The present invention concerns a long-lasting plasma torch used with a particular electricity producing generators with a special coating applied to the electrodes.
Torches have been used in a variety of ways to cut and melt product. Plasma torches are known. Four-nozzle or four torch plasma generators are known, wherein each torch has an anode and an electrode chamber connected to a DC power source. The four-nozzle plasma generators create plasma jets whose shape and trajectory is controlled by an external magnetic field system.
Four nozzle generators are expensive. The four-nozzle plasma generator is described in the document entitled Basis For Implementation Of The Method For Dynamic Plasma Treatment Of The Surface Of A Solid Body, P. P. Koulik et al., Plasmochimie 87” Part 2, Moscow, 1987, pp. 58 to 96.
The construction of the electrode chambers (anode and cathode) for a plasma generator is described in the document entitled Twin Jet Plasmatron, I. I. Genbaiev, V. S. Enguelsht, Frounze, 1983.
A need had existed for a better combination of metals to coat the electrodes in the torches. The electrodes in torch tend to wear because of the severe conditions the electrodes are subjected to during use.
A need had existed for a cheaper two-nozzle generator with a specific configuration for the plasma streams that does not require the additional use of magnetic fields. A need has existed for a two-nozzle generator that enables efficient introduction and processing of different products, including waste from municipalities and from medical facilities. Traditionally, torches of the type needed in the two-torch generator have broken down and needed repair often. The maintenance costs have been high. A need has existed for a long lasting torch for the two-nozzle generator that provides high performance in output of plasma and high reliability.
The invention relates to a long lasting torch that can be used in a plasma generator and related system.
The invention is a transferred or non-transferred plasma arc torch for use in a fuel gas generator system for generating electricity from waste. The torches include a torch housing, electrodes (one in a transferred torch, two in a non-transferred torch), a tubular sleeve member, a coolant flow path, a vortex mechanism, and a power supply means connected to the rear and front electrodes that generates an arc that is adapted to extend axially from the rear electrode through the vortical flow of gas and to an attachment located on the bore of the front electrode. The electrodes are metal coated in order to protect from wear during use.
The present invention will be explained in greater detail with reference to the appended figures, in which:
Before explaining the present invention in detail, it is to be understood that the invention is not limited to the particular embodiments and that it can be practiced or carried out in various ways.
The generator into which these torches are installed is shown in more detail in
The feed ramp is used to provide the waste material into the vessel, such as by rolling or by sliding into the container from a feed system. An optional feed system, such as an automatic feed system (24) could be used within the scope of the generator system.
The vessel (10) contains at least two plasma torches that are shown in more detail in FIG. 2 and FIG. 3.
The non-transferred plasma arc torch is made of
Instead of a non-transferred torch, a transferred torch can be used. A transferred torch only uses one electrode rather than two electrodes.
The transferred and non-transferred plasma arc torches have a coating disposed on the electrodes made from silver, platinum, nickel, alloys thereof, and combinations thereof. In the preferred embodiment, the coating disposed on the electrodes is 70% silver, 20% platinum, and 10% nickel.
The transferred and non-transferred plasma arc torches can have a pivotably base. They can also be 2-megawatt DC-powered torches.
The coolant flow path of both the transferred and the non-transferred plasma arc torch can extend serially along the outer surface of the rear electrode and through the annular passageway and such that a fluid coolant may be circulated through the coolant flow path to remove directly heat from both the rear electrode and front electrode during operation of the torch.
It is also shown in
The generator system includes a dry scrubber (38) can further comprises a heat exchanger (40) for removing heat from the gas as it passes through the dry scrubber. A wet scrubber outlet (46) can optimally be connected to a storage tank (70). Further optional considerations include that the wet scrubber can be connected to a wet scrubber flare outlet (72) connected to a flare (74).
Once again returning to
As to the specifics of the vessel design for the generator system, it is contemplated that the feed ramp can have an angle of inclination between 30-51 degrees between the feed system and the molten material, and more preferably between 30-40 degrees, most preferably the angle of inclination of the feed ramp is 40 degrees between the feed system and the molten material.
It is also contemplated that the sides, front and bottom of the vessel are welded together. These components are contemplated to comprise a 1-inch thick metal alloy. The metal alloy can comprise a member of the group: carbon steel and its alloys, stainless steel and its alloys, titanium and its alloys, and combinations thereof
Overall, the vessel is contemplated to have a height between 12 feet and 400 feet, and a length between 10 feet and 400 feet, and a width of between 5 feet and 400 feet. More preferably, the generator has a height between 12 feet and 18 feet, and a length between 10 feet and 30 feet, and a width of between 5 feet and 14 feet.
The power supply is contemplated to be a DC-power supply for the torch.
The waste treatable in the system can be a member from the EPA category of MUNICIPAL SOLID WASTE, SPECIAL WASTE comprising tires and medical waste or HAZARDOUS WASTE or combinations thereof.
The molten material for the generator is contemplated to be steel, carbon or combinations thereof. The molten material outlet (34) preferably has an outer diameter between 2 inches and 6 inches.
In one embodiment, the gas outlet has an outer diameter between 4 and 6 inches and is externally cooled, such as water-cooled.
It is also contemplated that the vessel has at least five insulating walls disposed adjacent the sides of the vessel as shown in
While this invention has been described with emphasis on the preferred embodiments, it should be understood that within the scope of the appended claims, the invention might be practiced other than as specifically described herein.
Number | Name | Date | Kind |
---|---|---|---|
5319176 | Alvi et al. | Jun 1994 | A |
5548611 | Cusick et al. | Aug 1996 | A |
5734673 | Kurahashi et al. | Mar 1998 | A |
5785923 | Surma et al. | Jul 1998 | A |
5798496 | Eckhoff et al. | Aug 1998 | A |