Various applications may use flame radiant heating to provide direct heating to a process material. Such applications may range from salamander broilers used in restaurants to heat food, to high temperature calciners, such as may be used to heat limestone to make Portland cement clinkers or gas side-fired kilns used for preparing float-glass by the so-called Pilkington process. Conventional systems are typically characterized by flame lengths that are determined by flame momentum and/or buoyancy. Moreover, conventional flames may exhibit significant flicker, which can introduce unwanted heating variations that can limit product quality and consistency and/or require more complex, multiple burner arrangements.
One problem with the prior art situation depicted in
What is needed is a technology that can produce a consistent long flame for direct, uniform radiative heating of a process material with minimum variation in flame heating due to processes such as flame flicker.
According to an embodiment, a long flame process heater may be configured to reliably provide radiation heating to a process material. Compared to previous systems, the long flame process heater may include a flame extension mechanism configured to stably hold the long flame with reduced flicker and/or under a reduced or substantially absent requirement for imparting momentum onto the flame with high fuel pressure, high air velocity, and/or secondary air manipulation. According to embodiments, the flame may be held responsive to a voltage applied to the flame and charge transfer or capacitive coupling to a field electrode held at one or more distal locations from a burner.
According to an embodiment, a long flame process heater may include a charge electrode configured to impart a voltage or majority charge to a flame, such that the flame carries the voltage or majority charge, a field electrode disposed distal to the charge electrode, and a burner supporting the flame along an axis parallel to a process material. The field electrode may be configured to attract the voltage or majority charge carried by the flame with a second voltage nearer to ground than or opposite in sign to the voltage or majority charge carried by the flame.
According to another embodiment, a method for radiantly heating a process material with a flame may include supporting a flame proximate to a process material, causing the flame to carry a voltage or a majority charge, and attracting the voltage or majority charge and the flame toward a field electrode to extend the flame across the process material.
According to another embodiment, a kiln configured to heat a process material may include an electrode or an electrode array supported relative to the process material and a voltage controller operatively coupled to the electrode or electrode array. The voltage controller may be configured to drive the electrode or electrode array to one or more of a sequence of electric field states to extend a combustion reaction across the process material, the combustion reaction being configured to act as a radiation heat source for the process material.
According to another embodiment, a method for making a product by a process may include heating a process material by radiation from a flame and controlling the flame shape to expose the process material to radiation heating by applying one or more of a sequence of electric fields to the flame.
According to another embodiment, a system for making a high consistency calcined material may include a rotating or stationary process vessel configured to receive a continuous stream of a raw material. A burner or burners may be configured to support a flame or a plurality of flames, the flame or flames being disposed to selectively heat the raw material, an intermediate product reacted from the raw material, and a calcined material made from the intermediate product (collectively, process material) and to provide substantially all the calcining energy received by the process material. An electric field application system may be configured to control a spatial distribution of a radiant energy source formed by the flame by controlling one or more electric fields impressed upon the flame and a region near the flame.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
The process material 206 may be supported or conveyed by a mechanism 205. The support mechanism or conveyor 205 may be substantially planar, in which this case the normal axis to the process material 206 may be defined as normal to the support mechanism or conveyor 205. In some applications, the support mechanism or conveyor 205 may include the inside of a rotating cylinder such as a rotary kiln shell. In such cases, the normal axis to the process material 206 may be defined as a radial axis substantially passing through the center axis of the rotating cylinder.
In embodiments in which the support mechanism or conveyor 205 and process material 206 are in motion, the axis of the flame 204 may be transverse and parallel to, or alternatively at least partly across, a direction of movement of a support mechanism or conveyor 205 and process material 206.
In an embodiment, a charge electrode 208 may be configured to impart an electrified state to flame 204 that may include a voltage or majority charge 210. A field electrode 212 may be disposed distal to charge electrode 208 and burner 202, along an axis parallel to a process material 206. The field electrode 212 may be configured to attract the voltage or majority charge 210 carried by flame 204 with a second voltage that is nearer to ground than or opposite in sign (i.e., opposite in polarity) to the voltage or majority charge 210.
A burner 202 may be configured to support the flame 204 for radiation heat transfer to the process material 206. A process material support mechanism or conveyor 205 may be configured to support or convey the process material 206 while it is exposed to radiation heat transfer from the flame 204. The process material support mechanism or conveyor 205 may include a rack configured to support a batch of process material 206, and/or may include a rotating kiln shell, for example.
The charge electrode 208 and the field electrode 212 may be configured to cooperate to draw the flame 204 to a stable length longer than a stable length achievable without the cooperation of the charge electrode 208 and the field electrode 212. Moreover, charge electrode 208 and field electrode 212 may be configured to cooperate to draw the flame 204 to a stable length having less flicker and/or less length variation than a length achievable without the cooperation of the charge electrode and the field electrode 212.
A voltage source 214 may be operatively coupled to the charge electrode 208 and may in addition be operatively coupled to the field electrode 212. The voltage source 214 may be configured to apply a DC voltage to charge electrode 208 and/or voltage or majority charge 210 to the flame 204. Alternatively, the voltage source 214 may be configured to apply a time-varying voltage to the charge electrode 208 and/or the voltage or majority charge 210 to the flame 204. The time-varying voltage may be a periodic voltage waveform having a frequency between 50 and 1500 Hz, for example. In some embodiments, the time-varying voltage may have a frequency between 200 and 800 Hz. A periodic voltage waveform applied to charge electrode 208 may have a voltage between 1 kV and 100 kV, for example. The periodic voltage waveform may have a shape including a sinusoidal wave, a square wave, a sawtooth wave, a triangular wave, a truncated triangular wave, a logarithmic wave, an exponential wave, or an arbitrary wave shape including combinations of the above. In one embodiment, the charge electrode 208 can be in at least intermittent contact with the flame 204, and can be energized to approximately 15 kilovolts.
As indicated above, the system depicted in
The field electrode 212 can operate by maintaining electrical continuity with the charge electrode 208 via current flowing through the flame 204. The flow of current in the flame tends to maintain a long flame shape that stretches between the electrodes 208, 212.
While description herein, for reasons of clarity, refers to the charge electrode 208 as supplying voltage and the field electrode 212 as interacting with the supplied voltage, it will be understood that the voltage relationship between the charge electrode 208 and field electrode 212 can be reversed, with the field electrode 212 supplying charge and the charge electrode 208 acting as a counter electrode. Looked at another way, the charge electrode 208 can be disposed at a distal end of the flame 204 and the field electrode 212 can be disposed near a proximal end of the flame, relative to the burner 202.
A sensing circuit (not shown) may be configured to sense current flow between the charge electrode 208 and the field electrode 212. One or more of voltage control logic, waveform duty cycle logic, waveform shape logic, or waveform frequency logic may be operatively coupled to the sensing circuit and configured to control one or more of voltage, waveform duty cycle, waveform shape, or waveform frequency responsive to the sensed current flow.
The switch(es) 410 may be configured to selectively couple the waveform generator 404 to one or more voltage multiplier(s) 406 associated with ladder electrodes 402, as depicted. Optionally, a single voltage multiplier 406 may be coupled to the waveform generator 404, and the switch(es) 410 may be configured to selectively couple the output from the single voltage multiplier 406 to the electrodes 402, 212. The depicted embodiment 401 may have an advantage of relatively low voltage switches, at the expense of more voltage multipliers 406. The alternative embodiment may operate with fewer voltage multipliers 406, but with the complication of high voltage switching. High voltage switching may be provided using reed switches, for example.
Proceeding to step 704, the flame may be caused to carry a voltage or a majority charge. For example, a voltage source may apply a DC voltage to a charge electrode and/or constant-sign charges to the flame (as shown in
The method 701 may include step 706, wherein a voltage condition is applied to a field electrode. The voltage condition may be selected to attract the voltage or majority charge carried by the flame, and thereby attracts the flame itself toward the field electrode. Applying the voltage condition to the field electrode may include applying a voltage having a sign opposite to the voltage or majority charge carried by the flame. Alternatively, applying the voltage condition to the field electrode can include holding the field electrode at or near voltage ground. Alternatively or additionally, applying the voltage condition to the field electrode may include allowing the field electrode to electrically float. If, in step 704 the flame is caused to carry a voltage or majority charge having a sign that varies in time, then allowing the field electrode to electrically float may cause the field electrode to take on a voltage that follows the voltage or majority charge carried by the flame. A time-varying electrical potential may thus be created between the flame and the field electrode.
In experiments, it was found that the attraction of the flame to a conductive surface such as the field electrode varies with the magnitude and polarity of the voltage applied to the flame. In the case of alternating voltages of relatively low magnitude, the flame was particularly attracted to the conductive surface during the positive half-cycles of applied voltage, with less attraction observed during the negative half-cycles. Increasing the magnitude of the applied voltage created a larger concentration of charged particles in the flame and resulted in the flame being more equally attracted to the conductive surface on both positive and negative half-cycles of the applied alternating voltage.
Considering again step 706, applying a voltage condition to the field electrode may include placing the field electrode in continuity with a ground potential.
Proceeding to step 708 the voltage or majority charge carried by the flame may be attracted toward the field electrode. The attraction of the voltage or majority charge may, in turn, stretch the flame toward the field electrode. Stretching the flame toward the field electrode may extend the flame across a process material. Extending the flame toward the field electrode may result in a longer flame than can be reliably created without the electric field. The longer flame may result in more repeatable or more consistent radiant heating of the process material than can be reliably achieved without attracting the voltage or majority charge toward the field electrode.
Experiments were aimed at increasing the distance that a flame could be extended by applying a voltage to the flame, since it is difficult to attract a flame to a conductive surface located a long distance from the flame. Large voltages placed on the flame could cause such attraction to occur at moderate distances. Therefore, it is useful to have a start-up or fault recovery approach that can lengthen a flame to a desired extension to the field electrode.
Optionally, the method 701 may include step 710. In step 710, the flame may be extended toward a distal location. In a first approach, a sequence of ladder electrodes may be energized to extend the flame. Causing the sequence of ladder electrodes to extend the flame may include providing one or more ladder electrodes located at one or more intermediate locations between a burner supporting the flame and the field electrode, coupling at least one ladder electrode to the voltage condition selected to attract the flame, and uncoupling less distal ladder electrode(s). This can cause the flame to be sequentially attracted to more distal ladder electrode(s) or the field electrode as the flame is transferred from electrode to electrode.
Alternatively, step 710 may include moving the field electrode to extend the flame. Beginning with the field electrode in a proximate location to the flame, the voltage condition may be applied to the field electrode in step 706 attracting the flame to the field electrode in step 708. The field electrode may then be moved to a more distal location in step 710 to extend the flame.
Proceeding to step 712, the process material may be heated via radiation heat transfer from the extended flame. Heating the process material via radiation heat transfer from the extended flame may include, for example, producing a calcined material, drying a material, heat treating a material, cooking a food, browning a food, baking a food, or searing a food.
One example of the use of a long flame process heater to heat a process material is a kiln, which may include an electrode or electrode array supported relative to the process material. A voltage controller may be operatively coupled to the electrode or electrode array. The voltage controller may be configured to drive the electrode or electrode array to one or more of a sequence of electric field states to extend a combustion reaction across the process material, the combustion reaction being configured to form a radiation heat source for the process material.
A method for using a long flame process heater for making a product may include the steps of heating a process material by radiation from a flame, and controlling the flame shape to expose the process material to radiation heating by applying one or more of a sequence of electric fields to the flame.
A system for making a high-consistency calcined material using a long flame process heater may include a rotating or stationary process vessel configured to receive a continuous stream of a raw material; a burner configured to support a flame, the flame being disposed to selectively heat the raw material, an intermediate product reacted from the raw material, and a calcined material made from the intermediate product (collectively, process material) and to provide substantially all the calcining energy received by the process material; and an electric field application system configured to control a spatial distribution of a radiant energy source comprising the flame by controlling one or more electric fields impressed upon the flame and a region near the flame. The spatial distribution of the radiant energy source may correspond substantially to radiation heating received by the process material. The electric field application system may comprise one or more antennas configured to apply the one or more electric fields operatively coupled to the flame; and one or more voltage sources operatively coupled to the one or more antennas, the voltage sources being configured to cause the one or more antennas to establish, maintain, or vary the flame shape.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
The present application claims priority benefit from U.S. Provisional Patent Application No. 61/654,086, entitled “LONG FLAME PROCESS HEATER”, filed Jun. 1, 2012; which, to the extent not inconsistent with the disclosure herein, is incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61654086 | Jun 2012 | US |