LONG-TERM FIRE RETARDANT WITH CORROSION INHIBITORS AND METHODS FOR MAKING AND USING SAME

Information

  • Patent Application
  • 20200384298
  • Publication Number
    20200384298
  • Date Filed
    June 05, 2020
    4 years ago
  • Date Published
    December 10, 2020
    3 years ago
Abstract
A forest fire retardant composition includes a retardant compound that includes at least one anhydrous salt and at least one hydrate salt. The anhydrous salt is magnesium chloride, calcium chloride, or both. The hydrate salt is magnesium chloride, calcium chloride, or both. The magnesium chloride hydrate has a formula MgCl2(H2O)x, wherein x is at least one of 1, 2, 4, 6, 8, or 12. The calcium chloride hydrate has a formula CaCl2)(H2O)x, wherein x is at least one of 1, 2, 4, or 6. The composition may be in the form of a dry concentrate, a liquid concentrate, or a final diluted product. The final diluted product is effective in suppressing, retarding, and controlling forest fires while exhibiting corrosion resistance and low toxicity.
Description
BACKGROUND

Long-term retardants contain retardant salts that alter the way a forest fire burns, decrease the fire intensity, and slow the advance of the forest fire. Long-term retardants may be available as wet or dry concentrates that are mixed with water thereby improving water's effectiveness and ability to cling to fuels, over a long period of time. Long-term retardants may be colored with iron oxide, fugitive pigments, or remain uncolored.


In the “Ecological Risk Assessment of Wildland Fire-Fighting Chemicals: Long-Term Fire Retardants” (September 2017), hereby incorporated by reference in its entirety, the United States Forest Service (“USFS”) has established a chemical toxicity risk assessment for fire-fighting chemicals currently approved for use by the USFS. The USFS uses a variety of fire-fighting chemicals to aid in the suppression of fire in wildlands. These products can be categorized as long-term retardants, foams, and water enhancers. This chemical toxicity risk assessment of the long-term retardants examines their potential impacts on terrestrial wildlife, plant, and aquatic species.


Further, in Specification 5100-304d (Jan. 7, 2020), Superseding Specification 5100-304b (July 1999), Superseding Specification 5100-00304a (February 1986), entitled “Specification for Long Term Retardant, Wildland Fire, Aircraft or Ground Application,” hereby incorporated by reference in its entirety, the United States Department of Agriculture (“USDA”) Forest Service has established the maximum allowable corrosion rates for 2024T3 aluminum, 4130 steel, yellow brass and Az-31-B magnesium. The corrosivity of forest fire retardants, in concentrate, to aluminum, steel, yellow brass and magnesium must not exceed 5.0 milli-inches (“mils”) per year as determined by the “Uniform Corrosion” test set forth in Section 4.3.5.1 of the USDA Forest Service Specifications. The Forest Service Specifications identify the maximum amount of corrosion acceptable when both the retardant concentrate and its diluted solutions are exposed to each metal indicated above at temperatures of 70° Fahrenheit (“F”) and 120° F. in both totally and partially immersed configurations. The maximum allowable corrosivity of aerially applied fire-retardant diluted solutions to aluminum is 2.0 mils per year (“mpy”) and the maximum corrosivity to brass and steel is 2.0 mpy when partially immersed and 5.0 when tested in the partially immersed condition. In the partially immersed configurations, one-half of the coupon is within the solution and one-half is exposed to the vapors in the air space over the solution.


SUMMARY

The invention relates generally to fire retardant compositions and more particularly to long-term fire retardants suitable for use in direct or indirect attack of forest fires.


In one embodiment, a forest fire retardant composition includes at least one retardant compound. The retardant compound may include at least one anhydrous salt and at least one hydrate salt. The anhydrous salt includes at least one of magnesium chloride or calcium chloride. The hydrate salt includes at least one of magnesium chloride or calcium chloride. The anhydrous salt and the hydrate salt are present in the composition in a weight ratio (anhydrous:hydrate) from about 10%:90% to about 60%:40%, preferably from about 30%:70% to about 40%:60%. The magnesium chloride hydrate has a formula MgCl2(H2O)x, wherein x is at least one of x=1, 2, 4, 6, 8, or 12. Preferably, x=6. The calcium chloride hydrate has a formula CaCl2(H2O)x, where x is at least one of x=1, 2, 4, or 6. The magnesium chloride and calcium chloride are present in the composition in a weight ratio (magnesium:calcium) from about 5%:95% to about 95%:5%, preferably from about 25%:75% to about 75%:25%, more preferably from about 50%:50%. The composition is effective in suppressing, retarding, and controlling forest fires while exhibiting corrosion resistance and low toxicity.


In another embodiment, a method of manufacture includes combining, via batch mixing or continuously mixing, (i) a retardant compound that includes an anhydrous salt including at least one of magnesium chloride or calcium chloride, (ii) a retardant compound that includes a hydrate salt including at least one of magnesium chloride or calcium chloride, (iii) a corrosion inhibitor, and (iv) a colorant.


In another embodiment, a method of manufacture includes receiving a forest fire retardant composition that includes an anhydrous salt including at least one of magnesium chloride or calcium chloride, and a hydrate salt including at least one of magnesium chloride or calcium chloride in a weight ratio (anhydrous:hydrate) from about 10%:90% to about 60%:40%, and diluting the composition with water, in one or more diluting steps, to achieve at least one of a liquid concentrate and/or a final diluted product.


In another embodiment, a method of manufacture includes receiving a forest fire retardant composition that includes up to 100% hydrate salt with a salt concentration of about 5% to about 40% and may contain an additional bromine salt in a concentration of about 5% to about 50%. This embodiment includes diluting with water, in one or more diluting steps, to achieve at least one of a liquid concentrate and/or a final diluted product.


In another embodiment, a method of combating a forest fire includes depositing, via aerial or ground-based application, a forest fire retardant composition containing a salt and water. The step of depositing includes at least one of a direct attack on the fire or an indirect attack before the fire. Combating a forest fire includes at least one of suppressing, retarding, and/or controlling the forest fire.


It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein. It should also be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.





BRIEF DESCRIPTIONS OF THE DRAWINGS

The skilled artisan will understand that the drawings primarily are for illustrative purposes and are not intended to limit the scope of the inventive subject matter described herein. The drawings are not necessarily to scale; in some instances, various aspects of the inventive subject matter disclosed herein may be shown exaggerated or enlarged in the drawings to facilitate an understanding of different features. In the drawings, like reference characters generally refer to like features (e.g., functionally similar and/or structurally similar elements).



FIG. 1 is a flow chart diagram showing the process of making a forest fire retardant composition.



FIG. 2A shows a photograph of general and uniform corrosion of brass coupons under USFS Standard Test procedure with Example 1.



FIG. 2B shows a photograph of general and uniform corrosion of iron coupons under USFS Standard Test procedure with Example 1.



FIG. 2C shows a photograph of general and uniform corrosion of aluminum coupons under USFS Standard Test procedure with Example 1.



FIG. 2D shows a photograph of general and uniform corrosion of iron coupons under USFS Standard Test procedure with PHOS-CHEK® fire retardant.



FIG. 2E shows a photograph of intergranular corrosion under USFS Standard Test procedure with Example 1.



FIGS. 3A-3B show photographs of Example 1 (front) vs. PHOS-CHEK® (Aspen Excelsior, back) in a burn table test.



FIG. 3C shows a photograph Example 1 (coverage level 4) at 20:00 minutes (front) vs. untreated at 3:00 minutes (back) in a burn table test.



FIG. 4A is a graph showing the viscosity over time of Example 1 after blending with 40° F. water.



FIG. 4B is a graph showing the viscosity over time of Example 1 after blending with 70° F. water. After blending, the mixture was cooled naturally.



FIG. 4C is a graph showing the viscosity over time of Example 1 after blending with 100° F. water.



FIG. 4D is a graph showing the viscosity over time of Example 1 at 70° F. After blending, the mixture was cooled in an ice bath to 70° F. and maintained at 70° F.



FIG. 5 is a graph showing the viscosity of Example 1 versus time after mixing at 70° F.





DETAILED DESCRIPTION

In General


Referring to FIG. 1, a forest fire retardant composition 100 can be provided in various forms. The composition 100 can be provided as a dry concentrate 101 substantially free of water. Alternatively, the composition 100 can be provided as a liquid concentrate 102. The liquid concentrate 102 can be formed by adding water or other solvent(s) to the dry concentrate 101. Alternatively, liquid concentrate 102 is formed when the dry concentrate 101 is deliquescent, hygroscopic, and absorbs moisture from the air or other moisture source. The composition 100 can also be provided as a final diluted product 103 in a form suitable to fight forest fires via aerial- or ground-based application. The final diluted product 103 is formed either by diluting the dry concentrate 101 with water or by diluting the liquid concentrate 102 with water.


Components of the Dry Concentrate


The forest fire retardant composition 100 includes one or more retardant compounds. The retardant compounds are preferably inorganic compounds. Table 1 below illustrates exemplary inorganic compounds, any one or more of which may be used, alone or in combination, as a retardant compound in the composition 100.









TABLE 1







Exemplary Inorganic Retardant Compounds













Other



Halide
Non-Halide
inorganic



Salts
Salts
retardants







MgCl2
MgCO3
MgO



MgCl2(H2O)x
Mg3(PO4)2
CaO



where x is 1, 2,



4, 6, 8, or 12



CaCl2
Mg5(CO3)4(OH)2(H2O)4
Na2O



CaCl2(H2O)x
Mg3(PO4)2(H2O)8
Li2O



where x is 1, 2,



4, or 6



MgBr2
CaCO3
BaO



CaBr2
Ca3(PO4)2
Mg(OH)2




Mg3Ca(CO3)4
Ca(OH)2




Ca3(PO4)2(H2O)2
NaOH





LiOH





Ba(OH)2





KOH










The retardant compound may be a salt. The salt may be a halide salt. The halide salt may include magnesium chloride. The magnesium chloride can be anhydrous, substantially free of any hydrate. Alternatively, or in combination with the anhydrous magnesium chloride, the magnesium chloride can be a hydrate, substantially free of any anhydrous. The hydrate may have the formula MgCl2(H2O)x, where x is equal to at least one of 1, 2, 4, 6, 8, or 12. The magnesium chloride hydrate is preferably magnesium chloride hexahydrate having the formula MgCl2(H2O)6.


Preferably, the magnesium chloride is present in the composition 100 in a combination of both magnesium chloride anhydrous and magnesium chloride hydrate. The magnesium chloride anhydrous and the magnesium chloride hydrate may be present in the forest fire retardant composition 100 in a weight ratio (anhydrous:hydrate) from about 0%:100% to about 100%:0%, preferably from about 10%:90% to about 60%:40%, more preferably from about 20%:80% to about 50%:50%, and particularly from about 30%:70% to about 40%:60%. For example, the weight ratio (anhydrous:hydrate) in the composition 100 is about 33%:67% to about 38%62%. It is preferred that the weight ratio (anhydrous:hydrate) in the composition 100 is about 36.4%:63.6%, wherein the hydrate is magnesium chloride hexahydrate.


Referring to FIG. 1, the composition 100 may begin as a dry concentrate 101 substantially free of water. As used herein, “substantially free of water,” when referring to the dry concentrate 101, does not refer to the water of crystallization or water of hydration of the halide salt (i.e., the hydrate halide salt). In the dry concentrate 101, the weight percent of halide salt (including both anhydrous and hydrate) is about 75% to about 96%, preferably about 80% to about 95%, more preferably about 82% to about 94%, and particularly about 85% to about 93%. For example, the weight percent of halide salt (including both anhydrous and hydrate) in the dry concentrate 101 is about 88% to about 93%, and specifically about 89.9%±1.0%.


Instead of (or in addition to) chlorine, the magnesium halide salt may include bromine as the halogen which forms a magnesium bromide salt. The bromine may be used alone in the magnesium halide salt; alternatively, the bromine may be used in combination with chlorine, thereby forming a mixture of magnesium bromide and magnesium chloride salts. The bromine salt, when used as a bromine flame retardant, has a mechanism that is similar to chlorine and may be used as a long-term fire retardant alone or in combination with chlorine. Halogens or other compounds that liberate stable radicals in the thermal environment of the flame front also operate with a mechanism that is similar to chlorine and may be used as a long-term fire retardant.


Instead of (or in addition to) magnesium chloride, the halide salt of the forest fire retardant composition 100 may be calcium chloride. The calcium chloride can be anhydrous, substantially free of any hydrate. Alternatively, or in addition to the anhydrous calcium chloride, the calcium chloride can be a hydrate, substantially free of any anhydrous. The hydrate may have the formula CaCl2(H2O)x, where x is equal to at least one of 1, 2, 4, or 6. Preferably, the calcium chloride is present in the composition 100 in a combination of both calcium chloride anhydrous and calcium chloride hydrate. In the dry concentrate 101, the weight percent of magnesium chloride (including both anhydrous and hydrate):calcium chloride (including both anhydrous and hydrate) is about 0%:100% to about 100%:0%, preferably about 10%:90% to about 90%:10%, more preferably about 25%:75% to about 75%:25%, and particularly around 45%:55% to about 55%:45%. For example, the weight percent of magnesium: calcium is about 50%:50%. The calcium chloride forest fire retardant composition may be used for a liquid concentrate. The calcium halide salt may include bromine as the halogen which forms a calcium bromide salt. The bromine may be used alone in the calcium halide salt; alternatively, the bromine may be used in combination with chlorine, thereby forming a mixture of calcium bromide and calcium chloride salts.


Instead of (or in addition to) the halide salt, the salt of the forest fire retardant composition 100 may be a non-halide salt including at least one of magnesium non-halide salt, calcium non-halide salt, magnesium calcium non-halide salt, or a combination thereof. The anion in the salt may include at least one of carbonate or phosphate. The salt may include magnesium non-halide salt, which may be anhydrous magnesium non-halide salt or magnesium non-halide salt hydrate. The magnesium non-halide salt may include at least one of magnesium carbonate (MgCO3), magnesium phosphate (Mg3(PO4)2), magnesium carbonate hydroxide hydrate (Mg5(CO3)4(OH)2(H2O)4), or magnesium phosphate hydrate (Mg3(PO4)2(H2O)8). As an alternative to using a magnesium non-halide salt, or in addition to using a magnesium non-halide salt, the non-halide salt may further include calcium non-halide salt, which may be anhydrous calcium non-halide salt or calcium non-halide salt hydrate. The calcium non-halide salt may include at least one of calcium carbonate (CaCO3), calcium phosphate (Ca3(PO4)2), huntite (Mg3Ca(CO3)4), or calcium phosphate hydrate (Ca3(PO4)2(H2O)2). The magnesium non-halide salt and calcium non-halide salt may be present in the forest fire retardant composition 100 in a weight ratio (magnesium:calcium) from about 0%:100% to about 100%:0%, including about 5%:95%, 10%:90%, 15%:85%, 20%:80%, 25%:75%, 30%:70%, 35%:65%, 40%:60%, 45%:55%, 50%:50%, 55%:45%, 60%:40%, 65%:35%, 70%:30%, 75%:25%, 80%:20%, 85%:5%, 90%:10%, 95%:5%, and any range between any two such ratios.


In the dry concentrate 101, the weight percent of halide salt (including both anhydrous and hydrate): non-halide salt (including both anhydrous and hydrate) may be about 0%:100% to about 100%:0%, including about 5%:95%, 10%:90%, 15%:85%, 20%:80%, 25%:75%, 30%:70%, 35%:65%, 40%:60%, 45%:55%, 50%:50%, 55%:45%, 60%:40%, 65%:35%, 70%:30%, 75%:25%, 80%:20%, 85%:5%, 90%:10%, 95%:5%, and any range between any two such ratios.


Instead of (or in addition to) the salt, the forest fire retardant composition 100 may contain a retardant component that includes a metal oxide and/or metal hydroxide. The metal oxide includes magnesium oxide (MgO), calcium oxide (CaO), sodium oxide (Na2O), lithium oxide (Li2O), and barium oxide (BaO). The metal hydroxide includes magnesium hydroxide (Mg(OH)2), calcium hydroxide, (Ca(OH)2), sodium hydroxide (NaOH), lithium hydroxide (LiOH), barium hydroxide (Ba(OH)2), or potassium hydroxide (KOH). The metal oxide and metal hydroxide may be present in the forest fire retardant composition 100 in a weight ratio (oxide:hydroxide) from about 0%:100% to about 100%:0%, including about 5%:95%, 10%:90%, 15%:85%, 20%:80%, 25%:75%, 30%:70%, 35%:65%, 40%:60%, 45%:55%, 50%:50%, 55%:45%, 60%:40%, 65%:35%, 70%:30%, 75%:25%, 80%:20%, 85%:5%, 90%:10%, 95%:5%, and any range between any two such ratios.


In the dry concentrate 101, the weight percent of metal oxide: salt (including halide and non-halide salt) may be about 0%:100% to about 100%:0%, including about 5%:95%, 10%:90%, 15%:85%, 20%:80%, 25%:75%, 30%:70%, 35%:65%, 40%:60%, 45%:55%, 50%:50%, 55%:45%, 60%:40%, 65%:35%, 70%:30%, 75%:25%, 80%:20%, 85%:5%, 90%:10%, 95%:5%, and any range between any two such ratios.


In the dry concentrate 101, the weight percent of metal hydroxide: salt (including halide and non-halide salt) may be about 0%:100% to about 100%:0%, including about 5%:95%, 10%:90%, 15%:85%, 20%:80%, 25%:75%, 30%:70%, 35%:65%, 40%:60%, 45%:55%, 50%:50%, 55%:45%, 60%:40%, 65%:35%, 70%:30%, 75%:25%, 80%:20%, 85%:5%, 90%:10%, 95%:5%, and any range between any two such ratios.


The forest fire retardant composition 100 may further include a corrosion inhibitor. The corrosion inhibitor includes an inhibitor for the magnesium chloride, calcium chloride, and an inhibitor for brass, iron, aluminum, steel, copper, or magnesium. The corrosion inhibitor for magnesium may include COBRATEC 928, Denatonium benzoate, benzoic acid, Diammonium phosphate, monoammonium phosphate, Wintrol SB 25Na, or a combination of the above. The corrosion inhibitor may include one or more azoles. The corrosion inhibitor may be a Wintrol® Super Azole Mix (Wintrol® SAM-H90 from Wincom, Inc). The Wintrol® SAM-H90 is designed for aqueous application. Wintrol® SAM-H90 provides corrosion resistance in highly corrosive environments caused by halogens, such chloride. Optionally, Wintrol® SAM-H38Na may be used as the corrosion inhibitor, alone or in combination with Wintrol® SAM-H90. The corrosion inhibitor may include but is not limited to, sodium selenite, sodium stearate, sodium benzoate, sodium fluoride, sodium phosphate, magnesium phosphate, benzotriazole-5-carboxcylic acid, benzotriazole, 1,8-napthalaldehydic acid, octadecylphosphonic acid, sodium dodecyl sulfonate (SDBS), Wintrol® BBT-25Na, Wintrol® BBT, Wintrol® THT-T, Wintrol® THT-35PG, Wintrol® THT-50K, Wintrol® SAM-H90, Wintrol SB 25Na, Wintrol® SAM-H38Na, Wintrol® SAM-H40(OS), Wintrol® SAM-B90, berberine, pyrrolidine riccione, catechin, lysergic acid, carmine, fast green, aniline, triethanolamine, p-chloroaniline, p-nitroaniline, p-methoxyaniline, p-methylaniline, sodium silicate, or a combination of the above.


The corrosion inhibitor may be present in the forest fire retardant composition 100 at a concentration of about 0.1 mM to 100 mM and more preferably at a concentration of about 10 mM to 50 mM. The corrosion inhibitor is effective at a salt concentration of about 2% to 9%, or about 3% to 8%, more preferably about 4% to 7%, and most preferably about 5% to 6%. The weight percent of the corrosion inhibitor, relative to the amount of the retardant compound in the composition 100, is about 0.25% to about 5.0%, for example about 0.5% to about 4.0%, or about 0.75% to about 3.0%, preferably about 0.9% to about 1.8%. For example, the weight percent of the corrosion inhibitor relative to the amount of retardant compound in the composition 100, is about 1.3%±0.2%.


In the dry concentrate 101, the weight percent of the corrosion inhibitor is about 0.6% to about 2.5%, preferably about 0.7% to about 2.5%, more preferably about 0.8% to about 2.0%, and particularly about 0.9% to about 1.8%. For example, the weight percent of the corrosion inhibitor in the dry concentrate 101 is about 1.0% to about 1.5%, and specifically about 1.3%±0.2%.


To control the viscosity of the composition 100, the composition 100 may also include at least one thickening agent. The thickening agent may be a polyurethane, a polyvinyl alcohol, an acrylic polymer, a gum, a cellulosic, a sulfonate, a polyurethane, a saccharide, a clay, an organosilicone, or a protein, including but not limited to latex, styrene, butadiene, polyvinyl alcohol, attapulgite, bentonite, montmorillonite, algin, collagen, casein, albumin, castor oil, cornstarch, arrowroot, yuca starch, carrageenan, pullulan, konjac, alginate, gelatin, agar, pectin, carrageenan, xanthan gum, guar gum, cellulose gum, acacia guar gum, locust bean gum, acacia gum, gum tragacanth, glucomannan polysaccharide gum, alginic acid, sodium alginate, potassium alginate, ammonium alginate, calcium alginate, chitosan, carboxymethyl cellulose (CMC), methyl cellulose, hydroxyethyl cellulose (HEC), hydroxymethyl cellulose (HMC), hydroxypropyl methylcellulose (HPMC), ethylhydroxymethyl cellulose, hypromellose (INN), cetyl alcohol, cetearyl alcohol, polyethylene glycol (PEG), acrylic microgel, or acrylic amide wax. The weight percent of the thickening agent(s), relative to the amount of the retardant compound in the composition 100, is about 0.005% to about 6.0%, preferably about 0.015% to about 5.0%, more preferably about 0.1% to about 4.5%, and specifically about 1.5% to about 4.0%. For example, the weight percent of the thickening agent(s), relative to the amount of the retardant compound in the composition 100, is about 3.2% to about 3.8%, and specifically about 3.5%±0.5%.


In one embodiment, the forest fire retardant composition 100 includes a first thickening agent. The first thickening agent may be a polysaccharide gum. The weight percent of the polysaccharide gum, relative to the amount of the retardant compound in the composition 100, is about 0.005% to about 4.0%, preferably about 0.05% to about 3.75%, more preferably about 0.25% to about 3.5%, and specifically about 0.5% to about 3.0%. For example, the weight percent of the polysaccharide gum, relative to the amount of the retardant compound in the composition 100, is about 1.00% to about 2.75%, and specifically about 2.1%±0.5%.


In another embodiment, the forest fire retardant composition 100 includes both the first thickening agent (discussed above) and a second thickening agent. The second thickening agent may be a chemically substituted cellulose or any other thickening agent listed above. The weight percent of the chemically substituted cellulose relative to the amount of the retardant compound in the composition 100, is about 0.005%% to about 3.0%, preferably about 0.05% to about 2.8%, more preferably about 0.2% to about 2.6%, and specifically about 0.6% to about 2.4%. For example, the weight percent of chemically substituted cellulose relative to the amount of the retardant compound in the composition 100, is about 0.8% to about 2.0%, and specifically about 1.4%±0.5%.


To control the pH of the composition 100, the composition 100 may also include buffering agents such as organic amines including but not limited to triethanolamine (C6H15NO3), diethanolamine, monoethanolamine, or monoethylene glycol and strong bases including but not limited to magnesium hydroxide (Mg(OH)2), calcium hydroxide, (Ca(OH)2), sodium hydroxide (NaOH), lithium hydroxide (LiOH), barium hydroxide (Ba(OH)2), or potassium hydroxide (KOH). The weight percent of the organic amine, relative to the amount of the retardant compound in the composition 100, is about 0.5% to about 5.0%, preferably about 0.6% to about 3.0%, more preferably about 0.75% to about 2.5%, and more specifically about 1.0% to about 2.2%. For example, the weight percent of organic amine, relative to the amount of the retardant compound in the composition 100, is about 1.2% to about 2.0%, and specifically about 1.3%±0.5%.


The weight percent of strong base, relative to the amount of the retardant compound in the composition 100, is about 0.05% to about 3%, preferably about 0.1% to about 2.5%, more preferably about 0.2% to about 2.0%, and more specifically about 0.25% to about 1.5%. For example, the weight percent of strong base, relative to the amount of the retardant compound in the composition 100, is about 0.3% to about 1.0%, and specifically about 0.7%±0.5%.


The composition 100 may also include surfactant components including but not limited to a sodium dodecyl sulfate (SDS), sodium lauryl sulfate (SLS), sodium 4-dodecylbenzenesulfonate (SDBS), or a combination of the three to reduce surface tension and increase the spreading and wetting properties of the forest fire retardant composition 100. The weight percent of surfactant, relative to the amount of the retardant compound in the composition 100, is about 0.005% to about 1.5%, preferably about 0.0075% to about 1.25%, more preferably about 0.01% to about 1.0%, and more specifically about 0.025% to about 0.75%. For example, the weight percent of surfactant, relative to the amount of the retardant compound in the composition 100, is about 0.05% to about 0.5%, and specifically about 0.08%±0.04%.


The composition 100 may also include adjuvants including but not limited to triethanolamine, propylene glycol, propylene carbonate, RJ-7033, RJ-7077, Silwet HS-312, Silwet HS-604, Silwet 625, Silwet 641, Silwet PD, polyethylene glycol, or polypropylene glycol, or a combination of the above.


The composition 100 may also include titanium dioxide. The titanium dioxide may act as a pigment, for example, to provide a white pigment. The titanium dioxide may also act as a photo-responsive material to create opacity by scattering light or by protecting the components of the forest fire retardant composition 100 from UV degradation. The weight percent of titanium dioxide, relative to the amount of the retardant compound in the composition 100, is about 0.02% to about 2.0%, preferably about 0.025% to about 1.75%, more preferably about 0.05% to about 1.5%, and more specifically about 0.1% to about 1.0%. For example, the weight percent of titanium dioxide, relative to the amount of the retardant compound in the composition 100, is about 0.2% to about 0.8%, and specifically about 0.6%±0.3%.


The composition 100 may also include a colorant. The colorant may be a fugitive colorant, a non-fugitive colorant, or a combination of the two. The composition 100 has a first hue which is a color, i.e., either colorless or a color which blends with the normal vegetation and/or ground in the drop zone. This first hue may be grey or white or a combination of the two. The colorant initially colors the composition 100 to a second hue which contrasts with the hue of the ground vegetation. The colorant may be a fugitive component such as a dye or a dye which is dispersed in a matrix (i.e., a pigment), which fades over time and under ambient field conditions to a colorless or less highly colored hue. Preferably the colorant is one that is compatible with magnesium chloride or calcium chloride such as colorants that have been used in de-icing, dust control, or fertilizers. The fugitive colorant may fade over time with exposure to sunlight.


Several fugitive component dyes and pigments can be used as a colorant. For example, many water-soluble dyes fade rapidly and there are so-called fluorescent pigments (fluorescent dyes encapsulated in a resin integument) which are suspended in forest fire retardant compositions and which also fade rapidly to provide a fugitive effect. Examples of fugitive dyes and pigments include, but are not limited to, C.I. Basic Red I dye, 6BL dye, Basic Violet II dye, Basic Yellow 40, acid fuchsin, basic fuchsin, new fuchsin, acid red 1, acid red 4, acid red 8, acid red 18, acid red 27, acid red 37, acid red 88, acid red 97, acid red 114, acid red 151, acid red 183, acid red 183, fast red violet 1B base, solvent red, Rhodamine B, Rhodamine 6G, Rhodamine 123, Rhodamine 110 chloride, erythrosine B, Basacryl red, Phloxine B, rose Bengal, direct red 80, direct red 80, Sudan red 7B, Congo red, neutral red, Fluorescent Red Mega 480, Fluorescent red 610, Fluorescent red 630, Fluorescent Red Mega 520, Pylaklor Red S-361, Pylaklor Scarlet LX-6364A Pylam Bright Red LX-1895 Pylam Coral LX-1801, FD&C Red #3, FD&C Red #4, FD&C Red #40, FD&C Red #4 Lake, D&C Red #33, D&C Red #33 Lake, and encapsulated-dye pigments which are available commercially, e.g., the “AX” series pigments, supplied by Day-Glo Color Corp., Cleveland, Ohio. The dye may be Liquitint 564 (λ=564 nm) or Liquitint Agro Pink 564 (λ=564 nm) from Milliken & Company (Spartanburg, S.C.).


The colorant may be a colorant from Greenville Colorants (New Brunswick, N.J.) or Milliken & Company (Spartanburg, S.C.). For example, the colorant is a colorant that is compatible for use with magnesium chloride, such as colorants used in magnesium chloride dust-control and road-stabilization formulations, or in magnesium chloride de-icing formulations. The colorant may be Elcomine Scarlet NAS, Elcomine Scarlaet NAS EX, or Iron Oxide GC-110P from Greenville Colorants. The colorant may be a combination of Liquitint 564 and Iron Oxide GC-110P.


The colorant of the composition 100 may be a dye or include encapsulated-dye fugitive pigments without ultraviolet absorbers. Compared to water soluble dyes, encapsulated-dye pigments are less likely to permanently stain the normal vegetation and/or ground in the drop zone. The fugitive component is present in an amount which provides a color (second hues) to the forest fire retardant composition 100 which is contrasts with the color of the vegetation and/or ground in the drop zone (normally green, blue-green and/or brown). Advantageously, the second hue is red, orange or pink. The color of the dye may be red, orange, purple, or pink or any combination of the four. Preferably, the dye is one that is compatible with magnesium chloride.


The colorant may also include a non-fugitive component, i.e., a component which is insoluble in the carrier liquid and which, if colored, does not necessarily fade after aerial application of the forest fire retardant composition 100. The non-fugitive component of the colorant is present in an amount sufficient to improve the aerial visibility of the composition when it is first applied to the vegetation. However, the non-fugitive component is present in less than an amount which prevents the composition from thereafter fading a neutral color. The colorant may be a combination of the fugitive and non-fugitive components. The non-fugitive component in the forest fire retardant composition 100 may be iron oxide (Fe2O3 or Fe3O4). The iron oxide may be present in combination with the fugitive colorant described above and titanium dioxide or it may be present alone.


The weight percent of colorant or Iron Oxide, relative to the amount of the retardant compound in the composition 100, is about 0.02% to about 3.0%, preferably about 0.025% to about 2.0%, more preferably about 0.05% to about 1.5%, and more specifically about 0.075% to about 1.2%. For example, the weight percent of colorant or Iron Oxide, relative to the amount of the retardant compound in the composition 100, is about 0.1% to about 1.0%, and specifically about 0.6%±0.3%.


The weight percent of dye, relative to the amount of the retardant compound in the composition 100, is about 0.02% to about 3.0%, preferably about 0.025% to about 2.0%, more preferably about 0.05% to about 1.5%, and more specifically about 0.075% to about 1.2%. For example, the weight percent of dye, relative to the amount of the retardant compound in the composition 100, is about 0.1% to about 1.0%, and specifically about 0.6%±0.3%.


The composition 100 may also include mineral oil. The mineral oil may help reduce dusting during handling of the dry concentrate 101. The weight percent of mineral oil, relative to the amount of the retardant compound in the composition 100, is about 0.25% to about 2.5%, preferably about 0.50% to about 2.25%, more preferably about 0.75% to about 2.0%, and more specifically about 1.0% to about 1.75%. For example, the weight percent of mineral oil, relative to the amount of the retardant compound in the composition 100, is about 1.1% to about 1.5%, and specifically about 1.3%±0.5%.


The composition 100 may also include a glow-in-the-dark additive. The glow-in-the-dark additive improves the visibility of the fire retardant composition during periods of darkness. Nighttime visibility of the composition is improved, for example, to the naked human eye and/or using imaging equipment such as goggles. The glow-in-the-dark additive can include one or more phosphorescent additives that imparts photoluminescence properties to the forest fire retardant composition 100. The phosphorescent additive may exhibit fluorescence and/or phosphorescence. The phosphorescent additive may be charged with sunlight or artificial lighting, such as UV radiation or Fluorescent lighting. The phosphorescent additive may emit light in the visible light region or in the ultraviolet region. Alternatively, the phosphorescent additive may emit light in the near infrared region and be visualized using infrared goggles. Examples of the phosphorescent additive include LumiNova, LumiNova Green (G), LumiNova G PS-2, LumiNova Blue Green (BG), a zinc sulfide pigment, or mixtures thereof. The amount of the glow-in-the-dark additive, relative to the amount of composition 100 is about 100 g/1000 L to about 1000 g/1000 L, preferably about 200 g/1000 L to about 800 g/1000 L, and more preferably about 300 g/1000 L to about 700 g/1000 L. For example, the amount of the glow-in-the-dark additive, relative to the amount of composition 100 is about 350 g/1000 L to about 550 g/1000 L.


The glow-in the-dark additive may also include one or more fluorophores. The fluorophore(s) may exhibit fluorescence and/or phosphorescence. The fluorophore(s) may be visible in the near infrared region (i.e., 700 nm-1700 nm wavelength of light). Visualization can be achieved using near infrared goggles. Examples of fluorophores include CH1055 (4.8-Bis(2-(4-(bis(4-(2-carboxyethyl)phenyl)amino)phenyl)-5H-[1,2,5]thiadiazolo[3,4-f]benzo[c][1,2,5]thiadiazole), as well as Cy7 or Cy7.5, or mixtures thereof.


The composition 100 may optionally include other ingredients, such as spoilage inhibitors, flow conditioners, anti-foaming agents, foaming agents, stability additives, biocide, thickening agents, surfactants, adjuvants, corrosion inhibitors other than those of the corrosion inhibiting system, opacifiers, additional coloring agents, liquid carrier, and water.


The dry components of the forest fire retardant composition 100 are batch mixed in a tumbler to form a dry concentrate 101. Alternatively, the dry components may be continuously mixed. First, the magnesium chloride hexahydrate and magnesium chloride anhydrous are mixed together. Then, the remaining dry ingredients (thickening agent(s), titanium dioxide, sodium dodecyl sulfate, colorant, and dye) are added to the mixture. Finally, the two liquid components (triethanolamine and Wintrol® SAM-H90) are slowly added to the mixture while mixing. The dry concentrate 101 is then stored, substantially in the absence of air and/or external moisture, in a sealed bag having a plastic liner and/or moisture barrier. For example, each sealed bag can contain about 2,000 pounds of the dry concentrate 101 during storage and shipment to the point of use (e.g., airfield). Alternatively, the dry concentrate 101 may be stored in lined one-ton tote sacks or super sacks. Air-sealed bags with a plastic liner supplied by Semi-Bulk Systems Inc. (St. Louis, Mo.) can be used. Alternatively, an air-permeable moisture barrier can be used, such as a barrier made of a silicone material. The dry concentrate 101 is substantially free of water. The dry composition 101 is chemically stable under normal temperatures and pressures. The dry concentrate 101 should be protected from exposure to humidity and moisture on moisture-proof air pallets or under a water-resistant tarp during storage. The dry concentrate 101 may be supplied as part of a kit that includes a sealed container substantially in the absence of air and/or external moisture (e.g., air-sealed bag, air-permeable moisture sealed bag, tote sack, super sack) and instructions for using the dry concentrate 101 to form the final diluted product 103 (described below). In the case where the final diluted product 103 is to be applied on a localized scale by homeowners or local officials, for example, the kit may contain a tank for mixing and applying the final diluted product 103 (e.g., a 1-2 gallon hand-held or 4 gallon backpack or 5 gallon cart-style container with an applicator wand and/or hose, or a 15-25 gallon tank capable of being mounted on or pulled behind an all-terrain vehicle or truck), and instructions for using the dry concentrate 101 to form and apply the final diluted product 103.


Forming the Liquid Concentrate


The liquid concentrate 102 may be formed by the addition of water or other solvent to the dry concentrate 101. The water may be tap water or water from other convenient water sources. Alternatively, the liquid concentrate 102 may be formed upon absorption of moisture by the dry concentrate 101 if the dry concentrate 101 is deliquescent. Magnesium chloride hexahydrate is deliquescent and will form an aqueous solution if exposed to air.


The dry concentrate 101 is first mixed to disperse the thickening agent(s) in the dry blend before any liquid additions. The dry concentrate 101 is agitated to prevent clumping of the dry components when batch mixed with water or other solvent to form the liquid concentrate 102. Alternatively, the liquid concentrate 102 may be prepared using continuous mixing equipment. Alternatively, the water or other solvent may be added by spraying onto a ribbon of well-mixed dry ingredients. For example, the water or other solvent could be sprayed onto the dry components while traveling across a conveyor belt. Once mixed, the liquid concentrate 102 is then stored, substantially in the absence of air and/or external moisture, in a sealed container. For example, the sealed container for storage and shipment to the point of use (e.g., airfield) may be a 1,000 L tote, a 5-gallon pail or a 55-gallon drum. The liquid concentrate 102 is chemically stable under normal temperatures and pressures.


In the liquid concentrate 102, the weight percent of the retardant compound is about 10% to about 70%, preferably about 15% to about 65%, more preferably about 20% to about 60%. For example, the weight percent of the retardant compound in the liquid concentrate 102 is about 25% to about 55%, and specifically about 48%±3%.


The salt in the liquid concentrate 102 composition may include up to 100% hydrated salt (and 0% anhydrous salt). The hydrated salt may be at least one of magnesium chloride or calcium chloride. The weight percent of magnesium chloride hydrate is about 5% to about 40%. The liquid concentrate 102 composition may also include additional bromine salt in a weight percent of about 5% to about 50%.


Instead of (or in addition to) the salt, the liquid concentrate 102 may include a metal oxide and/or a metal hydroxide. It is understood that the metal oxide, in the presence of water, can undergo a reversible reaction with water to form a metal hydroxide. The weight percent of metal hydroxide may be about 2% to about 60%, preferably about 5% to about 50%, more preferably about 7% to about 45%. For example, the concentration of metal hydroxide in the liquid concentrate 102 may be about 8% to about 40%, and specifically about 32%±3%.


The liquid concentrate 102 may be supplied as part of a kit that includes a sealed container for storage and shipment substantially in the absence of air and/or external moisture (e.g., 1,000 L tote, a 5-gallon pail or a 55-gallon drum) and instructions for using the liquid concentrate 102 to form the final diluted product 103 (described below). In the case where the final diluted product 103 is to be applied on a localized scale by homeowners or local officials, for example, the kit may contain a tank for mixing and applying the final diluted product 103 (e.g., a 1-2 gallon hand-held or 4 gallon backpack or 5 gallon cart-style container with an applicator wand and/or hose, or a 15-25 gallon tank capable of being mounted on or pulled behind an all-terrain vehicle or truck), and instructions for using the liquid concentrate 102 to form and apply the final diluted product 103.


Forming the Final Diluted Product


The final diluted product 103 is formed either directly from the dry concentrate 101 by mixing the dry concentrate 101 with water or by mixing the liquid concentrate 102 with water. The dry concentrate 101 or the liquid concentrate 102 is shipped to the point of use (e.g., airfield), where it is diluted with water or other solvent to form the final diluted product 103. The dry concentrate 101 is added slowly into room temperature (or cooler) water with stirring. The dry concentrate 101 is designed for addition to water at a weight ratio of approximately 100 grams of dry concentrate 101 to 492 grams of water. The water may be tap water or water from other convenient water sources. The product is mixed using the current mixing equipment available to the USFS.


The reaction is exothermic and may reach a maximum temperature between about 100° F. to about 110° F. The product is stirred for about 30 minutes before being allowed to stand to develop a stable viscosity. The final diluted product 103 can also be prepared on a commercial batch scale by combining the dry concentrate 101 with a measured amount of water in an appropriate mix vessel such as an agitated mix tank. Alternatively, the final diluted product 103 may be prepared on a commercial batch scale using continuous mixing equipment. The rate of addition of solid concentrate to water should be controlled to assure efficient mixing of the concentrate and the water. Alternately, a continuous process may be conducted by introducing the dry concentrate 101 into a water stream via a vacuum eductor system where the ratio of flow through the eductor port to the bypass flow is roughly 1:9. Downstream mixing should be accomplished to avoid product settling in the receiving tank, or the receiving tank itself should be vigorously circulated to facilitate solution and adequate hydration of the dry concentrate 101.


The final diluted composition 103 can also be batch mixed by feeding the dry concentrate 101 into a well-circulated mix-batch tank. Alternatively, the final diluted composition 103 may be mixed using continuous mixing equipment. Mix tank agitation may be provided via an overhead mechanical stirring apparatus or alternatively by a circulation pump sized to provide turbulent mixing. Alternatively, a venturi-type vacuum eductor mixer or an in-line high-shear mixer can be used. For batch mixing, the mix water is agitated or circulated to provide efficient mixing, then a one-ton sack of dry concentrate 101 is added slowly, typically by suspending the sack over the mix tank (via a fork lift or by other manner), and opening the discharge spout on the sack to allow product to flow out of the sack into the mix solution. The addition rate should be controlled to avoid settling of the solid concentrate in the mix tank. The resulting mixture of dry concentrate 101 will provide approximately 1300 gallons of mixed retardant. The final diluted product 103 is in a form suitable to fight forest fires via aerial- or ground-based application.


The dry concentrate 101 may be diluted with water so that the final diluted product 103 has a retardant compound (e.g. salt) weight percent of about 2% to about 70%, preferably about 5% to about 40%, more preferably about 7% to about 30%. For example, the concentration of retardant compound (e.g., salt) in final diluted product 103 is about 8% to about 25%, and specifically about 17%±2%.


The liquid concentrate 102 may be diluted with water so that the final diluted product 103 has a retardant compound (e.g. salt) weight percent of about 2% to about 70%, preferably about 5% to about 40%, more preferably about 7% to about 30%. For example, the concentration of retardant compound (e.g., salt) in final diluted product 103 is about 8% to about 25%, and specifically about 17%±2%.


The dry concentrate 101 may be diluted with water so that the final diluted product 103 has a salt concentration of about 300 grams to about 900 grams of salt per gallon of water, preferably about 450 grams to about 800 grams of salt per gallon of water, more preferably about 500 grams to about 750 grams of salt per gallon of water. For example, the salt concentration in the final diluted product 103, may be about 550 grams to about 700 grams of salt per gallon of water, and specifically about 690±30 grams of salt per gallon of water.


The liquid concentrate 102, may be diluted at a 2:1 ratio (water:liquid concentrate) to form the final diluted product 103. The liquid concentrate 102 may be diluted with water so that the final diluted product 103 has a salt concentration of about 300 grams to about 900 grams of salt per gallon of water, preferably about 450 grams to about 800 grams of salt per gallon of water, more preferably about 500 grams to about 750 grams of salt per gallon of water. For example, the salt concentration in the final diluted product 103, may be about 550 grams to about 700 grams of salt per gallon of water, and specifically about 690±30 grams of salt per gallon of water.


The final diluted product 103 is a long-term forest fire retardant with improved aerial visibility for either a direct or indirect attack. The resulting final diluted product 103 is an opaque reddish suspension that resists settling. The final diluted product 103 should be mixed approximately every 7-10 days to ensure uniform density. The viscosity of the final diluted product 103 can be adjusted to accommodate a variety of aircrafts by adjusting the amounts of thickening agent(s) added to the mixture. The final diluted product 103 may be a medium viscosity long term retardant. The viscosity may be in the range of 300 cP to 800 cP, and more preferably the viscosity may be about 460 cP at 70° F. After 24 hours the viscosity may be about 485 cP. The final diluted product 103 may alternatively be a high viscosity long term retardant through the addition of more thickening agent. Alternatively, the final diluted product 103 may be a low viscosity long term retardant through the use of less thickening agent. The pH of the final diluted product 103 may be in the range of 8 to 9, and more preferably the pH may be 8.19 at 70° F. The freezing temperature of the final diluted product 103 may be in the range of 15° F. to 25° F., and more preferably the freezing temperature is 18° F. Once blended with water, the final diluted product 103 is a homogeneous, stable fluid that requires only infrequent stirring. The final diluted product 103 is hydrated into a stable mixture in 20 minutes, without the use of special equipment.


EXAMPLES
Example 1

In Example 1, a dry concentrate is prepared containing the amounts of ingredients listed in Table 2 below. The values in Table 2 can be varied by ±0.01%, or ±0.05%, or ±0.1%, or ±0.5%, or ±1.0%, or ±1.5%, or ±2%, or ±2.5%, or 3.0%, or 3.5%, or 4.0%, or 4.5%, or ±5.0%.









TABLE 2







Dry Concentrate according to Example 1











Weight Percent



Ratio of
of Each



Anhydrous
Ingredient in


Ingredient
to Hydrate
Dry Concentrate





MgCl2 Anhydrous
36.4%
32.7%


MgCl2•6H2O
63.6%
57.1%


Thickening agent 1 -

 2.1%


Polysaccharide gum


Thickening agent 2 - Chemically

 1.4%


substituted cellulose


Triethanolamine (C6H15NO3)

 1.3%


Colorant - Iron Oxide

0.66%


Dye

0.66%


Corrosion inhibitor

 1.3%


SDS Surfactant

0.08%


Magnesium Hydroxide

0.73%


TiO2

0.66%


Mineral Oil

1.32%


Water

1.32%


Total Weight of Dry Concentrate

 100%









As seen in Table 2 above, the dry concentrate of Example 1 contains 1.32% water as a weight percent of the total weight of the dry concentrate. Preferably, the weight percent of water in the dry concentrate 101 is less than about 5%, or less than about 4%, or less than about 3%, or less than about 2% relative to the total weight of the dry concentrate.


An Example 1 final diluted product 103 is prepared by mixing approximately 755 grams to about 770 grams, for example, 762.04 to 764.67 grams of the dry concentrate in 1 gallon of water. The amounts of the ingredients in the Example 1 final diluted product 103 are listed in Table 3 below. The values in Table 3 can be varied by ±0.01%, or ±0.05%, or ±0.1%, or ±0.5%, or 1.0%, or 1.5%, or 2%, or ±2.5%, or ±3.0%, or ±3.5%, or ±4.0%, or ±4.5%, or ±5.0%. The concentration of salt in the Example 1 final diluted product 103 is about 14% to 20% by weight in water, preferably about 15% to 19%, more preferably about 16% to 18%. For example, the weight percent of salt in the Example 1 final diluted product 103 is about 17%.









TABLE 3







Final Diluted Product according to Example 1












Grams
Pounds




per 5-
per 5-




gallon
gallon



Total
bucket
bucket



grams/
added to 25
added to 25


Ingredient
Gallon
Gallons
Gallons













MgCl2 Anhydrous prior to
250.255
6256.36
13.7930


addition of water


MgCl2•6H2O
437.22
10930.58
24.0979


Thickening agent 1 -
14.67
366.85
0.8088


Polysaccharide gum


Thickening agent 2 -
9.33
233.19
0.5141


Chemically


substituted cellulose


Triethanolamine (C6H15NO3)
9.10
227.50
0.5016


Colorant - Iron Oxide
4.55
113.75
0.2508


Dye
4.55
113.75
0.2508


Corrosion inhibitor
9.10
227.50
0.5016


SDS Surfactant
0.555
13.88
0.0306


Magnesium Hydroxide
5.0051
125.13
0.2759


TiO2
4.5501
113.75
0.2508


Mineral Oil
4.401
110.11
0.2428


Water
9.10
227.50
0.5016


Total Weight of Final Diluted
4127.69


Product


Density of Final
1.089


Diluted Product









The density of the Example 1 final diluted product 103 at various temperatures is given in Table 4.









TABLE 4







Density of the final diluted product 103 at various temperatures










Temperature (° F.)
Density (g/cm3)







50
1.093



70
1.089



90
1.086










The viscosity over time of the Example 1 final diluted product 103 after blending with 40° F. water is given in Table 5. The results are also shown in FIG. 4A. The viscosity was measured using Brookfield rotational viscometer at 60 rpm. Spindle 2 was used for viscosity measurements between 1 and 500 centipoise and spindle 4 was used for viscosity measurements greater than 500 centipoise per USFS standards.









TABLE 5







Viscosity over time of the final diluted product


103 after blending with 40° F. water











Viscosity
Viscosity
Time
Viscosity
Temperature


Low
High
(minutes)
Avg
(° F.)














434.4
434.9
10
434.7
77.9


401.9
402.4
30
402.2
78.8


395.9
396.4
60
396.2
77.1


390.9
391.4
150
391.2
75.5


422.4
422.9
1440
422.7
71.7


420.4
420.9
5760
420.7
69.3









The viscosity over time of the Example 1 final diluted product 103 after blending with 70° F. water is given in Table 6. After blending, the mixture was allowed to cool naturally. The results are also shown in FIG. 4B.









TABLE 6







Viscosity over time of the final diluted product


103 after blending with 70° F. water











Viscosity
Viscosity
Time
Viscosity
Temperature


Low
High
(minutes)
Avg
(° F.)














238.9
238.9
10
238.9
103.8


270.9
270.9
30
270.9
97.5


300.9
301.4
60
301.2
93.4


351.4
351.9
150
351.7
81.5


411.9
412.4
1440
412.2
71.2


435.9
436.9
5760
436.4
68.8









The viscosity over time of the Example 1 final diluted product 103 after blending with 100° F. water is given in Table 7. The results are also shown in FIG. 4C.









TABLE 7







Viscosity over time of the final diluted product


103 after blending with 100° F. water











Viscosity
Viscosity
Time
Viscosity
Temperature


Low
High
(minutes)
Avg
(° F.)














164
164.5
10
164.3
126.4


207.5
208
30
207.8
112.1


249.4
249.9
60
249.7
102.1


319.9
320.4
150
320.2
85.3


434.9
434.9
1620
434.9
70.2


425.9
426.4
5760
426.2
69.9









The viscosity over time of the Example 1 final diluted product 103 after blending with 70° F. water is given in Table 8. After blending, the mixture was cooled in an ice bath to 70° F. and maintained at 70° F. The results are also shown in FIG. 4D.









TABLE 8







Viscosity over time of the final diluted product


103 after blending with 40° F. water











Viscosity
Viscosity
Time
Viscosity
Temperature


Low
High
(minutes)
Avg
(° F.)














494.4
494.9
10
494.7
69.8


466.9
474.9
30
470.9
70.2


471.9
472.4
45
472.2
70.4


463.4
463.9
60
463.7
70.2


432.4
432.9
150
432.7
70.5


438.4
438.5
1620
438.5
70.1


411.4
411.9
5760
411.7
69.8









The viscosity at 1 hour and 24 hours after mixing a 125% concentration of Example 1 final diluted product 103 with 70° F. water is given in Table 9. To prepare the 125% concentration above the target concentration of the Example 1 final diluted product 103, about 993.5 grams of the dry concentrate were mixed in 1 gallon of water to obtain a concentration 25% above the target concentration.









TABLE 9







Viscosity of 125% final diluted product 103











Viscosity
Viscosity
Time
Viscosity Avg
Temperature


Low
High
(Hours)
(cP)
(° F.)














1250
1260
1
1255
69


1160
1170
24
1165
70.4









The viscosity at 1 hour and 24 hours after mixing a 150% concentration of Example 1 final diluted product 103 with 70° F. water is given in Table 10. To prepare the 150% concentration above the target concentration of the Example 1 final diluted product 103, about 1258.1 grams of the dry concentrate were mixed in 1 gallon of water to obtain a concentration 50% above the target concentration.









TABLE 10







Viscosity of 150% final diluted product 103











Viscosity
Viscosity
Time
Viscosity Avg
Temperature


Low
High
(Hours)
(cP)
(° F.)














2260
2270
1
2265
70.4


2210
2220
24
2215
70.3









The viscosity at 1 hour and 24 hours after mixing a 75% concentration of Example 1 final diluted product 103 with 70° F. water is given in Table 11. To prepare the 75% concentration below the target concentration of the Example 1 final diluted product 103, about 539.3 grams of the dry concentrate were mixed in 1 gallon of water to obtain a concentration of 25% below the target concentration.









TABLE 11







Viscosity of 75% final diluted product 103











Viscosity
Viscosity
Time
Viscosity Avg
Temperature


Low
High
(Hours)
(cP)
(° F.)














167.5
168.0
1.0
167.8
70.0


154.0
154.5
24.0
154.3
70.1









The forest fire retardant composition of Example 1 is a thixotropic mixture and has a time-dependent shear thinning property. The viscosity after the forest fire retardant composition of Example 1 was measured after the mixture was allowed to stand for more than a few hours. The mixtures were stirred with an overhead stirrer for 3 minutes adjusting the temperature of the liquid to 70° F. or as close to that temperature as possible, and then the mixture was allowed to stand for 5 minutes. The viscometer spindle was lowered into the mixture and the spindle was started (Spindle 2, 60 RPM). Viscosity measurements (and temperature measurements) were taken at 1 minute, 2 minutes, and 3 minutes after the spindle was started. The measurement that was taken at 1 minute was reported as the viscosity. Table 12 shows mixed retardant viscosity values, at a temperature of 70° F., versus time after mixing. The results are also shown in FIG. 5. The solid mixture was added to tap water at 58.8° F. over a period of about 1 minute while cooling in an ice bath. The maximum temperature was 95.2° F. The mixture was stirred for a total of 1 hour.









TABLE 12







Viscosity of final diluted product 103 versus time after mixing









Time
Viscosity
Temperature


(min)
(cP)
(° F.)












12
349.9
70.0


31
390.4
70.0


46
402.9
70.0


60
413.4
69.9


120
440.4
69.9


180
432.4
69.9


1440
431.4
70.0


2880
432.9
70.0









Table 13 shows the viscosity of forest fire retardant composition of Example 1 versus mixing with 40° F. water. The mixture was stirred for a total of 1 hour. The initial water temperature was 40° F. and the maximum water temperature was 78.3° F.









TABLE 13







Viscosity of final diluted product 103 versus


time after mixing with 40° F. water









Time
Viscosity
Temperature


(min)
(cP)
(° F.)












10
290.9
77.5


30
374.9
76.1


60
414.4
74.5


180
439.9
73.3


1440
461.9
69.6









Table 14 shows the viscosity of forest fire retardant composition of Example 1 versus mixing with 70° F. water. The mixture was stirred for a total of 1 hour. The initial water temperature was 70° F. and the maximum water temperature was 107.7° F.









TABLE 14







Viscosity of final diluted product 103 versus


time after mixing with 70° F. water









Time
Viscosity
Temperature


(min)
(cP)
(° F.)












10
308.4
103.3


30
407.4
95.8


60
428.4
88.3


120
456.4
85.0c


180
438.4
79.2


1440
460.4
70.2









Table 15 shows the viscosity of forest fire retardant composition of Example 1 versus mixing with 99° F. water. The mixture was stirred for a total of 1 hour. The initial water temperature was 99° F. and the maximum water temperature was 134.6° F.









TABLE 15







Viscosity of final diluted product 103 versus


time after mixing with 99° F. water









Time
Viscosity
Temperature


(min)
(cP)
(° F.)












10
345.9
122.8


30
394.4
108.0


60
412.9
94.2


180
442.9
82.1


1440
461.4
69.8









Table 16 shows mixed retardant viscosity of Example 1 at 70° F., 1 hour and 24 hours following mixing versus mix ratio. The results are shown for 0.25, 0.5, 0.75 percent below the target mix ratio and 0.25, 0.5, and 0.75 percent above the target mix ratio of the forest fire retardant composition of Example 1. The starting water temperature for mixing was 70° F. The mixtures were stirred at ambient temperature for 20 minutes then cooled in a cold water bath until the temperature of the mixture was about 70° F. The mixtures were then stirred for an hour.









TABLE 16







Viscosity versus mix ratio of the final diluted product 103













Time
Viscosity
Temperature



Concentration
(Hours)
(cP)
(° F.)
















normal
1
448.9
70.2



normal
24
458.4
70.0



0.50% below normal
1
463.9
70.3



0.50% below normal
24
455.9
69.7



0.75% below normal
1
458.9
69.9



0.75% below normal
24
450.4
69.7



0.50% above normal
1
453.9
70.2



0.50% above normal
24
455.9
70.5



0.75% above normal
1
448.4
70.1



0.75% above normal
24
457.4
69.7










Example 2

In Example 2, a dry concentrate 101 is prepared containing the amounts of ingredients listed in Table 17 below. The values in Table 17 can be varied by ±0.01%, or ±0.05%, or ±0.1%, or ±0.5%, or ±1.0%, or ±1.5%, or ±2%, or 2.5%, or 3.0%, or 3.5%, or 4.0%, or ±4.5%, or 5.0%.









TABLE 17







Dry Concentrate according to Example 2









Weight Percent of Each


Ingredient
Ingredient in Dry Concentrate





MgO
32.10% 


Mg(OH)2
57.10% 


Thickening agent 1 - Polysaccharide
2.10%


gum


Thickening agent 2 - Chemically
1.40%


substituted cellulose


Triethanolamine (C6H15NO3)
1.30%


Colorant - Iron Oxide
0.66%


Dye
0.66%


Corrosion inhibitor
1.30%


SDS Surfactant
0.08%


TiO2
0.66%


Mineral Oil
1.32%


Water
1.32%


Total Weight of Dry Concentrate
 100%









In Example 2, a final diluted product 103 is prepared by mixing the dry concentrate 101 with water in a weight ratio concentrate:water of about 1:4. In Example 2, approximately 1 pounds of the dry concentrate 101 is mixed with 4 pounds of water to prepare the final diluted product 103. Alternatively, the final diluted product 202 can be prepared by mixing the liquid concentrate 201 with water in a volume ratio concentrate:water of about 1:1 to about 1:5.


In Example 2, the amounts of the ingredients in the final diluted product 103 are listed in Table 18 below. The values in Table 18 can be varied by ±0.01%, or ±0.05%, or ±0.1%, or ±0.5%, or ±1.0%, or ±1.5%, or ±2%, or 2.5%, or 3.0%, or 3.5%, or 4.0%, or ±4.5%, or 5.0%.









TABLE 18







Final Product according to Example 2









Weight Percent of Each



Ingredient in Final Diluted


Ingredient
Product





MgO prior to addition of water
6.42%


Mg(OH)2
11.42% 


Thickening agent 1 - Polysaccharide
0.42%


gum


Thickening agent 2 - Chemically
0.28%


substituted cellulose


Triethanolamine (C6H15NO3)
0.26%


Colorant - Iron Oxide
0.13%


Dye
0.13%


Corrosion inhibitor
0.26%


SDS Surfactant
0.02%


TiO2
0.13%


Mineral Oil
0.26%


Water
80.26% 


Total Weight of Final Product
 100%









In the final diluted product 103 of Example 2, the weight percent of metal oxide prior to addition of water is about 0.5% to about 70%, preferably about 1% to about 40%, more preferably about 2% to about 20%. For example, the weight percent of metal oxide in final diluted product 103 of Example 2 is about 3% to about 15%, and specifically about 6%±0.5%.


In the final diluted product 103 of Example 2, the weight percent of metal hydroxide is about 1% to about 50%, preferably about 2% to about 40%, more preferably about 3% to about 30%. For example, the weight percent of metal hydroxide in final diluted product 103 of Example 2 is about 5% to about 20%, and specifically about 11%±1.0%.


Methods of Use


The forest fire retardant composition of Example 1 may be used to suppress, retard, or contain a forest fire. The forest fire retardant composition of Example 1 functions as a superior forest fire retardant and suppressant compared to the PHOS-CHEK® brand long-term fire retardants (LTR) which have previously been qualified for use by the USFS. A list of the PHOS-CHEK® USFS Qualified long-term fire retardants is given in Table 19.









TABLE 19







List of PHOS-CHEK ® USFS Qualified LTR Products








USFS Qualified LTR



Products List
Description





PHOS-CHEK ® MVP-Fx
Dry Concentrate, Gum-Thickened, High and Medium



Viscosity, High Visibility, Fugitive Color


PHOS-CHEK ® MVP-F
Dry Concentrate, Gum-Thickened, High and Medium



Viscosity, Standard Fugitive Color


PHOS-CHEK ® P100-F
Dry Concentrate, Gum-Thickened, High and Medium Viscosity


PHOS-CHEK ® 259-Fx
Dry Concentrate, Gum-thickened, Low Viscosity, High



Visibility, Fixed Tank Helicopter Powder Concentrate


PHOS-CHEK ® 259-F
Dry Concentrate, Gum-thickened, Low Viscosity


PHOS-CHEK ® LC-95A-R
Wet Concentrate, Gum-Thickened, Low Viscosity


PHOS-CHEK ® LC-95A-Fx
Wet Concentrate, Gum-Thickened, Low Viscosity, High



Visibility, Fugitive Color


PHOS-CHEK ® LC-95A-F
Wet Concentrate, Gum-Thickened, Low Viscosity


PHOS-CHEK ® LC-95-W
Wet Concentrate, Gum-Thickened, Low Viscosity, Red Iron



Oxide, medium Viscosity Liquid Concentrate









The forest fire retardant composition of Example 1 pulls energy out of forest fires at it converts the hydrates of the hydrated salt to free water. When the dry concentrate 101 is mixed with water, the salt becomes hydrated, where the salt contains magnesium the most common hydrate is a hexahydrate. For example, when the final diluted composition 103 includes magnesium chloride hexahydrate, the final diluted composition 103 contains approximately 10% MgCl2 concentration by weight. The weight of the final diluted composition 103 increases along with its efficiency. When the product of Example 1 is wet it functions as a fire suppressant. Once the final diluted composition 103 has dried after application, the magnesium chloride hexahydrate of the composition effectively retards continued combustion. Magnesium hydroxide interferes with the burning process through the release of inter gases (such as water vapor). In this process a protective char layer is formed or the amount of energy available for the spread of fire is reduced through energy absorption. Magnesium chloride hexahydrate is deliquescent, absorbing sufficient moisture from the air to form an aqueous solution. The critical relative humidity of magnesium chloride hexahydrate is 32%, independent of temperature. The critical relative humidity of Example 1 is approximately 33%. Example 1 is also self-rehydrating. The larger the difference between the relative humidity of the atmosphere and the critical relative humidity, the faster the water is rehydrated. Generally, the relative humidity on a wildland fire is lowest during the day and recovers during the night. In moderate burning condition, the nighttime relative humidity recovery will rise to 50%-70%. This is an environmental condition that exists almost every night on wildfires, thereby allowing magnesium chloride hexahydrate to absorb moisture from the air and pull it in to the fuel bed leading to its improved forest fire retardant capabilities. The forest fire retardant of Example 1 will start to recover water at a lower relative humidity and recover for a longer time every burning period. Calcium chloride has a similar retarding efficiency to magnesium chloride. Further, calcium chloride saturates in solution at about 40% salt concentration resulting in a higher salt concentration in solution, whereas magnesium chloride saturates at 33% salt concentration. Thus, calcium chloride has potential use as a long-term liquid fire retardant alone or in combination with magnesium chloride. Aluminum hydroxide functions in a similar mechanism to magnesium hydroxide and has potential use as a long-term fire retardant alone or in combination with magnesium hydroxide.


By contrast, the PHOS-CHEK® LTR products of Table 19 need to dry and require heat to produce a carbon coating that buffers the flammable vegetation from the fire's heat and slows the fire spread. Diammonium phosphate (DAP), an ingredient in PHOS-CHEK® LTR products, is semi-hygroscopic and does not absorb sufficient moisture from the air to form an aqueous solution. The critical relative humidity of DAP, a component in PHOS-CHEK® LTR products is 82%, an environmental situation that almost never occurs on a wildland fire, rendering its ability to pull moisture from the air meaningless. DAP is a man-made chemical produced in a factory.


The magnesium chloride hexahydrate in the composition of Example 1 contains six water molecules. Under heat, the six water molecules thermally dehydrate in pairs at progressively higher temperatures: 6 at 243° F., 4 at 358° F. and 2 at 572° F. The first water molecules are released at 243° F., which is above the temperature produced by solar heating, and below the ignition temperature of forest fuels. By contrast, the fire retardant ingredients in PHOS-CHEK® LTR products of Table 19 contain no water molecules. When cellulose fuels are burned in the presence of PHOS-CHEK® LTR products, hydrogen and oxygen both from the cellulose combine to form water. This requires that the fuel must already be burning for this water to form, thereby limiting the effectiveness of PHOS-CHEK® LTR products as a forest fire retardant. This progressive release of water molecules consumes heat, resulting in an endothermic compound that absorbs heat from the flame front. At over 1317° F., the MgCl2 compound dissociates into magnesium and chloride ions.


The forest fire retardant composition of Example 1 relies on a vapor phase radical quenching process. The vapor phase inhibition aims to interrupt the radical gas phase of a fire. By disrupting the phase in which flammable gas is released the system is cooled and the supply of flammable gas is reduced or suppressed. Under heat attack from a wildland fire, but just below the temperature that forest fuels begin to actively burn (523° F.), the magnesium chloride compound in the composition of Example 1 dissociates, and the chloride ion separates from the magnesium to produce Mg+++2Cl. The chloride atoms are released into the gas phase before the material reaches its ignition temperature. The chloride ion is very aggressive and will displace other, less aggressive ions normally active in the rapid chain reaction that occurs just prior to active fire. The chloride ions quench the chemical reaction occurring within the flame and either extinguish the fire or slow the spread of the fire such that there is increased escape time or increased time to attempt other means of fire extinction. The chain reaction interference results in a diverted outcome of the combustion chain reaction and preventing the start of a fire. The chloride ion and six additional water molecules are present in the combustion atmosphere and are effective in retarding fire in the general fire area, not just on the coated fuels. In the PHOS-CHEK® LTR products, by contrast, the fire retardation occurs when the LTR produces a protective and insulating layer of carbon. The vegetation to be protected must be coated. Thus, effectiveness of PHOS-CHEK® LTR products is limited only to the fuels that are coated with the product.


The forest fire retardant composition of Example 2 pulls energy out of forest fires as it releases inter gases (such as water vapor). In a forest fire, the magnesium hydroxide in the forest fire retardant composition of Example 2 undergoes endothermic decomposition, which lessens thermal decomposition of the forest's combustible biomass that acts as fuel. The product of endothermic decomposition of magnesium hydroxide is water vapor and magnesium oxide. The water vapor dilutes the concentration of flammable gases, such as oxygen. In this process a protective char layer is formed and the amount of energy available for the spread of fire is reduced.


Direct Attack


In a direct attack, the final diluted composition 103 is applied on the fire line. The final diluted composition 103 is a thickened water suppressant which contains water to cool and suppress the fire. For example, when the final diluted composition 103 includes magnesium chloride hexahydrate, the water molecules of the magnesium chloride hexahydrate thermally dehydrate at 243° F., 358° F., and 572° F. in an endothermic reaction, absorbing heat from the fire as the reaction progresses and lowering the temperature of the flame front. At over 1317° F., the MgCl2 compound dissociates into magnesium and chloride ions. The chloride ions work to displace the rapid oxidation reactions that occur during the fire. Fire is a rapid oxidation chain reaction. Chloride is an aggressive ion that will flood the combustion chain reaction process of the fire to slow the fire line.


Indirect Attack


In an indirect attack, the final diluted composition 103 is applied in fire containment lines at a significant distance from the fire line. The indirect fire lines are built, and the fire is allowed to burn into them. The long-term fire retardant must be effective even after the water in the composition has evaporated. The final diluted composition 103 is hygroscopic and self-rehydrating. In an indirect attack, the final diluted composition 103 is applied to vegetation. As the water in the final diluted composition 103 evaporates, the salt concentration increases until it reaches its saturation level. For example, when the final diluted composition 103 includes magnesium chloride hexahydrate, the saturation level is about 30% to 35% salt concentration, preferably about 31% to 34% salt concentration, and more preferably about 33% salt concentration. At the saturation level, hydrated MgCl2—(H2O)6 forms which can act as a long-term fire retardant when exposed to the heat of the fire. When the flame front reaches vegetation treated with the final diluted composition 103, the hydrated water molecules cleave-off in pairs at 243° F., 358° F. and 572° F. in an endothermic reaction, absorbing heat from the fire as the reaction progresses and lowering the temperature of the flame front. The chloride ions will dissociate at 1317° F. and slow the combustion chain reaction process of the fire.


Field Handling and Measurement


The forest fire retardant composition of Example 1 can be delivered to the field either as the dry concentrate 101, liquid concentrate 102, or as the final diluted composition 103. The final diluted composition 103 can be tested prior to application in the field to confirm proper salt content. For example, when the final diluted composition 103 includes magnesium chloride hexahydrate, the magnesium chloride yields between 8.0% and 12% salt by weight, and preferably about 10.0% salt by weight in the final diluted composition 103. A refractometer can be used to test the salt content. Preferably the refractometer reading is about 1.1 to about 1.5, more preferably the refractometer reading is about 1.2 to about 1.4. For example, the refractometer reading is about 1.35 to about 1.37. Density can also be used to determine the salt content. A density of 1.089±0.025 g/mL indicates proper salt content. Preferably the density is about 0.8 g/mL to 1.4 g/mL, more preferably the density is about 0.9 g/mL to about 1.2 g/mL. For example, the density is about 1.0 g/mL to about 1.1 g/mL.


Aerial Application


The final diluted composition 103 may be deposited via aerial application from an airplane or helicopter. The airplane may be a fixed-wing multi-engine aircraft, a fixed-wing single engine airtanker (SEAT), a large airtanker (LAT), a very large airtanker (VLAT), or an unmanned aircraft system (UAS). The helicopter may be a fixed-tank helicopter (HF) or it may be a helicopter bucket (HB). The final diluted composition 103 may be deposited in an indirect attack to build a retardant line before a forest fire or directly to a forest fire via aerial application. In particular, a final diluted composition 103 containing calcium chloride may be used in fixed-tank helicopters, given calcium chloride's higher saturation percentage.


Ground Application


The final diluted composition 103 may be deposited via ground application from a truck or ground engine (G). The final diluted composition 103 may be deposited in an indirect attack to build a retardant line before a forest fire or it may be deposited directly to a forest fire via ground application.


Clean Up Procedure


The dry concentrate 101 can be cleaned by broom and/or vacuum. The dry concentrate 101 should be kept dry during cleaning to minimize color staining that may occur when the dye is hydrated. When the dry concentrate 101 is exposed to water, the product can be cleaned with the use of a granular chemical absorbent material, or if proper drainage is available, by rinsing surfaces clean with adequate amounts of water. Dye coloration may be removed from surfaces by treatment with liquid or dry detergent. The final diluted composition 103 can be cleaned with soap or liquid detergent and water. The color of the dye can be neutralized by sodium hypochlorite or washed with liquid detergent.


Corrosion Testing


The properties and corrosion inhibition of iron, brass, and aluminum were investigated in a mixture of magnesium chloride (5.6%), Cellosize HEC 4400H Europe (0.58%), triethanolamine (˜0.25%) and Wintrol B 40 Na (˜150 ppm) in deionized water. This gave a formulation with a viscosity of about 120 cP and was formulated in about 20 minutes. Iron, brass, and aluminum all showed minimal corrosion and the results are shown in Table 20.









TABLE 20







Corrosion of metals in 5.6% MgC12 and


Cellosize HEC 4400H Europe (0.58%)














Wintrol B





TEA
40Na
Corrosion



Metal
(%)
(ppm)
(mls/year)
















Iron
0.25
150
0.04



Iron
0.125
150
0.03



Iron
0.063
150
0.06



Iron
0.25
150
1.70



(half immersed)



Iron 125° F.
0.25
150
0.50



Brass
0.25
150
0.00



(half immersed)



Brass 125° F.
0.25
150
0.13



Aluminum
0.25
150
0.01



(half immersed)



Aluminum 125° F.
0.25
150
0.00











FIGS. 2A-2C show the general and uniform corrosion of brass, iron and aluminum under USFS Standard Test procedure with the forest fire retardant composition of Example 1. The commercially available magnesium coupons 1×4 inch were cut into 1×1 inch sections with a hammer and chisel. The iron, brass, and aluminum coupons were secured in a vice and cut using a reciprocating saw. The coupons were prepped according to the USFS Standard Test procedure, by sanding the flat surfaces on fine sandpaper, washing with deionized water, rubbing dry with a paper towel and drying on a hot plate covered with a paper towel. The coupons were cooled and weighed before using. Corrosion tests are performed using a metal test specimen with the dimensions of approximately 1 in×4 in×⅛ in (2.5 cm×10.2 cm×0.3 cm), made of 2024-T3 aluminum, iron, mild steel, yellow brass, or Az31B magnesium for use in uniform corrosion testing. The coupons were either fully immersed or half-immersed in full strength retardant concentration of Example 1 for 90 days. The samples are prepared and placed in test jars according to the preferred product formulation under the USFS Standard Test procedure. The tests were performed in 50 ml plastic tubes having a screw lid. The tubes were filled to 40 milliliters with the test solution and the magnesium coupons were inserted into the tubes and capped lightly to allow any gas formation to escape. The tests were conducted at room temperature and at 125° F. At the conclusion of the experiment the magnesium coupons were washed with water and scraped with a spatula to remove the corrosion products. The coupons were then scrubbed with a medium Scotch-Brite pad, washed with water and deionized water and dried on a hot plate (setting 3-4) covered with a paper towel. The iron coupons were washed with water, scraped with a spatula to remove excess corrosion products, washed with water again and dried on a hot plate (setting 3-4). The coupons were then cooled and bathed for 5 minutes in a solution of SnCl2-2H2O (50 g/L) and SbCl3 (20 g/L) in concentrated hydrochloric acid. The coupons were washed with water, scrubbed with a fine Scotch-Brite pad, washed with tap water, then deionized water and dried on a hot plate (setting 3-4) covered with a paper towel. The coupons were allowed to cool then weighed to determine weight loss. As shown in FIGS. 2A-2C, the brass, iron, and aluminum coupons all showed corrosion rates of less than 5 mL/year, which is within the USFS approval threshold for general metallic corrosion rates. FIG. 2D shows the general and uniform corrosion of iron coupons under USFS Standard Test procedure with the comparative PHOS-CHEK® fire retardant.



FIG. 2E shows the results of the intergranular corrosion of the forest fire retardant composition of Example 1. Example 1 was also tested for intergranular corrosion using optical microscopy by the NSL Metallurgical Analytical Services Inc. Metallurgical preparations of Example 1 were made in accordance with the Active Standard entitled “Standard Guide for Preparation of Metallographic Specimens” (ASTM E 3), hereby incorporated by reference in its entirety. The samples were cut with a water-cooled abrasive blade, rinsed with ethanol and acetone, pressure mounted with thermosetting epoxy resin, ground with silicon carbide abrasives, polished with diamond suspensions, and fine polished with colloidal silica. The microstructure of the samples was not altered during the metallurgic preparations. The evaluation was performed using optical microscopes and imaging system, per the Active Standard entitled “Standard Guide for Reflected-Light Photomicrography (ASTM E 883), hereby incorporated by reference in its entirety. As seen in FIG. 2E, no intergranular corrosion is observed in the samples exposed to the forest fire retardant composition of Example 1.


Toxicity Testing


The forest fire retardant composition of Example 1 was also tested for toxicity. Toxicity data shows a significant improvement of the final diluted composition 103 of Example 1 over various PHOS-CHEK® long-term retardant products. Example 1 contains no biologically active ingredients and is not a fertilizer, so it does not contribute to eutrophication of waters. The chemicals contained in Example 1 are non-carcinogenic and non-hazardous.


Rainbow Trout (Oncorhynchus mykiss), 53 days-post-hatch were exposed to the forest fire retardant composition of Example 1 for 96 (±2) hours following the procedures outlined in USDA Forest Service Standard Test Procedure STP-1.5—Fish Toxicity (available at http://www.fs.fed.us/rm/fire/wfcs/tests/stp01_5.htm) and the U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances. Fish Acute Toxicity Test, Freshwater and Marine; 850.1075, both incorporated herein by reference in its entirety. The fish were maintained in aerated aquaria containing EPA synthetic soft water at 12° C. for nine days prior to their use in this test. The LC50 Acute Fish Toxicity Test rates the acute chemical toxicity to fish wherein the numeric value indicates the lethal concentration point at which the chemical results in 50% mortality of fingerling Rainbow Trout. The fish were exposed to 160, 800, 4,000, 10,000, 20,000, and 100,000 mg/L dilutions in 9.5 L of test solution in a 10-L HDPE container of Example 1 for 96 (±2) hours, under static conditions at 12° C. to determine the LC50. Each treatment was performed in replica. The LC50 values for the PHOS-CHEK® LTR products were derived from the US Forest Service's WFCS Fish Toxicity Test Results; Revised 2017-0906, incorporated herein by reference in its entirety. The LC50 values for the final diluted composition 103 of Example 1 were derived from Pacific EcoRisk's laboratory test replicating the USFS 96-hour acute aquatic toxicity test (STP-1.5) on the final diluted composition 103. The LC50 value for the dry concentrate 101 of Example 1 was derived from the USFS 96-hour acute aquatic toxicity test (STP-1.5). The results are shown below in Table 21.









TABLE 21







LC50 Acute Fish Toxicity Test









Long Term
LTR Specific
LC50


Retardant Test
Product
Test Results


Products
Number
(mg/L)





Final diluted composition
FR-100
37,600*  


103 of Example 1


Dry concentrate 101 of Example 1
FR-100
1,762  


PHOS-CHEK ®
MVP-Fx
2,024  


PHOS-CHEK ®
MVP-F
2,454  


PHOS-CHEK ®
259-Fx
860


PHOS-CHEK ®
LC95A-R
386


PHOS-CHEK ®
LC95A-Fx
399


PHOS-CHEK ®
LC95A-F
225


PHOS-CHEK ®
LC95W
465





*95% CI [31,300-45,200 mg/L],






Example 1 was also found to have no biocide effects for Aspergillus niger, Candida olbicons, Enterobocter oerogenes, Escherichia coli, Pseudomonns neruginosn, or Staphylococcus nurcus.


Combustion Retarding Effectiveness Testing


The forest fire retardant composition of Example 1 was further tested in a combustion retarding effectiveness test according to the USDA Forest Service Standard Test Procedure. Example 1 underwent burn table testing at both 1 and 2 gallons per hundred square feet (GPC) forest fire retardant coverage levels over Ponderosa pine needles and Aspen excelsior. The results show that in all burn test iterations, Example 1 either replicated the effectiveness of the U.S. Forest Service's control test fire retardant (a technical grade diammonium phosphate (21-53-0 DAP)), or exhibited fire retarding effectiveness that exceeded the control test fire retardant as shown in FIGS. 3A and 3B. Example 1 was also compared to existing PHOS-CHEK® products in a burn test. With Example 1, the burn table was consumed after 20 minutes. However, with PHOS-CHEK® LTR products the burn table was consumed in 15 minutes.


CONCLUSION

All parameters, dimensions, materials, and configurations described herein are meant to be exemplary and the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. It is to be understood that the foregoing embodiments are presented primarily by way of example and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein.


In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of respective elements of the exemplary implementations without departing from the scope of the present disclosure. The use of a numerical range does not preclude equivalents that fall outside the range that fulfill the same function, in the same way, to produce the same result.


Also, various inventive concepts may be embodied as one or more methods, of which at least one example has been provided. The acts performed as part of the method may in some instances be ordered in different ways. Accordingly, in some inventive implementations, respective acts of a given method may be performed in an order different than specifically illustrated, which may include performing some acts simultaneously (even if such acts are shown as sequential acts in illustrative embodiments).


All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety.


All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.


As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of” “only one of” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.


As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.


In the claims, as well as in the specification, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.


In the claims, as well as in the specification, any ingredient listed in an open-ended list of ingredients shall not be negated or avoided by the addition of water or other solvent or reactant that might cause a chemical change to such ingredient. Thus, for example, even though it is known that an anhydrous salt becomes hydrated in the presence of water, the inventors hereby act as their own lexicographers, so that any composition “including” or “comprising” an “anhydrous” salt is intended to cover both a dry composition substantially free of water in which the salt has substantially no water of hydration, as well as any wet composition formed by the addition of water which causes the anhydrous salt to become hydrated (or to undergo some other change). Both before and after the addition of water or other ingredient, the composition shall be regarded, for purposes of the specification and claims, as comprising an “anhydrous” salt irrespective of any hydration, solvation, or other change caused by the addition of water or other ingredient. The same applies for any ingredient recited in an open-ended list which might be chemically changed by the addition of water or other ingredient to the open-ended list.

Claims
  • 1. A forest fire retardant composition, comprising: a magnesium chloride salt comprising MgCl2 anhydrous and MgCl2(H2O)6, present in the composition in an amount having a weight ratio (MgCl2 anhydrous:MgCl2(H2O)6) of about 20:80 to about 50:50;a corrosion inhibitor for at least one of iron, brass, or aluminum, present in the composition in an amount having a weight percent of about 0.25% to about 5.0% relative to the weight of the magnesium chloride salt in the composition;a thickening agent, present in the composition in an amount having a weight percent of about 0.1% to about 4.5% relative to the weight of the magnesium chloride salt in the composition;a buffering agent, present in the composition in an amount having a weight percent of about 0.6% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;a colorant, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the composition;a dye, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the composition; anda surfactant, present in the composition in an amount having a weight percent of about 0.0075% to about 1.25% relative to the weight of the magnesium chloride salt in the composition.
  • 2. The composition of claim 1, wherein the weight ratio (MgCl2 anhydrous:MgCl2(H2O)6) is about 30:70 to about 40:60.
  • 3. The composition of claim 1, further comprising a pigment, present in the composition in an amount having a weight percent of about 0.025% to about 1.75% relative to the weight of the magnesium chloride salt in the composition; and wherein: the colorant comprises iron oxide; andthe dye comprises a fugitive dye.
  • 4. The composition of claim 3, wherein: the thickening agent comprises at least two thickening agents comprising a polysaccharide gum and a chemically substituted cellulose;the buffering agent comprises at least two buffering agents comprising triethanolamine and magnesium hydroxide; andthe surfactant comprises sodium lauryl sulfate.
  • 5. The composition of claim 4, wherein: the corrosion inhibitor comprises one or more azoles; andthe pigment comprises titanium dioxide.
  • 6. The composition of claim 1, wherein: the composition is a dry concentrate having no more than about 3% by weight of water relative to the total weight of the dry concentrate; andthe magnesium chloride salt is present in the dry concentrate in an amount having a weight percent of about 75% to about 96% relative to the total weight of the dry concentrate.
  • 7. A kit comprising: a sealed container which contains the composition of claim 6 substantially in the absence of external moisture; andinstructions for using the composition to make a final diluted product useful to suppress, retard, or contain forest fires.
  • 8. The composition of claim 1, further comprising water; wherein: the composition is a final diluted product intended for use to suppress, retard, or contain forest fires;the MgCl2 anhydrous is hydrated by the water in the final diluted product; andthe magnesium chloride salt is present in the final diluted product in an amount of about 300 grams to about 900 grams of magnesium chloride salt per gallon of the final diluted product.
  • 9. The composition of claim 1, further comprising a mineral oil, present in the composition in an amount having a weight percent of about 0.25% to about 2.5% relative to the weight of the magnesium chloride salt in the composition.
  • 10. The composition of claim 9, wherein: the corrosion inhibitor is present in the composition in an amount having a weight percent of about 0.75% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;the thickening agent comprises at least two thickening agents comprising: a polysaccharide gum, present in the composition in an amount having a weight percent of about 0.6% to about 2.4% relative to the weight of the magnesium chloride salt in the composition; anda chemically substituted cellulose, present in the composition in an amount having a weight percent of about 0.5% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;the colorant is present in the composition in an amount having a weight percent of about 0.1% to about 1.0% relative to the weight of the magnesium chloride salt in the composition;the dye is present in the composition in an amount having a weight percent of about 0.1% to about 1.0% relative to the weight of the magnesium chloride salt in the composition;the surfactant is present in the composition in an amount having a weight percent of about 0.05% to about 0.5% relative to the weight of the magnesium chloride salt in the composition; andthe mineral oil is present in the composition in a weight percent of about 0.50% to about 2.25% relative to the weight of the magnesium chloride salt in the composition.
  • 11. A forest fire retardant composition, comprising: a magnesium chloride salt comprising magnesium chloride anhydrous and magnesium chloride hydrate;a corrosion inhibitor comprising one or more azoles, present in the composition in an amount having a weight percent of about 0.25% to about 5.0% relative to the weight of the magnesium chloride salt in the composition;at least two thickening agents comprising a polysaccharide gum and a chemically substituted cellulose, the polysaccharide gum being present in the composition in an amount having a weight percent of about 0.05% to about 3.75% relative to the weight of the magnesium chloride salt in the composition, and the chemically substituted cellulose being present in the composition in an amount having a weight percent of about 0.05% to about 2.8% relative to the weight of the magnesium chloride salt in the composition;a buffering agent, present in the composition in an amount having a weight percent of about 0.6% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;a colorant, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the composition;a dye, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the composition; anda surfactant, present in the composition in an amount having a weight percent of about 0.0075% to about 1.25% relative to the weight of the magnesium chloride salt in the composition.
  • 12. The composition of claim 11, wherein: the magnesium chloride salt comprises MgCl2 anhydrous and MgCl2(H2O)x; andx is at least one of 1, 2, 4, 6, 8, or 12.
  • 13. The composition of claim 12, wherein the MgCl2 anhydrous and MgCl2(H2O)6 are present in the composition in an amount having a weight ratio (MgCl2 anhydrous:MgCl2(H2O)6) of about 20:80 to about 50:50.
  • 14. The composition of claim 11, wherein: the buffering agent comprises at least two buffering agents comprising triethanolamine and magnesium hydroxide; andthe surfactant comprises sodium lauryl sulfate.
  • 15. The composition of claim 14, further comprising titanium dioxide, present in the composition in an amount having a weight percent of about 0.025% to about 1.75% relative to the weight of the magnesium chloride salt in the composition; and wherein: the colorant comprises iron oxide; andthe dye comprises a fugitive dye.
  • 16. The composition of claim 15, wherein: the composition is a dry concentrate having no more than about 3% by weight of water relative to the total weight of the dry concentrate; andthe magnesium chloride salt is present in the dry concentrate in an amount having a weight percent of about 75% to about 96% relative to the total weight of the dry concentrate.
  • 17. A kit comprising: a sealed container which contains the composition of claim 16 substantially in the absence of external moisture; andinstructions for using the composition to make a final diluted product useful to suppress, retard, or contain forest fires.
  • 18. The composition of claim 15, further comprising water; wherein: the composition is a final diluted product intended for use to suppress, retard, or contain forest fires;the MgCl2 anhydrous is hydrated by the water in the final diluted product; andthe magnesium chloride salt is present in the final diluted product in an amount of about 300 grams to about 900 grams of magnesium chloride salt per gallon of the final diluted product.
  • 19. The composition of claim 11, further comprising a mineral oil, present in the composition in an amount having a weight percent of about 0.25% to about 2.5% relative to the weight of the magnesium chloride salt in the composition.
  • 20. The composition of claim 19, wherein: the corrosion inhibitor is present in the composition in an amount having a weight percent of about 0.75% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;the thickening agent comprises at least two thickening agents comprising: a polysaccharide gum, present in the composition in an amount having a weight percent of about 0.6% to about 2.4% relative to the weight of the magnesium chloride salt in the composition; anda chemically substituted cellulose, present in the composition in an amount having a weight percent of about 0.5% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;the colorant is present in the composition in an amount having a weight percent of about 0.1% to about 1.0% relative to the weight of the magnesium chloride salt in the composition;the dye is present in the composition in an amount having a weight percent of about 0.1% to about 1.0% relative to the weight of the magnesium chloride salt in the composition;the surfactant is present in the composition in an amount having a weight percent of about 0.05% to about 0.5% relative to the weight of the magnesium chloride salt in the composition; and the mineral oil is present in the composition in a weight percent of about 0.50% to about 2.25% relative to the weight of the magnesium chloride salt in the composition.
  • 21. A forest fire retardant composition, comprising: a magnesium salt comprising a magnesium salt anhydrous and a magnesium salt hydrate;a corrosion inhibitor for at least one of iron, brass, or aluminum, present in the composition in an amount having a weight percent of about 0.25% to about 5.0% relative to the weight of the magnesium salt in the composition;a thickening agent, present in the composition in an amount having a weight percent of about 0.1% to about 4.5% relative to the weight of the magnesium salt in the composition;a buffering agent, present in the composition in an amount having a weight percent of about 0.6% to about 3.0% relative to the weight of the magnesium salt in the composition;a colorant comprising iron oxide, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the compositiona dye, present in the composition in an amount having a weight percent of 0.025% to about 2.0% relative to the weight of the magnesium salt in the composition; anda surfactant, present in the composition in an amount having a weight percent of about 0.0075% to about 1.25% relative to the weight of the magnesium salt in the composition;wherein: the composition is a dry concentrate having no more than about 3% by weight of water relative to the total weight of the dry concentrate; andthe magnesium salt is present in the dry concentrate in an amount having a weight percent of about 75% to about 96% relative to the total weight of the dry concentrate.
  • 22. The composition of claim 21, wherein: the magnesium salt comprises magnesium chloride;the magnesium salt anhydrous comprises MgCl2 anhydrous; andthe magnesium salt hydrate comprises MgCl2 hydrate.
  • 23. The composition of claim 22, wherein: the MgCl2 hydrate comprises MgCl2(H2O)x; andx is at least one of 1, 2, 4, 6, 8, or 12.
  • 24. The composition of claim 23, wherein: the MgCl2 hydrate comprises MgCl2(H2O)6; andthe MgCl2 anhydrous and MgCl2(H2O)6 are present in the composition in an amount having a weight ratio (MgCl2 anhydrous:MgCl2(H2O)6) of about 20:80 to about 50:50.
  • 25. The composition of claim 24, wherein: the thickening agent comprises at least two thickening agents comprising a polysaccharide gum and a chemically substituted cellulose;the buffering agent comprises at least two buffering agents comprising an organic amine and a strong base; andthe composition further comprises a mineral oil, present in the composition in an amount having a weight percent of about 0.25% to about 2.5% relative to the weight of the magnesium salt in the composition.
  • 26. The composition of claim 24, wherein: the corrosion inhibitor comprises one or more azoles and is present in the composition in an amount having a weight percent of about 0.9% to about 1.8% relative to the weight of the magnesium salt in the composition;the organic amine comprises triethanolamine; andthe strong base comprises magnesium hydroxide.
  • 27. A kit comprising: a sealed container which contains the composition of claim 21 substantially in the absence of external moisture; andinstructions for using the composition to make a final diluted product useful to suppress, retard, or contain forest fires.
  • 28. The composition of claim 25, wherein: the corrosion inhibitor is present in the composition in an amount having a weight percent of about 0.75% to about 3.0% relative to the weight of the magnesium salt in the composition;the polysaccharide gum is present in the composition in an amount having a weight percent of about 0.6% to about 2.4% relative to the weight of the magnesium salt in the composition; andthe chemically substituted cellulose is present in the composition in an amount having a weight percent of about 0.5% to about 3.0% relative to the weight of the magnesium salt in the composition;the colorant is present in the composition in an amount having a weight percent of about 0.1% to about 1.0% relative to the weight of the magnesium salt in the composition;the dye is present in the composition in an amount having a weight percent of about 0.1% to about 1.0% relative to the weight of the magnesium salt in the composition;the surfactant is present in the composition in an amount having a weight percent of about 0.05% to about 0.5% relative to the weight of the magnesium salt in the composition; andthe mineral oil is present in the composition in a weight percent of about 0.50% to about 2.25% relative to the weight of the magnesium salt in the composition.
  • 29. A method of combating a forest fire, the method comprising: depositing, via aerial or ground-based application, a forest fire retardant composition, the composition comprising: a magnesium chloride salt comprising MgCl2 anhydrous and MgCl2(H2O)6, present in the composition in an amount having a weight ratio (MgCl2 anhydrous:MgCl2(H2O)6) of about 20:80 to about 50:50;a corrosion inhibitor for at least one of iron, brass, or aluminum, present in the composition in an amount having a weight percent of about 0.25% to about 5.0% relative to the weight of the magnesium chloride salt in the composition;a thickening agent, present in the composition in an amount having a weight percent of about 0.1% to about 4.5% relative to the weight of the magnesium chloride salt in the composition;a buffering agent, present in the composition in an amount having a weight percent of about 0.6% to about 3.0% relative to the weight of the magnesium chloride salt in the composition;a colorant, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the composition;a dye, present in the composition in an amount having a weight percent of about 0.025% to about 2.0% relative to the weight of the magnesium chloride salt in the composition; anda surfactant, present in the composition in an amount having a weight percent of about 0.0075% to about 1.25% relative to the weight of the magnesium chloride salt in the composition;wherein: the composition is a final diluted product intended for use to suppress, retard, or contain forest fires;the MgCl2 anhydrous is hydrated by the water in the final diluted product;the magnesium chloride salt is present in the final diluted product in an amount of about 300 grams to about 900 grams of magnesium chloride salt per gallon of the final diluted product; andthe step of depositing comprises at least one of a direct attack on the fire or an indirect attack before the fire.
  • 30. The method of claim 29, wherein the step of depositing is performed via aerial application from an airplane or a helicopter.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims a priority benefit to U.S. provisional application Ser. No. 62/858,640, filed on Jun. 7, 2019, 62/989,350 filed on Mar. 13, 2020, and 63/024,040 filed on May 13, 2020, which are incorporated herein by reference in their entirety.

Provisional Applications (3)
Number Date Country
63024040 May 2020 US
62989350 Mar 2020 US
62858640 Jun 2019 US