosks 246 situated in a customer center 248 situated adjacent to or in the logistics tower 2. When a user selects a particular product from the kiosk 246, the location of the storage bin 16 that the product is stored in is accessed by the central control system 136 and the vertical retrieval system 20 retrieves and transports the particular storage bin 16 to a robotic flatbed shuttle 206 situated on the horizontal shuttle grid 200 of the horizontal shuttle system 2 situated below the customer center 248 and the loading bay 228. The robotic flatbed shuttle 206 transports the storage bin 16 on the horizontal shuttle grid 200 to the elevator lift 252 that leads to the particular pickup port in the customer center 248. Once the robotic flatbed shuttle 206 is positioned on the track 272 of the elevator lift 252, the motor 266 drives the track and shuttle 206 situated thereon upwardly within the elevator shaft 256 to the pickup port 1002. After the storage bin 16 is removed from the shuttle 206, the motor 266 lowers the track 272 back to the horizontal shuttle grid 200 of the horizontal shuttle system 202 and the bin 16 is returned to a particular storage module 6 by the vertical retrieval system 20. Alternatively, as will be explained in greater detail in the forthcoming paragraphs, the empty storage bin 16 may be transported by the shuttle 206 to one of the elevator lifts 252 that extends between the horizontal shuttle grid 200 of the horizontal shuttle system 202 and the loading bay 228 so that the bin 16 can be loaded into a logistics trailer (not shown).
In accordance with a second embodiment of the present invention, as shown in
As can be seen in
Depending on any land variances and zoning laws of the parcel on which the logistics tower 2 is situated (e.g., the size of the parcel where the logistics tower 2 is located), additional vertical storage cells 400 can be added to one or more of the vertical storage columns 418 to increase the height and vertical storage capacity of the logistics tower 2. Furthermore, additional vertical storage cell columns 418 can be added in a grid-like pattern within the logistics tower 2 to increase the width and horizontal storage capacity of the logistics tower 2. Accordingly, the logistics tower 2 formed in accordance with present invention can be both vertically scaled and horizontally scaled to maximize the storage capacity thereof.
For example, if the parcel has variances prohibiting structures over a certain height, the logistics tower 2 may be horizontally scaled to maximize storage capacity by adding additional vertical storage cell columns 418. As can be seen in
If there are no height restrictions on the parcel where the logistics tower 2 is constructed, but the footprint of the property is small, the logistics tower 2 may be vertically scaled by increasing the number of vertical storage cells 400 in the vertical storage cell columns 418 to maximize storage capacity. As explained previously, the number of storage columns 404 in each vertical storage cell 400 can be vary. Accordingly, to maximize the storage capacity of the logistics tower 2, some vertical storage cell columns 418 may include vertical storage cells 400 having four storage columns 404 while other vertical storage cell columns 418 may include vertical storage cells 400 having three storage columns 404.
In an exemplary form, as shown in
The storage capacity of the logistics tower 2 can be varied depending on the shape of the logistics tower 2, any height restrictions on the logistics tower and the footprint of the logistics tower 2 by varying the number of vertical storage cell columns 418, the number of vertical storage cells 400 in each vertical storage cell column 418 and the number of storage columns 404 in each vertical storage cell 400. Additionally, if the logistics tower 2 has a shape that is not square or rectangular, some portions of the logistics tower 2 can be filled with vertical storage cell columns 418 having a first number of vertical storage cells 400 while other portions of the logistics tower 2 can be filled with vertical storage cell columns 418 having a second number of vertical storage cells 400. For example, the logistics tower 2 may have a first portion extending to a first height and a second portion extending to a second height. Accordingly, vertical storage cell columns 418 of varying heights can be arranged in the logistics tower 2 depending on the shape and dimensions thereof.
The frame 402 of each vertical storage cell 400 includes a plurality of vertical members 412 and horizontal members 414 that define the storage columns 404 and elevator shaft 406 thereof. Each vertical member 412 includes an upper end 413 and an opposed disposed lower end 415. For example, the vertical storage cell 400 shown in
The third storage column 420 is defined by a fifth vertical member 430, a sixth vertical member 432, a seventh vertical member 434 and an eighth vertical member 436. The upper ends 413 of the fifth, sixth, seventh and eighth vertical members 430, 432, 434, 436 are interconnected by the horizontal members 414. More specifically, the upper end 413 of the fifth vertical member 430 is connected to the upper end 413 of the sixth vertical member 432. The upper end 413 of the sixth vertical member 432 is connected to the upper end 413 of the seventh vertical member 434. The upper end 413 of the seventh vertical member 434 is connected to the upper end 413 of the eighth vertical member 436. The upper end 413 of the eighth vertical member 436 is connected to the upper end 413 of the fifth vertical member 430. Similarly, the lower end 415 of the fifth vertical member 430 is connected to the lower end 415 of the sixth vertical member 432. The lower end 415 of the sixth vertical member 432 is connected to the lower end 415 of the seventh vertical member 434. The lower end 415 of the seventh vertical member 434 is connected to the lower end 415 of the eighth vertical member 436. The lower end 415 of the eighth vertical member 436 is connected to the lower end 415 of the fifth vertical member 430.
The second storage column 418 is defined by the third vertical member 426, the fifth vertical member 430, a ninth vertical member 438 and a tenth vertical member 440. The upper ends 413 of the third, ninth, tenth and fifth vertical members 426, 438, 440, 430 are interconnected by the horizontal members 414. More specifically, the upper end 413 of the third vertical member 426 is connected to the upper end 413 of the ninth vertical member 438. The upper end 413 of the ninth vertical member 438 is connected to the upper end 413 of the tenth vertical member 440. The upper end 413 of the tenth vertical member 440 is connected to the upper end 413 of the fifth vertical member 430. The upper end 413 of the fifth vertical member 430 is connected to the upper end 413 of the third vertical member 426. Similarly, the lower end 415 of the third vertical member 426 is connected to the lower end 415 of the ninth vertical member 438. The lower end 415 of the ninth vertical member 438 is connected to the lower end 415 of the tenth vertical member 440. The lower end 415 of the tenth vertical member 440 is connected to the lower end 415 of the fifth vertical member 430. The lower end 415 of the fifth vertical member 430 is connected to the lower end 415 of the third vertical member 426.
For stability purposes, a horizontal member 414 may also connect the upper end 413 of the eighth vertical member 436 to the upper end 413 of the fourth vertical member 428. Similarly, a horizontal member 414 may also connect the lower end 415 of the eighth vertical member 436 to the lower end 415 of the fourth vertical member 428
As shown in
As described previously, each storage bin support tray 408 is situated within a respective storage column 404. More specifically, each storage bin support tray 408 is horizontally disposed within one of the storage columns 404 and joined to or engaged with the vertical members 412 that define the respective storage column 404 that the storage bin support tray 408 is situated within. The storage bin support tray 408 is preferably formed in a U-shape with a closed end portion 450, a pair of parallel spaced apart legs 452 extending outwardly from the closed end portion 450 and an open end 454 at the far end of the parallel, straight legged portion 452. The closed end portion 450 and parallel, straight legged portion 452 define a receptacle 456 that the storage bin 16 is received within, the receptacle 456 generally conforming to the shape of the storage bin 16.
The storage bin support tray 408 includes a top surface 458 on which the third flange 33 of the storage bin 16 rests. If the storage bin 16 only includes a first flange 30 and a second flange 32, the second flange 32 rests on the top surface 458 of the storage bin support tray 408. As can be seen in
The scalable logistics tower 2 formed in accordance with the present invention may also include a temperature control system 460. The temperature control system 460 includes one or more heating, ventilation and air conditioning units 462 that are fluidly connected to a cooling column 464 that extends, at least partially, through a storage column 404 of the vertical storage cells 400 forming the vertical storage cell columns 418. More specifically, as can be seen in
As shown in
Storage bins 16 are inserted and withdrawn from the storage bin support trays 408 of the in the vertical storage cell 400 by one or more vertical retrieval systems 20. In another form, the vertical retrieval system 20 comprises a winch 626 and a robotic bin handler 410 coupled thereto. As can be seen in
As can be seen in
The winch 626 further includes at least one, but preferably two, secondary motors 700. Each secondary motor 700 is mechanically coupled to a secondary cable drum 702 on which a secondary cable 704 is coiled. The free end 708 of each secondary cable 704 is mechanically coupled to a cross member 706 situated above the elevator shaft 406 in the top portion 128 of the logistics tower 2 or on a top portion of the vertical storage cell 400 or vertical storage cell column 418. Preferably, the cross member 706 includes two eye loops 710 extending downwardly therefrom towards the elevator shaft 406 that are mechanically coupled to the free ends 708 of the secondary cables 704.
The winch further includes a plurality of winch clamps 712 extending upwardly from the winch frame 626. The winch clamps 712 are mechanically actuated, for example by gear motors 716, and selectively rotate between at least a first position and a second position. In the first position, the winch clamps 712 mechanically engage support members 714 situated above the elevator shaft 406 in the top portion 128 of the logistics tower 2 or on a top portion of the vertical storage cell 400 or vertical storage cell column 418, thereby securing the winch 626 thereto. In the second position, the winch clamps 712 rotate inwardly towards the winch 626 and disengage the support members 714, thereby releasing the winch 626 therefrom.
For servicing purposes, the winch 626 is selectively lowerable from the top portion of the logistics tower 2 or vertical storage cell column 418 through the elevator shaft 406, as shown in
A robotic bin handler 410 is mechanically coupled to a free end 740 of the cable 632 of the winch 626 and is generally situated in the elevator shaft 406 defined by the frame 402 of the one or more vertical storage cells 400 that form a particular vertical storage cell column 418. The robotic bin handler 410 is selectively, vertically movable within the elevator shaft 406 to deliver and retrieve storage bins 16 from the storage bin support trays 408 in the vertical storage cell columns 418. More specifically, the winch 626 raises and lowers the robotic bin handler 410 to a particular storage level 405 in the vertical storage cell column 418 so that the robotic bin handler 410 may access the storage bins 16 in the receptacles 456 of the storage bin support trays 408.
As can be seen in
The robotic bin handler 410 further includes a gripping assembly 758 that inserts and removes storage bins 16 from the storage bin support trays 408 in the vertical storage cell columns 418. More specifically, the gripping assembly 758 includes a base 760 and a carriage 800. The carriage 800 is preferably mechanically coupled to the base 760 and selectively extendable and retractable therefrom. The base 760 is rotatably mounted to the bottom surface 746 of the housing 742 by a crossed roller bearing 828 which handles the radial, axial, and moment forces of the extension system 812, and mechanically coupled to a motor 768 that is at least partially situated within the internal cavity 750 of the housing 742 of the robotic bin handler 410. The motor 768 selectively rotates the base 760 about the Z-axis (e.g., the vertical axis of the cable 632 within the elevator shaft 406). The base 760 is rotatable in 360 degrees so that the carriage 800 can access storage bin support trays 408 situated in each of the storage columns 404 of the vertical storage cells 400 forming the vertical storage cell columns 418, and selectively insert and withdraw storage bins 16 therefrom.
As can been seen in
More specifically, one pair of magnets 806 are connected by an actuated linkage 814 that is mechanically coupled to the linear actuator 808. The other pair of the magnets 806 are connected by a passive linkage 816 that is mechanically coupled the actuated linkage 814 by a cross link 818. As the linear actuator 808 drives the actuated linkage 814 between a first position and a second position, the passive linkage 816 mechanically coupled thereto also moves between a first position and a second position. The movement of the actuated linkage 814 and the passive linkage 816 causes the magnets 806 to switch between a first state and a second state.
In the first state, the magnets 806 emanate a magnetic field that attracts the metal lugs 500 that are situated around the periphery of the storage bin 16. In a second state, the magnets 806 do not emanate a magnetic field and thus, do not attract the metal lugs 500. Accordingly, as will be described in greater detail in the forthcoming paragraphs, when the carriage 800 is positioned over a storage bin 16 situated in the receptacle 456 of the storage bin support tray 408, the linear actuator 808 switches the magnets 806 to the first state to magnetically couple a storage bin 16 to the carriage 800. To decouple the storage bin 16 from the carriage 800, the linear actuator switches the magnets 806 to the second state, thereby releasing the storage bin 16 from the carriage 800. It is also envisioned to be within the scope of the present invention to also use electromagnets to couple the storage bins 16 to the carriage 800.
As mentioned previously, the carriage 800 is mechanically coupled to the base 760, preferably, by a multi-stage extension system 812. More specifically, as can be seen in
Generally, the whole assembly has coordinated motion between the roller chain drives 824, 826 and linear actuator 808, to minimize the total cycle time of extending out and picking up a storage bin (e.g., a “tote”). The process generally includes the steps of: the winch 626 positions the robotic bin handler 410 at the storage level 405 where a storage bin 16 to be retrieved is located, in particular, so that the robotic bin handler 410 is slightly above the storage bin; the extension system 812 causes the carriage 800 to be extended from the base 760; the linear actuator 808 causes the magnets 806 to generate/emanate a magnetic field; the winch 626 lowers the robotic bin handler 410 slightly so that the magnets 806 attach to metal lugs 500 in storage bin 16; the winch 626 raises the robotic bin handler 410 slightly, the extension system 812 causes the carriage 800 to be retracted towards the base 760; the winch 626 lowers the robotic bin handler 410 and storage bin 16 coupled thereto the horizontal shuttle grid 200, the robotic flatbed shuttle 206 positions itself below the elevator shaft 406 and the robotic bin handler 410; the winch 626 lowers the robotic bin handler 410 to just above the robotic flatbed shuttle 206; the linear actuator 808 causes the magnets 806 to cease generating a magnetic field, causing the storage bin 16 to be decoupled from the carriage 800; the horizontal flatbed shuttle 206 drives away; and the vertical retrieval system 20 comprising the winch 626 and robotic bin handler 410 waits for the next horizontal flatbed shuttle 206 to be positioned thereunder, if applicable.
The locations of each of the storage bin support trays 408 (e.g., the location within a specific vertical storage cell column 418 that the particular storage bin support tray 408 is located in) are stored in the central control system 136, as well as the identity and location of the storage bins 16 and any parcels contained therein. To retrieve a storage bin 16 from a storage bin support tray 408 in the vertical storage cell column 418, the winch 626 extends the cable 632 and lowers the robotic bin handler 410 coupled thereto to the particular storage level 405 of the vertical storage cell column 418 that the storage bin 16 to be retrieved is located. The motor 768 of the robotic bin handler 410 rotates the base 760 so that the carriage 800 is aligned with the storage bin support tray 408 containing the storage bin 16 to be retrieved. The robotic bin handler 410 may further include sensors, such as optical sensors utilized with a vision guidance system, to assist with aligning the robotic bin handler 410 and carriage 800 thereof with the storage bin support tray 408 containing the storage bin 16 to be retrieved.
After the robotic bin handler 410 has been positioned in front of storage bin support tray 408 containing the storage bin 16 to be retrieved such that the carriage 800 is positioned slightly higher than the open top end 22 the storage bin 16, the multi-stage extension system 812, in particular, the first five stage slide 820 and the second five stage slide 822, extend outwardly from the base 760, thereby advancing the carriage 800 into the particular storage column 404 where the storage bin 16 to be retrieved is located. The carriage 800 is advanced into the storage column 404 until the magnets 806 thereof are situated above the respective metal lugs 500 of the storage bin 16. Thereafter, the linear actuator 808 drives the actuated linkage 814 to the first position, which drives the passive linkage 816 mechanically coupled thereto by the cross link 818 to move to the first position. The movement of the actuated linkage 814 and the passive linkage 816 to their respective first positions causes the linkages 814, 816 to bias the control levers 807 of the magnets 806 and switch the magnets 806 into a first state wherein each magnet 306 emanates a magnetic field. The magnetic fields of the magnets 806 attract the metal lugs 500 of the storage bin 16 thereto, which causes the storage bin 16 to be coupled to the carriage 800. Optionally, the winch 626 lowers the robotic bin handler 410 slightly to facilitate the coupling of the magnets 806 to the metal lugs 500, and the storage bin 16 to the carriage 800.
After the storage bin 16 has been coupled to the carriage 800, preferably, the winch 626 raises the robotic bin handler 410 slightly in the elevator shaft 406. Thereafter, the extension system 812, in particular, the first five stage slide 820 and the second five stage slide 822 thereof, retract the carriage 800 inwardly towards the robotic bin handler 410, thereby withdrawing the storage bin 16 from the storage bin support tray 408. As can be seen in
As will be described in greater detail in the forthcoming paragraphs, after a storage bin 16 has been retrieved from the storage bin support tray 408, the winch 626 extends the cable 632 and robotic bin handler 410 coupled thereto downwardly through the elevator shaft 406 to a robotic flatbed shuttle 206 positioned therebelow on the horizontal shuttle grid 200. After the storage bin 16 has been lowered to the robotic flatbed shuttle, the linear actuator 808 drives the actuated linkage 814 to the second position, which drives the passive linkage 816 mechanically coupled thereto by the cross link 818 to move to the second position. The movement of the actuated linkage 814 and the passive linkage 816 to their respective second positions causes the linkages 814, 816 to bias the control levers 807 of the magnets 806 and switch the magnets 806 into a second state in which the magnets 806 do not emanate a magnetic field. After the magnets 806 are switched to their second state, the storage bin 16 decouples from the carriage 800, which allows the robotic flatbed shuttle 206 to transport the storage bin 16 to a particular destination.
Similarly, the robotic bin handler 410 may also transport a storage bin 16 to a particular storage bin support tray 408 for storage, albeit in a reversed order from the operation set forth above. More specifically, to pick up a storage bin 16 for transport to a storage bin support tray 408, the winch 626 lowers the robotic bin handler 410 to the storage bin 16 to be retrieved. For example, the storage bin 16 may be situated on a robotic flatbed shuttle 206 situated on the horizontal shuttle grid 200. Alternatively, the storage bin 16 may be located on the ground floor or a subterranean loading station in the logistics tower 2. After the robotic bin handler 410 has been lowered to the storage bin 16 and the magnets 806 thereof are situated above the respective metal lugs 500 of the storage bin 16, the linear actuator 808 drives the actuated linkage 814 to the first position, which drives the passive linkage 816 mechanically coupled thereto by the cross link 818 to move to the first position. The movement of the actuated linkage 814 and the passive linkage 816 to their respective first positions causes the linkages 814, 816 to bias the control levers 807 of the magnets 806 and switch the magnets 806 into a first state wherein each magnet 306 emanates a magnetic field. The magnetic fields of the magnets 806 attract the metal lugs 500 of the storage bin 16 thereto, which causes the storage bin 16 to be coupled to the carriage 800.
After the storage bin 16 has been coupled to the carriage 800, the winch 626 then retracts the cable 632 so that the robotic bin handler 410 moves upwardly through the elevator shaft 406 to a particular storage cell level 405 within the vertical storage cell column 418 on which the storage bin 16 will be stored. After the winch 626 positions the robotic bin handler 410 at the particular storage level 405, the motor 768 rotates the base 760 so that the carriage 800 is aligned with the particular storage column 404 containing the particular storage bin support tray 408 that will receive the storage bin 16. Thereafter, the multi-stage extension system 812, in particular, the first five stage slide 820 and the second five stage slide 822 extend outwardly from the base 760, thereby advancing the carriage 800 and storage bin 16 coupled thereto into the particular receptacle 456 of the storage bin support tray 408 such that the third flange 33 of the storage bin 16 is situated on the top surface 458. Optionally, the winch 626 may slightly lower robotic bin handler 410 so that the third flange 33 of the storage bin 16 rests on the top surface 458 of the storage bin support tray 408.
After the storage bin 16 is at least partially situated on the storage bin support tray 408, the linear actuator 808 drives the actuated linkage 814 to the second position, which drives the passive linkage 816 mechanically coupled thereto by the cross link 818 to move to the second position. The movement of the actuated linkage 814 and the passive linkage 816 to their respective second positions causes the linkages 814, 816 to bias the control levers 807 of the magnets 806 and switch the magnets 806 into a second state in which the magnets 806 do not emanate a magnetic field, thereby decoupling the storage bin 16 from the carriage 800.
After the storage bin 16 has been decoupled from the carriage 800, the extension system 812, in particular, the first five stage slide 820 and the second five stage slide 822 thereof, retracts the carriage 800 inwardly towards the robotic bin handler 410, thereby withdrawing carriage 800 from the storage column 404. As can be seen in
The horizontal shuttle system 202 and the components thereof utilized in the first embodiment of the scalable logistics tower 2 described above are also utilized in the second embodiment of the scalable logistics tower 2. On or more of the rail tiles 900, in particular the rail tiles below the elevator shafts 406, include one or more electromechanical actuators that allow the rail tile 900 to swing downwardly or hingedly away from the adjacent rail tiles so that the robotic bin handler 410 or winch 626 may be lowered from the logistics tower 2 therethrough for servicing. The operation, control and communication between the components of the horizontal shuttle system 202 and the other components of the scalable logistics tower 2 in the first and second embodiments thereof are also substantially the same. For example, the central control system 136 coordinates the retrieval of storage bins 16 from the storage bin support trays 408 and placement of such storage bins 16 on the robotic flatbed shuttles 206 that traverse the horizontal shuttle grid 200.
Furthermore, as can be seen in
More specifically, as shown in
Each active elevator 903 also includes a counterweight 906; however, it also includes an electromechanical drive 909 or actuator that raises and lowers a rail tile 900 between the horizontal rail system 202 and the second horizontal rail system 902. The primary purpose of the active elevators 903 is to raise loaded and unloaded shuttles 206 from the second horizontal rail system 902 up to the horizontal rail system 202.
As can be seen in
Each loading dock 970 preferably includes a storage bin retainer 972, a conveyor belt 974, an articulating robotic arm 976, a storage bin elevator lift 978 and a passive elevator 904. The storage bin retainer 972 is situated above the conveyor belt 974 and stores a plurality of storage bins 16 that are selectively dropped to the conveyor belt 974 to process a new order. More specifically, when a new order is processed by the central control system 136, the order is routed to a particular loading dock 970. One or more storage bins 16 are dropped or lowered from the storage bin retainer 972 to the conveyor belt. The vertical retrieval system 20 of the logistics tower 2 retrieves storage bins from the vertical storage cell columns 418 containing the contends of the order. The storage bins are lowered to shuttles 206 on the horizontal shuttle grid 200 of the horizontal shuttle system 202. The shuttles 206 traverse the horizontal shuttle grid 200 of the horizontal shuttle system 202 to a passive elevator 904 situated at a respective loading lock 970. The passive elevator 904 lowers the shuttles 206 to the ground in proximity to and within the reach of the articulating robotic arm 976. The articulating robotic arm 976 retrieves the ordered product from the storage bins and transfers it to the storage bins 16 on the conveyor belt 974. A cart 980 having a plurality of storage levels 982 is situated in proximity to the storage bin elevator lift 978. After the storage bins 16 are loaded by the articulating robotic arm 976, the conveyor belt 974 moves one of the storage bins to the storage bin elevator lift 978. The storage bin elevator lift 978 raises or lowers the storage bin situated thereon to an appropriate height corresponding to an empty storage level 982 on the cart 980 so that the user can slide the storage bin 16 thereon. Once is the cart 980 is full, it can be transferred to a vehicle for transport to another location, such as a store or distributor.
As can also be seen in
Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention.
This application is related to U.S. Provisional Application Ser. No. 62/831,448, filed on Apr. 9, 2019 and entitled “Logistics Tower” U.S. Provisional Application Ser. No. 62/849,703, filed on May 17, 2019 and entitled “Logistics Tower”, and U.S. Provisional Application Ser. No. 62/865,844, filed on Jun. 24, 2019 and entitled “Logistics Tower And Loading System”, the disclosure of each of which is incorporated herein by reference and on each of which priority is hereby claimed.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/027563 | 4/9/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62831448 | Apr 2019 | US | |
62849703 | May 2019 | US | |
62865844 | Jun 2019 | US |