This invention relates to a roll forming machine for producing a rain gutter and, more particularly, to an improved final forming station to insure that the formed rain gutter has a desired longitudinal curvature.
Roll forming machines for producing rain gutters are generally well known. In such a machine, the gutters are formed from a supply coil of sheet metal which is finished on a first side so that the exterior of the finished gutter has an aesthetically pleasing appearance. As the sheet metal is driven through the machine along a predetermined path of travel, its lateral profile is gradually transformed from a flat sheet into a downwardly concave trough having a desired lateral profile and with the finished side of the sheet metal forming the exterior surface of the trough. As the finished gutter exits the machine, it passes through a cutting station including a shear assembly which may be selectively activated to sever the gutter so that a desired length of finished gutter is separated from the partially finished gutter which remains in the machine. In the case where the front and back walls of the gutter do not have the same number of bends, this results in different amounts of drag on the front and back walls, causing the front and back walls to be of slightly different lengths. If the front and back walls are of different lengths, this causes the formed gutter to have longitudinal curvature. This curvature is not necessarily a bad thing. Some gutter installers prefer a longitudinal curvature where the ends of the gutter are curved toward the building on which the gutter is being installed; some installers prefer the reverse curvature; and other installers prefer no curvature. It would therefore be desirable to have a mechanism within the roll forming machine whereby the longitudinal curvature of the formed gutter can be controlled to compensate for the differential drag on the front and back gutter walls.
The present invention finds utility in a roll forming machine for forming a rain gutter, wherein the rain gutter is in the form of a trough having a back wall, a front wall and a bottom wall connecting the back and front walls. The roll forming machine includes a final forming station which is operative to form the corners between the bottom wall and the back and front walls of the gutter. According to this invention, this final forming station comprises a first pair of corner forming rollers, a first of which rotates about a substantially horizontal axis and the second of which rotates about a vertical axis, for forming the back corner, and a second pair of corner forming rollers, a first of which rotates about a substantially horizontal axis and the second of which rotates about a vertical axis, for forming the front corner. A plate holds the two first corner forming rollers to rotate about a single substantially horizontal axis and an adjustment mechanism is selectively operable to rotate the plate so as to vary the angle of the single axis relative to the bottom wall of the rain gutter.
In accordance with an aspect of this invention, the adjustment mechanism is further selectively operable to move the plate so as to vary the vertical position of the single axis relative to the bottom wall of the rain gutter.
The foregoing will be more readily apparent upon reading the following description in conjunction with the drawings in which like elements in different figures are identified by the same reference numeral and wherein:
Referring to the drawings,
The present invention is concerned with the forming station which forms the lower back corner 32 and the lower front corner 34 of the gutter 10. This station is the final roll forming station in the machine 20, immediately prior to the cutting station 26. As is clear from
According to the present invention this problem is overcome by separating the exit drive rollers from the corner forming rollers at the final forming station of the roll forming machine 20 and providing an adjustment assembly as part of the final forming station, independent of the exit drive rollers. As shown in
The camber adjustment plate 36 is arranged to be pivotable about a pivot point substantially in the horizontal plane of the bottom wall 14 of the gutter 10 to vary the angle of the axis 42 relative to that plane, resulting in the relative pressures applied by the corner forming rollers 38,40 being varied. To effect such pivoting, there is provided a boss 50 extending out of the camber adjustment plate 36 orthogonal to the axis 42 and parallel to the horizontal plane of the bottom wall 14 of the gutter 10. As best shown in
A clamp bar 68 is provided adjacent to a second side 70 of the support plate 60. The support plate 60 and the vertical adjustment plate 56 are formed with aligned oversize upper openings 72 and 74, respectively, and with aligned lower openings 76 and 78, respectively. A headed bolt 80 extends through a first opening in the clamp bar 68 and through the aligned upper openings 72,74 and is threaded into the camber adjustment plate 36. Similarly, a headed bolt 82 extends through a second opening in the clamp bar 68 and through the aligned lower openings 76,78 and is threaded into the camber adjustment plate 36. The heads of the bolts 80,82 are larger than the respective openings in the clamp bar 68 through which they extend. The bolts 80,82 can be tightened to the camber adjustment plate 36 to clamp together the clamp bar 68, the support plate 60, the vertical adjustment plate 56 and the camber adjustment plate 36.
A horizontal plate 84 is fixed to the frame of the machine 20 and overlies the support plate 60, the vertical adjustment plate 56 and the camber adjustment plate 36. The horizontal plate 84 has a pair of openings 86 aligned with an upper edge 88 of the support plate 60, an opening 90 aligned with an upper edge 92 of the vertical adjustment plate 56, a first pair 94 of threaded bores aligned with the upper edge 88 of the support plate 60 and flanking the pair of openings 86 of the horizontal plate 84, a second pair 96 of threaded bores aligned with the upper edge 92 of the vertical adjustment plate 56 and flanking the opening 90 of the horizontal plate 84, and a threaded bore 98 aligned with an upper edge 100 of the camber adjustment plate 36. Bolts 102 extend through the openings 86,90 and are threadedly secured to the upper edges 88,92. Jack screws 104 are threaded into the threaded bores 94,96,98 to abut against the upper edges 88,92,100. This arrangement secures the assembly against vertical movement after all vertical adjustments have been made.
To enable pivotal adjustment of the camber adjustment plate 36, the vertical adjustment plate 56 is formed with a pair of co-linear threaded bores 106 which extend into the vertical adjustment plate 56 from respective opposed side edges thereof. The bores 106 are in open communication with the opening 74, through which the bolt 80 passes, the bolt 80 being secured to the camber adjustment plate 36. Jack screws 108 are threaded into the threaded bores 106 to abut against opposed sides of a sleeve 110 which is slidable laterally within the opening 74 and through which the bolt 80 extends. By moving the jack screws 108 in and out when the bolts 80,82 are loosened to unclamp the assembly, the camber adjustment plate 36 is caused to pivot about the radial center of the arcuate groove 52, varying the angle of the axis 42 and varying the relative pressures applied to the bottom wall 14 of the gutter 10 by the corner forming rollers 38,40. Since the pivot point of the camber adjustment plate is low, (i.e., within the plane of the gutter bottom wall), there is virtually no lateral movement of the corner forming rollers 38,40 caused by pivoting the camber adjustment plate 36. This is advantageous because lateral movement of the corner forming rollers 38,40 would affect formation of the corners 32,34, which would then have to be compensated for, an iterative process which could take a substantial amount of time.
Accordingly, there has been disclosed an improved longitudinal curvature adjustment assembly for a rain gutter roll forming machine. While an illustrative embodiment of the inventive assembly has been disclosed herein, it will be appreciated by those of skill in the art that various modifications and adaptations to the disclosed embodiment are possible. It is therefore intended that this invention be limited only by the scope of the appended claims.