Applicants claim priority under 35 U.S.C. §119 of German Application No. 10 2009 014 155.3 filed Mar. 24, 2009.
1. Field of the Invention
The invention relates to a longitudinal axial securing means for permanently securing a drive-train connection of a vehicle wherein the longitudinal axial securing means is formed as a coupling means, which comprises at least one latching tooth, the latching tooth being capable of being inserted radially into the drive-train connection. This invention also relates to a drive-train connection with this longitudinal axial securing means, wherein the drive-train connection comprises two structural parts to be coupled, which parts are connected by corresponding toothings so as to rotate together around an axis of rotation.
2. The Prior Art
From DE 103 43 749 B4 there is known a shaft-hub connection with a union collar. This connection couples a flanged element of an insertable shaft and a flanged element of a hollow shaft. Such connections can be used only where the insertable shaft is accessible over its entire circumference from the radial direction in the region of the planned fastening.
Furthermore, from DE 20 09 272 A1 there is known a threadless quick connection for connecting two coaxially oriented parts. In this case the two coaxial parts engage one in the other and are secured in axial direction by a shaped spring. The shaped spring is guided in the outer part in an annular groove and embraces cams formed on the inner part.
From DE 1 854 247 there is known a push-on coupling, which is provided with a radially resilient projection, which engages in a circumferential groove of the power take-off shaft when the coupling is pushed on. The push-on coupling can be engaged and disengaged in the manner of a quick-connect locking means without the use of a tool. This coupling is locked in the pushed-on condition by the automatic engagement of a resilient projection in the circumferential groove of the power take-off shaft.
Finally, from DE 27 47 935 B1 there is known a detachable quick-connect coupling for axially securing a coupling bush on a power take-off shaft. The quick-connect coupling comprises latching members, which are guided through the coupling bush into an annular groove, which is formed on the power take-off shaft, the latching members being embraced by a locking ring, which is retained by a spring.
It is an object of the invention to provide a longitudinal axial securing means or drive-train connection with longitudinal axial securing means that can be easily mounted and demounted.
These and other objects are achieved, in one aspect, by a longitudinal axial securing means for permanently securing a drive-train connection of a vehicle in accordance with the invention. The longitudinal axial securing means is formed as a coupling means, which comprises at least one latching tooth. The latching tooth is capable of being inserted radially into the drive-train connection. In addition to the at least one latching tooth, the coupling means comprises a tooth support, the at least one latching tooth being formed in one piece with the tooth support.
In another aspect, the invention achieves these and other objects by a drive-train connection with this longitudinal axial securing means, the drive-train connection comprising two structural parts to be coupled, which parts are connected by corresponding toothings so as to rotate together around an axis of rotation.
Advantageous and practical improvements are discussed below.
The longitudinal axial securing means according to the invention is provided with a coupling means, which comprises a tooth support in addition to the at least one latching tooth. The at least one latching tooth is formed in one piece with the tooth support. By virtue of its one-piece nature, such a one-piece longitudinal axial securing means is easy to handle during mounting and it facilitates compliance with high quality standards, because inadvertent failure to mount add-on structural parts is precluded by the one-piece nature. Correspondingly, demounting is also facilitated, because only the longitudinal axial securing means has to be removed as one integral structural part. The core of the invention is the assembly of individual structural parts to an integral structural group.
The invention further provides for using the longitudinal axial securing means in a drive-train connection, which comprises two structural parts to be coupled. The first structural part is formed in particular as a shaft and the second structural part is formed in particular as an articulated joint. The articulated joint substantially comprises a first articulated-joint part and a second articulated-joint part and the first articulated-joint part is connected to the shaft by corresponding toothings, especially by spline-shaft toothings, so as to rotate therewith around an axis of rotation.
Furthermore, the invention provides for forming the longitudinal axial securing means as a closed ring, which embraces the drive-train connection. In this way, the longitudinal axial securing means can already be pre-mounted simply by pushing it onto the drive-train connection while the drive-train connection is being pushed together.
According to an alternative embodiment, the longitudinal axial securing means is formed as an open clasp or clamp, which can be closed by a locking means. Such a configuration of the longitudinal axial securing means makes it possible to mount the longitudinal axial securing means on a drive-drain connection that has already been pushed together.
The invention further provides for equipping the longitudinal axial securing means with at least one clamping zone and with at least one toothed zone. Because two specialized zones are provided, they can be formed optimally for the two main tasks of the longitudinal axial securing means. These tasks are axial fixation, in the direction of the axis of rotation, of the structural parts connected to rotate together, and securing of these zones on the structural parts by the fixation formed by the latching tooth or teeth, in order to prevent loosening of the fixation.
The invention provides for reducing the diameter of the longitudinal axial securing means from a pre-mounted diameter to a post-mounted diameter, wherein at least one latching tooth is passed for this purpose into an aperture of the first structural part, especially through an aperture in the second structural part. According to a first alternative embodiment, this reduction in diameter is achieved by plastic deformation of the clamping zone of the longitudinal axial securing means. For mounting, such a fixation merely requires a simple crimping operation, in which the tooth support is deformed. According to a second alternative embodiment of the invention, this reduction in diameter is accomplished in particular by use of at least one spring element and elastic deformation of the tooth support. A longitudinal axial securing means fastened in this way can be simply demounted by reverse deformation.
The invention also provides for forming the latching tooth as a wedge. The latching tooth tapers in the direction of the longitudinal axis and the wedge has in particular two oppositely disposed side faces, which have the form of congruent circular sectors. Insertion of the latching tooth into the structural parts is facilitated by this shape. Furthermore, by virtue of this shape, the structural parts are less weakened in their zones close to the longitudinal axis.
Finally, the invention provides for equipping the longitudinal axial securing means with at least two latching teeth, wherein all latching teeth are spaced apart from one another, especially by equal distances. In such axial securing means, the forces developed are uniformly distributed. Furthermore, any imbalance caused by the longitudinal axial securing means is smaller in symmetric longitudinal axial securing means than in longitudinal axial securing means having only one latching tooth or having latching teeth distributed irregularly around the circumference.
The inventive drive-train connection has a coupling means, which comprises one tooth support in addition to at least one latching tooth, wherein the at least one latching tooth is formed in one piece with the tooth support. A drive-train connection with such a longitudinal axial securing means exhibits the previously mentioned advantages.
Within the meaning of the invention, a one-piece longitudinal axial securing means should be understood as a coupling means that is composed of one integral material portion and that was manufactured, for example, as a stamped part, or that is composed of a plurality of material portions of the same or different material, joined together by welding, for example.
Other objects and features of the present invention will become apparent from the following detailed description considered in connection with the accompanying drawings. It is to be understood, however, that the drawings are designed as an illustration only and not as a definition of the limits of the invention.
In the drawings, wherein similar reference characters denote similar elements throughout the several views:
Referring now in detail to the drawings,
Drive-train connection 1 further comprises a first alternative embodiment of a longitudinal axial securing means 10, which is formed as a coupling means 10a. Longitudinal axial securing means 10 comprises two latching teeth 11, 12 and one tooth support 13, which supports the two latching teeth 11, 12. In a mounted condition, in which longitudinal axial securing means 10 is shown in
In
During this diameter reduction, brought about by a deformation or crimping operation, latching teeth 11, 12 are inserted in the direction of arrows y′ and y respectively, first into apertures 14, 15 of articulated joint 3a and then into groove N of first structural part 2 or shaft 2a. Circumferential groove N can be made by simple machining during production and is adequate for the intended purpose, because only a longitudinal axial securing means is to be achieved and torque transmission by the longitudinal axial securing means is neither necessary nor intended.
To facilitate insertion during mounting, latching teeth 11, 12 are made in the form of wedges 21, 22, and in the side view of the exemplary embodiment have the form of circular sectors 23, 24. Longitudinal axial securing means 10 is formed as a one-piece coupling means 10a, and is composed of one integral material portion. As an example, this one-piece longitudinal axial securing means 10 can be machined as a stamped part during production.
According to an alternative embodiment of the invention, the longitudinal axial securing means is made of a plurality of material portions of the same material or of different materials, wherein these portions are connected to one another as a one-piece coupling means by a joining process, such as welding and/or riveting.
Longitudinal axial securing means 25, 26 shown in
Longitudinal axial securing means 29, 30 shown in
Fifth longitudinal axial securing means 30 shown in
On the basis of the alternative embodiment of a longitudinal axial securing means 29 shown in
Teeth 11 and 12 are inserted with their wedge tips 33, 34 into a groove of a spline shaft, not illustrated. This groove, which is formed circumferentially in the spline shaft, has a v-shaped cross section, which matches wedges 33, 34 and can be easily machined during production. In the region of tooth stumps 11b, 12b, teeth 11 and 12 have rounded backs 37, 38 between side faces 35, 36 of wedges 21, 22. These backs 37, 38 are oriented in radial direction.
In the mounted condition of longitudinal axial securing means 29, in which this means passes with its teeth 11 and 12 through apertures in an articulated-joint part, not illustrated, tooth stumps 11b, 12b bear with their side faces 35, 36 and their backs 37, 38 flush against the said articulated-joint part. Because longitudinal axial securing means 29 bears flush on the articulated-joint part and on the spline shaft as described, any backlash between the articulated-joint part and the spline part, especially backlash in axial direction, is minimized to the greatest extent possible. Thus longitudinal axial securing means 29 achieves a snug seat of the structural parts to be connected, by having both tooth stumps 11b, 12b of teeth 11, 12 of longitudinal axial securing means 29 and the apertures in the articulated joint match one another and bear flush against one another, as do tooth tips 11a, 12a of teeth 11, 12 of longitudinal axial securing means 29 and the groove in the spline shaft. In this connection, the apertures in the articulated-joint part can also be easily machined during production by guiding a milling tool oriented in radial direction on a circular path around a longitudinal axis L of the articulated-joint part.
Although only a few exemplary embodiments of the present invention have been illustrated or described, it is to be understood that many changes and modifications may be made thereunto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 014 155.3 | Mar 2009 | DE | national |