The present invention is directed to a 40 mm (1.57 in) projectile round configured to provide a large submunition payload across a wide impact pattern, similar to that of a shotgun, at a range typically beyond the capability of standard shotgun rounds. The present invention relates to long range shotgun shells and similar projectiles for the destruction of CLASS I and II commercial drones and other unmanned aerial vehicles.
Unmanned Aerial Vehicles, such as CLASS I and II commercial Arial Drone Systems, herein referred to as drones, have become prevalent threats to privacy and safety in a wide variety of use cases. Until recently, the use of improvised explosive devices (IEDs) were responsible for approximately two-thirds of U.S. and Coalition casualties. Recent reports forecast that the use of weaponized drones will surpass the threat of IEDs in future conflicts. (Gouré, D. (2018, Feb. 8) [Retrieved from internet on 2018, Apr. 27] Drones will Surpass IED Threat in Future Conflicts. Retrieved from: <https://www.realcleardefense.com/articles/2018/02/08/drones_to_will_surpass_ied_threat_in_future conflicts 113030.html>. Weaponization of drones, typically surrounds modifying a drone to allow it to carry and deliver lethal munitions. Weaponized drones have become increasingly common and pose a real and effective threat, particularly inside a range of 200 meters (656 feet) from a target.
Small commercial drones typically fly at altitudes below 200 meters (656 feet), and fly low and fast resulting in low exposure times. Thus, the neutralization of a drone threat is increasingly difficult as it requires detection and subsequent action. Common threat scenarios maximize the unique flight characteristics of the drones and the ability to fly low, in near proximity to the ground—whereas detection and identification of the drones is difficult.
Furthermore, the unauthorized use of drones has become problematic in environments such as search and rescue operations and emergency response efforts. For instance, reports of drones encroaching into airspace in the proximity of wildfires, pose a real threat to the operation of fire-fighting airplanes and helicopters. Airborne drones threaten the safety of crew aboard fire-fighting aircraft due to risk of collision, thereby grounding the fire-fighting aircraft until the drones are no longer encroaching in the airspace.
Due to the threat of weaponized drones, and the repeated impedance of emergency response operations there is a need for a solution for immobilizing drones with an effective range beyond the current capabilities presently available solutions.
Currently available solutions propose a variety of methods to immobilize a drone mid-flight. There is an identified need a portable solution for the immobilization of a drone which allows a user to—preferably at a range of 200 meters (656 feet) or more.
Many solutions have been proposed for the immobilization of a drone surrounding the use of jamming technologies, sometimes referred to as “directed energy”. Jamming technologies surround the use of electromagnetic noise at radio frequencies that drones operate and transmit video at, at a power level high enough to drown out effective communication between a drone and its pilot. A problem with such solutions surrounds the effects that jamming technologies have on surrounding infrastructure which maintains safety systems. For instance, a jammer intended to immobilize a drone can have negative effects on GPS systems as well as air traffic control. (O'Donnell, Michael J. A. A. E. “To Airport Sponsor.” 26 Oct. 2016. [Retrieved from internet on 2018, May 15] Retrieved from: <https://www.faa.gov/airports/airport safety/media/UAS-Counter-Measure-Testing-letter.pdf) Furthermore, such solutions may result in a drone armed with explosives continuing toward its target due to forward momentum and falling toward its intended target with an unexploded payload. Thus, the drone, even if immobilized, poses a potential threat. In some scenarios, a jammer may result in a drone initiating a “return to home” action, in which it returns toward the operator. Although in some scenarios it is advantageous to for the initiation of such an action to allow the tracking the operator of the drone, it also poses a risk. If a drone is forced to initiate a “return to home” operation, and the operator is not found, the operator may be able to reuse the drone for a subsequent action against a target.
The use of a jamming technology is only effective as long as the jamming technology is active and directed toward a drone which poses a threat. Because portable jammer technologies require battery power, and because they disrupt radio communications sometimes critical for safety measures, the operational lifespan of such technologies is impractical for perpetual use. Thus, a drone that poses a threat must be safely disposed of prior to ceasing jamming functions. As a result, measures must be taken to dispose of, or permanently immobilize a drone prior to ceasing jamming functions.
It is an aspect of certain embodiments of the present invention to mitigate unintended negative effects which solutions such as like jammers and directed energy weapons sometimes have in an urban environment. Through the use of a kinetic defeat strategy, involving the use of ballistic particles directed at a target, it will be appreciated that the nature of this invention allows it to be both as a countermeasure against mobile targets and static targets while mitigating the shortfalls associated with some directed energy solutions.
Solutions such as jammers require personnel to carry additional equipment. This is both costly and encumbers the personnel's mobility and ability to respond rapidly to a threat. It is an aspect of the present invention to provide effective countermeasures to immobilize and neutralize drone threats with equipment commonly carried by law enforcement and military personnel.
Certain solutions surround the use of a drone to counter a drone which poses a threat. Drones may be used in terror attacks in both military and civilian environments. For instance, U.S. Pat. No. 9,896,221 to Kilian (“Killian”), incorporated herein in its entirety for all purposes, is directed to a drone with a net designed to ensnare other drones. This countermeasure is both more expensive than a single anti-drone projectile of the present invention, and is limited to immobilizing a single opposing drone at a time.
In certain solutions, law enforcement and military personnel use traditional weapons such as a shotgun—to attempt to immobilize a drone which poses a threat. However, weapons carried by law enforcement and military personnel, such as shotguns, are decreasingly effective at immobilizing a drone beyond 40 meters (131 feet) due to range limitations. A typical characteristic of shotgun shot is an approximately 2.5 cm (1 inch) in diameter of shot pattern, per meter distance to the target. Thus, the effective impact area of shotgun shot at 40 meters (131 feet), would be expected to be 100 cm (40 in) in diameter. However, the larger the area of the effective impact area, the larger the spacing between shotgun shot. It will be appreciated that the effective impact area refers to the area encompassing the points of impact of all payload elements, such as shot pellets, against a planar object perpendicular to the trajectory of the payload. Thus, a drone beyond 40 meters may not be immobilized by on-target shotgun shot due to spacing between shot. A drone which is within 40 meters (131 feet) of a target, poses a real threat. For instance, a drone travelling at speed which is immobilized by a shotgun may still travel 40 meters (131 feet) or more before coming to rest on the ground. Thus, the use of a shotgun to eliminate a threat posed by a drone may be ineffective in preventing the drone from reaching its intended target. As a result, there is a need for a solution for immobilizing a drone with an effective impact area at a range over 40 meters (131 feet), and more preferably with at a range of 200 meters (656 feet) or more.
Traditional weapons which are effective at 200 meters (656 feet) or more, such as rifles, surround the use of singular projectiles that are typically less than 1.3 cm (0.5 in) in diameter. Singular projectiles are not ideal for efficient immobilization of a drone, because the effective impact area of a singular projectile is limited to the profile of the singular projectile.
It is an aspect of the present invention to provide a munitions round capable of having a suitable effective impact area at a range of 200 meters (656 feet).
Existing solutions such as those disclosed by U.S. Pat. No. 9,879,957 to Moser (“Moser”), incorporated herein in its entirety for all purposes, use simple fins and deployable wall segments to stabilize and slow portions of a round. Such solutions are insufficient, in both range and amount of shot delivered as related to immobilizing a drone. The fins and wall segments as disclosed by Moser are deployed immediately upon firing to stabilize the wad and induce drag on the wad, allowing the shot held within the wad to more effectively separate from the wad. In essence, the invention of Moser allows the adjustment of patterning as related to a 40-yard target. However, Moser does not improve the effective range of a shotgun round.
Technologies such as those disclosed by U.S. Pat. No. 5,936,189 to Lubbers (“Lubbers”), incorporated herein in its entirety for all purposes, discloses a general cartridge case which acts similarly to a shotgun shell which is used existing large caliber ammunition, such as the 40 mm (1.57 in) caliber utilized in this invention. The use of 40 mm (1.57 in) shotgun shells, such as the M576, is common in military and law enforcement applications. However, existing rounds are designed for defeating personnel a range of approximately 40 meters (131 feet).
Certain existing solutions surround the use of deployable fins for small arms to provide increased stability and accuracy for projectiles over long ranges. References such as U.S. Pat. No. 9,115,965 to Alculumbre (“Alucumbre”), incorporated herein in its entirety for all purposes, provides an example of a projectile utilizing this concept. However, Alucumbre is directed toward use with singular projectiles, such as 40 mm (1.57 in) grenades. Grenades are designed to spread fragments referred to as “flak.” While flak has a level of effectiveness in application for anti-aircraft measures, the debris pattern of flak is unpredictable and results in a significant danger when used in densely populated areas or in close proximity to unintended targets.
With the rising threat of terrorist attacks using drones in urban environments, there is also a rising need for counter-drone systems which can be both fully effective against drones and non-damaging to civilians and civilian property in proximity to the drone threat. Lead shot maintains kinetic energy well beyond 40 meters (131 feet) from deployment, resulting in a possibility for unintended casualties or collateral damage to unintended targets. Frangible lead-free shot, such as found in U.S. Pat. No. 9,587,918 to Burrow (“Burrow”), incorporated herein in its entirety for all purposes, can be used for the shot used in this invention.
Certain embodiments comprise shot using material as disclosed in U.S. Provisional Patent Application No. 62/573,632 to Folaron (“Folaron”), filed on Oct. 17, 2017, which is incorporated by reference herein in its entirety for all purposes. The frangible material of Folaron provides kinetic energy capable of destroying drones within 40 meters (131 feet) of deployment from the projectile. However, the frangible material of Folaron rapidly dissipates kinetic energy once beyond 40 meters (131 feet) from deployment such that is considered non-lethal in the event of contact with unintended targets. The material makeup of the payload of the present invention of this shot can be altered in view of Folaron, and other methods known to those skilled in the art to meet different use case requirements.
Certain embodiments of the present invention comprise a primer, propellant cup, fins, a mechanical timer, a segmented outer casing, and a wad loaded with frangible shot. When set to a 200-meter (656-foot) range, the round may be fired such that it travels approximately 200 meters (656 ft), prior to the shot being deployed. Upon deployment, in certain embodiments, the shot spreads in a pattern similar to that of shot deployed from a standard shotgun shell. The extended range capabilities, size of the effective impact area, combined with a larger submunition payload of this invention make it far more versatile than standard shotgun rounds, particularly in use for immobilizing drone threats.
Certain embodiments of the present invention utilize deployable fins to stabilize the round during flight and actuate a mechanical timer. The mechanical timer allows a user to programmably delay the deployment of the shot to result in an effective impact area similar to a standard shotgun shot at an increased range. This permits a user to tailor the effective range of the round to a particular use case. For instance, certain embodiments result in an effective impact area diameter of 100 cm (40 in) at a range of 40 meters (131 feet), when the mechanical timer is set to 0 meters (0 feet). Setting the mechanical timer of the same embodiment to 200 meters (656 feet), would result in a 100 cm (40 in) diameter effective impact area at a range of 240 meters (787 feet).
It is an aspect of certain embodiments to provide a delayed deployment of shot from a projectile to result in an effective impact area at an appropriate range for neutralizing a drone threat. Certain embodiments deploy the payload using a mechanical timer once the round has traveled a predetermined distance. Certain embodiments use a mechanical timer—such as disclosed by in U.S. Pat. No. 3,703,866 to Semenza (“Semenza”), incorporated herein in its entirety for all purposes—to provide the ability for a delayed deployment of shot.
Certain embodiments are designed to be integrated in existing defense networks against drones. Because embodiments of the present invention can be manufactured to be fired from existing weapon platforms, the present invention can be quickly and easily integrated into operational service. It is an aspect of the present invention to allow production of embodiments intended to be fired from existing weapons platforms such that security personnel are not encumbered with burdened with ancillary equipment related to drone threats.
Certain embodiments of the present invention are configured to be used with existing 40 mm barreled weapons and other commonly used weapons available to military and law enforcement professionals. It will be appreciated by those skilled in the art that embodiments of the present invention can be adapted to the caliber of weapons other than 40 mm weapons while in keeping with the spirit and the scope of the present invention.
Certain embodiments comprise an outer casing having three segments surrounding the leading portion of the projectile. The outer casing is typically composed of a polymeric compound such as polyethylene, but is not limited thereto. A propellant-cup contains a charge, comprising an appropriate amount of gunpowder or other accelerant with a primer for the initiation of the charge. The outer case keeps the round together as it is fired, prior to reaching the predetermined range and full deployment.
Certain embodiments comprise shot held within a shot-cup, and mechanical timer enclosed in an outer casing. External to the outer casing, a fin assembly is affixed to the trailing end of the outer casing. The fin assembly is configured to fit within the open end of a propellant cup with a wad disposed between the fin assembly and the charge. It will be appreciated by those skilled in the art that a wad surrounds a barrier which holds the powder in the bottom of the propellant and helps deploy the shot.
Upon firing, the fin assembly of certain embodiments radially expands and provides stabilization and axial rotation. The axial rotation also actuates the mechanical timer. The axial rotation of the fin assembly spins a threaded shaft to which the fin assembly is affixed to. The threaded shaft is engaged with an aperture of a rod-puller within the outer casing, wherein the aperture comprises female threads. The rod-puller is affixed to rods which are engaged with the segments of the outer casing. In a closed-configuration, the rods retain the segments of the outer casing in place. In an open-configuration, the rods allow the segments of the outer casing to expand radially outward and separate from the projectile. Thus, when the fin assembly rotates, the rod-puller is drawn toward the trailing end of the projectile changing the projectile from a closed-configuration to an open-configuration to deploy the payload held within the shot-cup.
These and other advantages will be apparent from the disclosure of the inventions contained herein. The above-described embodiments, objectives, and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible using, alone or in combination, one or more of the features set forth above or described in detail below. Further, this Summary is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. The present invention is set forth in various levels of detail in this Summary, as well as in the attached drawings and the detailed description below, and no limitation as to the scope of the present invention is intended to either the inclusion or non-inclusion of elements, components, etc. in this Summary. Additional aspects of the present invention will become more readily apparent from the detailed description, particularly when taken together with the drawings, and the claims provided herein.
Certain embodiments comprise a projectile 1000, seen in
It will be appreciated by those skilled in the art that although a projectile traditionally uses combustible material to fire a projectile from a weapon, a projectile may be alternatively fired using other means known to those skilled in the art while in keeping with the scope and spirit of the present application. Such alternatives include, but are not limited to, electromagnetic propulsion and pneumatic propulsion.
In certain embodiments, shown in
A fin 1110, in certain embodiments (
When the projectile 1000 (
In certain embodiments, shown in
In certain embodiments, shown in
In certain embodiments, as seen in
In certain embodiments, seen in
In certain embodiments, shown in
In certain embodiments, referencing
The projectile of certain embodiments, as seen in
The payload 1610 of certain embodiments, as seen in
In certain embodiments the shot-cup 1600 is packed with shot 1620 having pellets 1630 of two different diameters: 6.35 mm (0.25 in) and 12.7 mm (0.5 in). The different diameter pellets 1630, typically in spherical form, allow for a wider dispersal and thus a larger effective impact area. It will be appreciated that embodiments can comprise pellets 1630 of different diameters than disclosed herein without departing from the spirit of scope of the present invention. Certain embodiments of the shot 1620 comprise a lead-free frangible material. The frangible and low-density nature of the shot 1620 allows it to dissipate enough kinetic energy in the event the shot 1620 does not strike an intended target. The shot-cup 1600, of certain embodiments, comprises a cylinder with an open end 1660, and a plurality of slits 1670 cut along its length. As the shot 1620 is released from the shot-cup 1600, it is deployed normally, as if fired from a standard shotgun.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention. Further, the inventions described herein are capable of other embodiments and of being practiced or of being carried out in various ways. In addition, it is to be understood that the phraseology and terminology used herein is for the purposes of description and should not be regarded as limiting. The use of “including,” “comprising,” or “adding” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof, as well as, additional items.
This application is a continuing application of U.S. patent application Ser. No. 16/367,881, filed Mar. 28, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/649,447 entitled “LONG RANGE LARGE CALIBER FRANGIBLE ROUND FOR DEFENDING AGAINST UAVS” filed on Mar. 28, 2018; and U.S. Provisional Patent Application 62/716,341 entitled “LONG RANGE LARGE CALIBER FRANGIBLE ROUND FOR DEFENDING AGAINST UAVS” filed on Aug. 8, 2018—the entire contents of which are incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1292374 | Richardson | Jan 1919 | A |
3565010 | Sahlmann et al. | Feb 1971 | A |
3702588 | Simmons | Nov 1972 | A |
3703866 | Eugene | Nov 1972 | A |
4005631 | Kaiser et al. | Feb 1977 | A |
4682546 | Chovich | Jul 1987 | A |
5936189 | Lubbers | Aug 1999 | A |
6138547 | Larsson et al. | Oct 2000 | A |
6170377 | Larsson et al. | Jan 2001 | B1 |
6260484 | Billings | Jul 2001 | B1 |
6626077 | Gilbert | Sep 2003 | B1 |
6988450 | Georgantzis et al. | Jan 2006 | B1 |
9068807 | Thomas et al. | Jun 2015 | B1 |
9115965 | Alculumbre | Aug 2015 | B2 |
9879957 | Moser et al. | Jan 2018 | B2 |
9896221 | Kilian et al. | Feb 2018 | B1 |
20100242775 | Schneider | Sep 2010 | A1 |
20130042783 | Diller | Feb 2013 | A1 |
20160015499 | Scott et al. | Jan 2016 | A1 |
Entry |
---|
DroneDefender®; C-UAS Device [online]. Battelle Memorial Institute, 2018. [Retrieved on Apr. 27, 2018]. Retrieved from internet: https://www.battelle.org/govemment-offerings/national-security/aerospace-systems/counter-UAS-technologies/dronedefender. |
DroneGun MKII; Highly Effective, Long Rangel drone Countermeasure; [online]. Droneshield, 2017. [Retrieved on Apr. 27, 2018]. Retrieved from internet: https://www.droneshield.com/dronegun/. |
DroneGun Tactical; Highly Effective, Portable Drone Countermeasure; [online]. Droneshield, 2017. [Retrieved on Apr. 27, 2018]. Retrieved from internet: https://www.droneshield.com/dronegun-tactical/. |
Nammo 40mm Airburst Round; Nammo BulletIN, 2018 pp. 4-7; [online]. Nammo, 2018. [Retrieved on Apr. 27, 2018]. Retrieved from internet: www.nammo.com. |
Number | Date | Country | |
---|---|---|---|
20200033104 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62716341 | Aug 2018 | US | |
62649447 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16367881 | Mar 2019 | US |
Child | 16578690 | US |