This disclosure relates to surgical stapling apparatus, devices and/or systems for performing surgical procedures and methods of use thereof.
Surgical stapling apparatus that clamp, cut and/or staple tissue are well known in the art. Such surgical stapling apparatus include end effectors having two elongated jaw members used to capture or clamp tissue. One of the two jaw members usually carries a staple cartridge that houses a plurality of staples positioned in rows, while the other of the two jaw members has an anvil for forming the staples as the staples are driven from the staple cartridge. For instance, in linear surgical stapling apparatus, a stapling operation is effectuated by a cam bar, a drive sled or other similar mechanism having a cam member that travels longitudinally through channels defined in the staple cartridge and acts upon staple pushers in the channels to sequentially eject linear rows of staples from the staple cartridge. A knife is movably positioned between the linear rows of staples such that when the surgical stapling apparatus is positioned about tissue and actuated, the tissue is joined and/or simultaneously or nearly simultaneously cut.
According to one aspect of the disclosure, a loading unit for a surgical stapling apparatus includes a shaft assembly and an end effector secured to the shaft assembly. The end effector includes an anvil assembly and a cartridge assembly. The cartridge assembly includes a cartridge channel and a hinge assembly pivotally coupled together. The hinge assembly includes one or more arms that extend between the shaft assembly and the cartridge channel to enable the cartridge assembly to move relative to the anvil assembly between an open position and a closed position.
In aspects of this disclosure, the cartridge assembly may further include a reload that is selectively attachable to the cartridge channel. The reload may include a plurality of cartridge units that selectively interconnect with one another. Each cartridge unit of the plurality of cartridge units may include a plurality of rows of staples. The plurality of cartridge units may interconnect by a tongue-and-groove arrangement. One or more cartridge units of the plurality of cartridge units may include a side lock that secures the one or more cartridge units to the cartridge channel.
In aspects of this disclosure, a spring mechanism may extend between the hinge assembly and the cartridge channel to prevent the cartridge assembly from inverting.
In aspects of this disclosure, the cartridge channel may include a stopper that is positioned to engage the hinge assembly to maintain the cartridge assembly in parallel relation to the anvil assembly.
In aspects of this disclosure, a drive beam assembly may be positioned to advance distally through the anvil and cartridge assemblies to move the cartridge assembly relative to the anvil assembly.
In aspects of this disclosure, the hinge assembly may further include one or more fasteners that connect the one or more arms to the shaft assembly. The one or more arms may be positioned to pivot about one or more fasteners.
According to another aspect of this disclosure, an end effector for a surgical stapling apparatus includes an anvil assembly and a cartridge assembly. The cartridge assembly includes a cartridge channel supporting a reload. The reload includes a plurality of separate and distinct cartridge units that removably interconnect with one another within the cartridge channel.
In aspects of this disclosure, each cartridge unit of the plurality of separate and distinct cartridge units may include a plurality of rows of staples. A first cartridge unit of the plurality of separate and distinct cartridge units may include a sled that is positioned to advance through each cartridge unit of the plurality of separate and distinct cartridge units to fire the plurality of rows of staples in each cartridge unit.
In aspects of this disclosure, a hinge assembly may be pivotally coupled to a proximal end portion of the cartridge channel. The hinge assembly may include a first arm and second arm. The first arm may be coupled to a first side of the cartridge channel by a first fastener. The second arm may be coupled to a second side of the cartridge channel by a second fastener.
In aspects of this disclosure, a first cartridge unit of the plurality of separate and distinct cartridge units may be coupled to a second cartridge unit plurality of separate and distinct cartridge units by a castellated seam. The first cartridge unit may include one or more grooves and the second cartridge unit may include one or more tongues. The one or more grooves may be positioned to receive the one or more tongues therein to define the castellated seam.
In aspects of this disclosure, each cartridge unit of the plurality of separate and distinct cartridge units may include a side lock that secures to the cartridge channel.
In aspects of this disclosure, a spring mechanism may extend between the hinge assembly and the cartridge channel to prevent the cartridge assembly from inverting.
In aspects of this disclosure, the cartridge channel may include a stopper that is positioned to engage the hinge assembly to maintain the cartridge assembly in parallel relation to the anvil assembly.
According to yet another aspect of this disclosure, a surgical stapling apparatus includes a shaft assembly defining a longitudinal axis, a drive beam assembly supported in the shaft assembly, an anvil assembly, and a cartridge assembly pivotally coupled to the anvil assembly and to the shaft assembly by a hinge assembly. The cartridge assembly supports a reload having a plurality of separate and distinct cartridge units that are independently separable from one another. Each cartridge unit of the plurality of separate and distinct cartridge units includes a plurality of staples positioned to form against the anvil assembly, wherein in response to the drive beam assembly translating through the hinge assembly, the hinge assembly pivots from a first position transverse to the longitudinal axis of the shaft assembly to a second position in parallel relation to the longitudinal axis.
Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims that follow.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the aspect(s) given below, serve to explain the principles of the disclosure, wherein:
Aspects of the disclosed surgical stapling apparatus are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As commonly known, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Additionally, the term “proximal” refers to the portion of structure that is closer to the clinician and the term “distal” refers to the portion of structure that is farther from the clinician. In addition, directional terms such as front, rear, upper, lower, top, bottom, and the like are used simply for convenience of description and are not intended to limit the disclosure attached hereto.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −10 degrees from true parallel and true perpendicular.
In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
Briefly, in sleeve gastrectomy procedures, for instance, surgical staplers are used to secure and cut tissue along a long line that requires multiple cartridges of staples before the entirety of the long line is cut and fastened. In particular, after an initial staple cartridge is used, the clinician is required to remove the surgical stapler from the abdomen in order to replace the used cartridge with a new stapler cartridge. The surgical stapler is then reinserted into the abdomen and fired at an adjacent location along the line. The process may be repeated multiple times (e.g., 3-4 times) before the entire length of the line is fastened.
Advantageously, the disclosed surgical stapling apparatus includes a modular reload with three cartridge units that are connected together in series to assist a clinician to perform long lines of cutting and stapling in a single firing (e.g., same firing stroke), such as in a sleeve gastrectomy procedure, instead of firing a single stapler and reloading multiple times, significantly reducing procedure time. Indeed, the disclosed surgical stapling apparatus has a corresponding length anvil that can form the staples of the three cartridge units in the same firing (e.g., in a single firing stroke). More particularly, the disclosed surgical stapling apparatus has an end effector with increased length (e.g., 23-26 cm) compared to a length of an end effector of a typical surgical stapling apparatus (e.g., 60 mm). The disclosed surgical stapling apparatus includes a hinge assembly that enables the end effector to open so that the cartridge units and tissue can be easily loaded.
With reference to
Loading unit 100 of surgical stapling apparatus 10 is releasably secured to a distal end portion of adapter assembly 14 and includes a shaft assembly 102 that supports an end effector 104 on a distal end portion of shaft assembly 102 and a drive beam assembly 102a therein (
For a more detailed description of similar stapling apparatus, or components thereof, reference can be made, for example, to U.S. Pat. No. 9,713,470 to Scirica et al. and U.S. Pat. No. 8,070,033 to Milliman et al., the entire contents of each of which are incorporated herein by reference.
Turning now to
Proximal cartridge unit 112 of reload 108 includes a proximal cartridge base 112a that secures to a proximal cartridge 112b via tabs 112t and supports a plurality of rows of proximal pushers 112c, a plurality of rows of proximal staples 112d, and a sled 112e that is distally advanceable through reload 108 upon a firing of surgical stapling apparatus 10. Proximal cartridge 112b has a tissue contacting surface that defines staple retention slots 112f in registration with proximal staples 112d. Proximal cartridge 112b further defines distal grooves 112g in a distal end thereof. Sled 112e is positioned to advance distally through proximal cartridge unit 112 to drive pushers 112c upwardly and cause staples 112d to fire through staple retention slots 112f defined in proximal cartridge 112b as sled 112e translates therealong.
Intermediate cartridge unit 114 of reload 108 includes an intermediate cartridge base 114a that secures to an intermediate cartridge 114b via tabs 114t and supports a plurality of rows of intermediate pushers 114c and a plurality of rows of intermediate staples 114d. Intermediate cartridge 114b defines staple retention slots 114f in registration with intermediate staples 114d for enabling sled 112e of reload 108 to fire intermediate staples 114d through staple retention slots 114f when sled 112e advances distally along intermediate cartridge unit 114 and into engagement with pushers 114c. Intermediate cartridge unit 114 further defines distal grooves 114g in a distal end thereof and includes proximal tongues 114h extending from a proximal end portion thereof. Proximal tongues 114h are configured to be received within distal grooves 112g of proximal cartridge unit 112 for securing intermediate and proximal cartridge units 114, 116 together.
Distal cartridge unit 116 of reload 108 includes a distal cartridge base 116a that secures to a distal cartridge 116b via tabs 116t and supports a plurality of rows of distal pushers 116c and a plurality of rows of distal staples 116d. Distal cartridge 116b defines staple retention slots 116f in registration with distal staples 116d for enabling sled 112e of reload 108 to fire distal staples 116d through staple retention slots 116f when sled 112e advances distally along distal cartridge unit 116 and into engagement with pushers 116c. Distal cartridge unit 116 includes proximal tongues 116h extending from a proximal end portion thereof. Proximal tongues 116h are configured to be received within distal grooves 114g of intermediate cartridge unit 114 for securing distal and intermediate cartridge units 116, 114 together. Distal cartridge unit 116 extends distally to a blunt distal tip 116g.
As seen in
Turning now to
Cartridge assembly 107 includes the cartridge channel 122, a hinge assembly 124 and a spring mechanism 126 supported between hinge assembly 124 and cartridge channel 122. Hinge assembly 124 pivotally couples cartridge channel 122 to the distal end portion of shaft assembly 102 to enable the end effector 104 to open so that the cartridge units 112-116 and tissue can be easily loaded between the anvil and cartridge assemblies 106, 107. Hinge assembly 124 includes a first arm 124a and a second arm 124b that are laterally spaced apart (e.g., by gap) to receive a drive beam assembly 102a therebetween. Hinge assembly 124 is movable between a first position in which first and second arms 124a, 124b are disposed at an angle (e.g., transverse) relative to longitudinal axis “X” (corresponding to the open or unclamped position of end effector 104) and a second position in which first and second arms 124a, 124b are parallel to longitudinal axis “X” (corresponding to the closed or clamped position of end effector 104). First and second arms 124a, 124b have proximal end portions pivotally coupled to the distal end portion of shaft assembly 102 and a proximal end portion of anvil assembly 106 by threaded fasteners 103 and nuts 103a. First and second arms 124a, 124b have distal end portions pivotally coupled to a proximal end portion of cartridge channel 122 via threaded fasteners 103 received through openings 105 defined through proximal end portion of cartridge channel 122 and openings 105 defined through distal end portions of first and second arms 124a, 124b. First and second arms 124a, 124b also include engagement wings 124c that extend from the distal end portion of first and second arms 124a, 124b. Engagement wings 124c include abutment surfaces 124d positioned to engage angled stoppers 128 extending from the outer sidewalls of the proximal end portion of cartridge channel 122. Stoppers 128 are configured to contact abutment surfaces 124d of engagement wings 124c to prevent cartridge assembly 107 from inverting when end effector 104 is disposed in the open position. Spring mechanism 126 is configured to urge cartridge assembly 107 toward a parallel position relative to anvil assembly 106 when end effector 104 is in the open position. Spring mechanism 126 includes arm mounts 126a secured on the distal end portion of first and second arms 124a, 124b, channel mounts 126b secured on the proximal end portion of cartridge channel 122, and tension springs 126c secured at opposite ends to arm mounts 126a and channel mounts 126b.
Turning now to
Further, although illustrated and described in connection with an endoscopic linear surgical stapling apparatus, the disclosed loading unit arrangement may be utilized on any suitable surgical stapling apparatus such as an open surgical stapling apparatus, a transverse surgical stapling apparatus, and/or a circular stapling apparatus, any of which may be powered or manual apparatus.
Securement of any of the components of the presently disclosed apparatus may be effectuated using known securement techniques such welding, crimping, gluing, fastening, etc.
The various aspects disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the clinician and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of clinicians may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another clinician (or group of clinicians) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients. For a detailed description of exemplary medical work stations and/or components thereof, reference may be made to U.S. Patent Application Publication No. 2012/0116416, and PCT Application Publication No. WO2016/025132, the entire contents of each of which are incorporated by reference herein.
Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary aspects, and that the description, disclosure, and figures should be construed merely as exemplary of particular aspects. It is to be understood, therefore, that the present disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain aspects may be combined with the elements and features of certain other aspects without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.
This disclosure is a continuation of U.S. patent application Ser. No. 17/103,054, filed Nov. 24, 2020, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
37165 | Gary | Dec 1862 | A |
3209754 | Brown | Oct 1965 | A |
3273562 | Brown | Sep 1966 | A |
3499591 | Green | Mar 1970 | A |
3528693 | Pearson et al. | Sep 1970 | A |
3744495 | Johnson | Jul 1973 | A |
3862631 | Austin | Jan 1975 | A |
3949924 | Green | Apr 1976 | A |
4060089 | Noiles | Nov 1977 | A |
4204623 | Green | May 1980 | A |
4217902 | March | Aug 1980 | A |
4263903 | Griggs | Apr 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4331277 | Green | May 1982 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4444181 | Wevers et al. | Apr 1984 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4456006 | Wevers et al. | Jun 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4508253 | Green | Apr 1985 | A |
4508523 | Leu | Apr 1985 | A |
4522206 | Whipple et al. | Jun 1985 | A |
4534350 | Golden et al. | Aug 1985 | A |
4535772 | Sheehan | Aug 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612923 | Kronenthal | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286442 | Korthoff et al. | Oct 1986 | S |
4627437 | Bedi et al. | Dec 1986 | A |
4635637 | Schreiber | Jan 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4671280 | Dorband et al. | Jun 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4712550 | Sinnett | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4724839 | Bedi et al. | Feb 1988 | A |
4731058 | Doan | Mar 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4807628 | Peters et al. | Feb 1989 | A |
4852558 | Outerbridge | Aug 1989 | A |
4913144 | Del Medico | Apr 1990 | A |
4960420 | Goble et al. | Oct 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4990153 | Richards | Feb 1991 | A |
4994073 | Green | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5089009 | Green | Feb 1992 | A |
5108422 | Green et al. | Apr 1992 | A |
5114399 | Kovalcheck | May 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5143453 | Weynant nee Girones | Sep 1992 | A |
5203864 | Phillips | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5246443 | Mai | Sep 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5282829 | Hermes | Feb 1994 | A |
5300081 | Young et al. | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5313935 | Kortenbach et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5359993 | Slater et al. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5381943 | Allen et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5482100 | Kuhar | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601558 | Torrie et al. | Feb 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634926 | Jobe | Jun 1997 | A |
5642848 | Ludwig et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658312 | Green et al. | Aug 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5759171 | Coelho et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785713 | Jobe | Jul 1998 | A |
5788698 | Savornin | Aug 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830121 | Enomoto et al. | Nov 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5861005 | Kontos | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5891156 | Gessner et al. | Apr 1999 | A |
5893813 | Yamamoto | Apr 1999 | A |
5895396 | Day et al. | Apr 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5911721 | Nicholson et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5928222 | Kleinerman | Jul 1999 | A |
5944717 | Lee et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5961521 | Roger | Oct 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5976171 | Taylor | Nov 1999 | A |
5980518 | Carr et al. | Nov 1999 | A |
5980548 | Evans et al. | Nov 1999 | A |
5991355 | Dahlke | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992724 | Snyder | Nov 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6013077 | Harwin | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6030410 | Zurbrugg | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6051007 | Hogendijk et al. | Apr 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6077246 | Kullas et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080150 | Gough | Jun 2000 | A |
6083242 | Cook | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6092422 | Binnig et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6127811 | Shenoy et al. | Oct 2000 | A |
6132425 | Gough | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6166538 | D'Alfonso | Dec 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6187009 | Herzog et al. | Feb 2001 | B1 |
6187019 | Stefanchik et al. | Feb 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6193501 | Masel et al. | Feb 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6228534 | Takeuchi et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6236874 | Devlin et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264653 | Falwell | Jul 2001 | B1 |
6281471 | Smart | Aug 2001 | B1 |
6288534 | Starkweather et al. | Sep 2001 | B1 |
6290701 | Enayati | Sep 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6295330 | Skog et al. | Sep 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6355066 | Kim | Mar 2002 | B1 |
6364884 | Bowman et al. | Apr 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
H2037 | Yates et al. | Jul 2002 | H |
6412279 | Coleman et al. | Jul 2002 | B1 |
6425903 | Voegele | Jul 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447517 | Bowman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6478210 | Adams et al. | Nov 2002 | B2 |
6497707 | Bowman et al. | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6515273 | Ai-Ali | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6540751 | Enayati | Apr 2003 | B2 |
6544273 | Harari et al. | Apr 2003 | B1 |
6554852 | Oberlander | Apr 2003 | B1 |
6562071 | Jarvinen | May 2003 | B2 |
6578579 | Burnside et al. | Jun 2003 | B2 |
6601748 | Fung et al. | Aug 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6616821 | Broadley et al. | Sep 2003 | B2 |
6629986 | Ross et al. | Oct 2003 | B1 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6669705 | Westhaver et al. | Dec 2003 | B2 |
6696008 | Brandinger | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6736085 | Esnouf | May 2004 | B1 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6861639 | Ai-Ali | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6900004 | Satake | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6926636 | Luper | Aug 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6979328 | Baerveldt et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7186966 | Al-Ali | Mar 2007 | B2 |
7193519 | Root et al. | Mar 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220232 | Suorsa et al. | May 2007 | B2 |
7240817 | Higuchi | Jul 2007 | B2 |
7241270 | Horzewski et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7335169 | Thompson et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7694809 | Garbini et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7753248 | Viola | Jul 2010 | B2 |
7757925 | Viola et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7815090 | Marczyk | Oct 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7886953 | Schwemberger et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7955352 | McEwen et al. | Jun 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006887 | Marczyk | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8038044 | Viola | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8070033 | Milliman et al. | Dec 2011 | B2 |
8074858 | Marczyk | Dec 2011 | B2 |
8092493 | Marczyk | Jan 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8210412 | Marczyk | Jul 2012 | B2 |
8240536 | Marczyk | Aug 2012 | B2 |
8240537 | Marczyk | Aug 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8685004 | Zemlock et al. | Apr 2014 | B2 |
9192381 | Marczyk | Nov 2015 | B2 |
9364222 | Zemlok et al. | Jun 2016 | B2 |
9370360 | Marczyk | Jun 2016 | B2 |
9370361 | Viola et al. | Jun 2016 | B2 |
9433415 | Marczyk et al. | Sep 2016 | B2 |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9585659 | Viola et al. | Mar 2017 | B2 |
9713470 | Scirica et al. | Jul 2017 | B2 |
10492814 | Snow et al. | Dec 2019 | B2 |
10722222 | Aranyi | Jul 2020 | B2 |
11744580 | George et al. | Sep 2023 | B2 |
20020103489 | Ku | Aug 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030090201 | Peng | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030120306 | Burbank et al. | Jun 2003 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050010235 | VanDusseldorp | Jan 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050247753 | Kelly et al. | Nov 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070219563 | Voegele | Sep 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080135600 | Hiranuma | Jun 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090090201 | Viola | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20100200636 | Zemlok et al. | Aug 2010 | A1 |
20100312257 | Aranyi | Dec 2010 | A1 |
20100320254 | Zemlok et al. | Dec 2010 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110062211 | Ross et al. | Mar 2011 | A1 |
20110168757 | Viola et al. | Jul 2011 | A1 |
20110172681 | Aranyi et al. | Jul 2011 | A1 |
20110190738 | Zemlok et al. | Aug 2011 | A1 |
20110301579 | Marczyk et al. | Dec 2011 | A1 |
20110303735 | Marczyk | Dec 2011 | A1 |
20120055972 | Marczyk | Mar 2012 | A1 |
20120074197 | Marczyk | Mar 2012 | A1 |
20120116416 | Neff et al. | May 2012 | A1 |
20120175400 | Viola et al. | Jul 2012 | A1 |
20120193393 | Viola et al. | Aug 2012 | A1 |
20120198288 | Njo et al. | Aug 2012 | A1 |
20120220989 | Zemlok et al. | Aug 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120241494 | Marczyk | Sep 2012 | A1 |
20120277790 | Zemlok et al. | Nov 2012 | A1 |
20120298718 | Marczyk | Nov 2012 | A1 |
20120298720 | Marczyk | Nov 2012 | A1 |
20140103092 | Kostrzewski et al. | Apr 2014 | A1 |
20150173755 | Baxter, III | Jun 2015 | A1 |
20160256152 | Kostrzewski | Sep 2016 | A1 |
20160270788 | Czernik | Sep 2016 | A1 |
20160324514 | Srinivas et al. | Nov 2016 | A1 |
20160345973 | Marczyk | Dec 2016 | A1 |
20170172571 | Thompson | Jun 2017 | A1 |
20170290584 | Jasemian | Oct 2017 | A1 |
20190142422 | Kostrzewski | May 2019 | A1 |
20190183490 | Shelton, IV et al. | Jun 2019 | A1 |
20190183492 | Shelton, IV et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
101683284 | Mar 2010 | CN |
102648864 | Aug 2012 | CN |
0537570 | Apr 1993 | EP |
0647431 | Apr 1995 | EP |
0738501 | Oct 1996 | EP |
0770354 | May 1997 | EP |
1070487 | Jan 2001 | EP |
1201196 | May 2002 | EP |
1658817 | May 2006 | EP |
1813203 | Aug 2007 | EP |
2849589 | Jul 2004 | FR |
9414129 | Jun 1994 | WO |
9729694 | Aug 1997 | WO |
9740760 | Nov 1997 | WO |
9837825 | Sep 1998 | WO |
9952489 | Oct 1999 | WO |
0234140 | May 2002 | WO |
03026511 | Apr 2003 | WO |
03030743 | Apr 2003 | WO |
2004032760 | Apr 2004 | WO |
2007014355 | Feb 2007 | WO |
2007030753 | Mar 2007 | WO |
2007114868 | Oct 2007 | WO |
2007118179 | Oct 2007 | WO |
2009143092 | Nov 2009 | WO |
2016025132 | Feb 2016 | WO |
Entry |
---|
U.S. Appl. No. 17/103,054, filed Nov. 24, 2020, U.S. Pat. No. 11,744,580. |
Detemple, P., “Microtechnology in Modern Health Care”, Med Device Technol. 9(9):18-25 (1998). |
Abridged Data Sheet, “DeepCover Secure Authenticator with 1-Wire SHA-256 and 512-Bit User EEPROM”, Maxim Integrated Products, Inc. pp. 1-4; 42; Dec. 2012. |
Data Sheet “DS28E15-1-Sire SHA-256 Secure Authenticator with 512-Bit User EEPROM”; IC-on-line, Electronic Component Manufacturers, pp. 1-2; Aug. 2013. |
International Search Report and Written Opinion for Application No. PCT/US2021/058773 dated Apr. 25, 2022. |
International Preliminary Report on Patentability and Written Opinion issued in corresponding International Application No. PCT/US2021/058773 dated Jun. 8, 2023, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20230404574 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17103054 | Nov 2020 | US |
Child | 18459786 | US |