This is a U.S. national phase under 35 U.S.C. 371 of International Patent Application No. PCT/US2014/062701 titled “Longitudinally Offset Partial Area Screens For Well Assembly” and filed Oct. 28, 2014, the entirety of which is incorporated herein by reference.
The present disclosure relates generally to devices for use in a wellbore in a subterranean formation and, more particularly (although not necessarily exclusively), to assemblies of longitudinally offset screens that cover different portions of a cross-sectional area of a tubular.
Preparing a well assembly traversing a hydrocarbon bearing subterranean formation often involves running a string of tubular members (often individually called “tubulars” or “joints”) from surface into place in a wellbore. The string can be filled with fluid by permitting wellbore fluid to enter the string, such as through “auto-filling” equipment at a lower-most end of the string. The wellbore fluid can contain debris, such as debris from drilling or another operation. The debris can adversely affect the performance of the auto-fill equipment, which can necessitate filling from surface and the associated costs in time and resources. Additionally or alternatively, debris passing the auto-filling equipment can become trapped in the tubulars. The trapped debris can settle within the tubulars and form masses that can impede or hinder subsequent operations in the wellbore.
Certain aspects and examples of the present disclosure are directed to assemblies of longitudinally offset screens that extend over or cover different portions of a cross-sectional area of a tubular. A screen assembly can include a series of screens arranged along a length of a tubular member. The screens can cover different portions of a cross-sectional area of the tubular. An entirety of the cross-sectional area of the tubular may be covered by the series of screens along the length of the tubular. For example, the screens can be different shapes. The shape of a screen may permit some fluid to bypass the screen without being filtered through the screen. The shape of another screen can be oriented so that fluid bypassing the shape of the first screen without being filtered can be filtered through the filtering shape of the second screen. The screen assembly can reduce an amount of debris passing out of the screen assembly and into a tubular section beyond the screen assembly.
A screen can have a cross-sectional area that is the same as an area that the screen covers. In an illustrative example, the tubular can have a cross-sectional area defined within a large circle. The first screen can be shaped as a small circle and be positioned in the tubular so that the area of the small circle covers, or is the same as, a central portion of the large circle. The second screen can be shaped like a ring and can be positioned in the tubular so that the area of the ring covers, or is the same as, the annular part of the large circle that is not covered by the small circle of the first screen (i.e., extending radially outward from the boundary of the small circle to the boundary of the large circle). The small circle and the ring can be positioned at different distances along a length of the tubular. In this arrangement, fluid flowing axially through the large circle of the tubular can flow through either the small circle covered by the first screen or the ring covered by the second screen. If the first or the second screen become blocked by screened particles, the fluid can deviate from a straight axial flow path to flow around the blocked screen along a different axial flow path through the part of the large circle that is not covered by the blocked screen.
In some aspects, fluid bypassing a filtering shape of a first screen also can be permitted to bypass a filtering shape of a second screen. For example, fluid may bypass filtering shapes of sequential screens when the sequential screens are blocked with accumulated debris.
In some aspects, a screen can capture particles carried by a fluid flowing from a first end of the tubular. The screen can include a rim that can prevent particles caught by the screen from being swept across an edge of the filtering shape and past the screen. The rim can extend away from the screen toward the first end of the tubular. Fluid flowing through the screen in an opposite direction (i.e., toward the first end of the tubular) can flush captured particles from the screen. The particles can be carried toward the first end of the tubular and past other screens through portions of the cross-sectional area of the tubular that are not covered by the other screens.
These illustrative examples are given to introduce the reader to the general subject matter discussed here and are not intended to limit the scope of the disclosed concepts. The following describes various additional aspects and examples with reference to the drawings in which like numerals indicate like elements, and directional descriptions are used to describe the illustrative aspects. The following uses directional descriptions such as “upper,” “lower,” etc. in relation to the illustrative aspects as they are depicted in the figures. Like the illustrative aspects, the numerals and directional descriptions included in the following should not be used to limit the present disclosure.
A tubing string 112 within the wellbore 102 can extend from the surface to the subterranean formation 110. The tubing string 112 can provide a conduit for formation fluids, such as production fluids produced from the subterranean formation 110, to travel from the substantially horizontal section 106 to the surface. Pressure from a bore in a subterranean formation 110 can cause formation fluids, including production fluids such as gas or petroleum, to flow to the surface. In some aspects, the tubing string 112 can provide a conduit for introducing material into the wellbore 102, such as cement for casing operations or fluids for modulating pressure conditions in the wellbore.
The well system 100 can also include a screen assembly 114. The filter assembly can be installed in the tubing string 112. The screen assembly 114 can include features that prevent particulate from moving past the screen assembly 114 into another part of the tubing string 112, such as when the tubing string 112 is run into the wellbore 102. Features of the screen assembly 114 can prevent the screen assembly 114 from blocking due to accumulated particulate. Features of the screen assembly 114 additionally or alternatively can facilitate flushing the screen assembly 114 of particulate accumulated in the screen assembly 114.
Although the well system 100 is depicted with one screen assembly 114, any number of screen assemblies 114 can be used in the well system 100. Additionally, although
The screens 202 can be longitudinally offset from one another in the tubular member 206. For example, a first screen 202A positioned in a first section 212A can be closer to a first end 208 of the tubular member 206 than a second screen 202B positioned in a second section 212B.
The screens 202 can cover different portions of a cross-sectional area of the tubular member 206. The different portions may collectively cover an entirety of the cross-sectional area. An example is provided with reference to
The first screen 202A (
The second screen 202B (
Although the entirety of the cross-sectional area of the tubular member 206 can be covered by a first screen 202A and a second screen 202B covering opposite portions of the cross-sectional area of the tubular member 206 as just described, other arrangements are possible. For example, the entirety of the cross-sectional area may be covered by a group of two, three, or more screens of complimentary shapes. In some aspects, a shape of one screen may be larger than an area not covered by another screen such that a portion of the cross-sectional area is covered multiple times where the shapes overlap.
The first screen 202A (
Referring again to
The second screen 202B can include a second rim 218B. The second rim 218B can extend away from the second screen 202B and toward the first end 208 of the tubular member 206. In some aspects, the second rim 218B can be a tube. The second rim 218B can be positioned at a boundary of the portion of the cross-sectional area of the tubular member 206 covered by the second screen 202B. For example, the second rim 218B can be positioned at a boundary between the central area 214B and the peripheral area 216B (such as shown in both
In some aspects, the second rim 218B may be supported relative to the tubular member 206 by one or more flanges 222B (e.g.,
The second flow path 228A of the first section 212A may be less screened than the first flow path 226A. For example, the first screen 202A may cover the second flow path 228A a negligible amount and permit particles to flow through the second flow path 228A without much, if any, screening. Fluid directed through the second flow path 228A of the first section 212A may carry at least some particles through the first section 212A and into the second section 212B.
The second rim 218B can separate the second section 212B into another first flow path 226B and another second flow path 228B. The second screen 202B can be positioned in the second flow path 228B of the second section 212B.
In some aspects, the first rim 218A and the second rim 218B are longitudinally aligned. Longitudinally aligning the first rim 218A and the second rim 218B may align flow paths of the first section 212A and the second section 212B for longitudinal fluid flow through at least one screen 202. For example, fluid can flow through the first flow paths 226A, 226B and the first screen 202A (such as depicted by the arrows 230A and 230B) or through the second flow paths 228A, 228B and the second screen 202B (such as depicted by the arrows 232A and 232B).
In some aspects, the first rim 218A and the second rim 218B are longitudinally offset. For example, a longitudinal gap 234 may be positioned between the first rim 218A and the second rim 2188. Longitudinally offsetting the first rim 218A and the second rim 218B can permit fluid to flow separately from aligned flow paths of the first section 212A and the second section 212B. For example, fluid can flow from the second flow path 228A of the first section 212A to the first flow path 226B of the second section 212B through a third flow path (such as the longitudinal gap 234) without passing through the first screen 202A or the second screen 202B (such as depicted by the arrows 232A and 230B). Such a flow may permit fluid to continue traveling through the tubular member 206 when the screens 202A, 202B are blocked with particles.
In some aspects, particles captured by the screens 202 can be flushed by directing fluid toward the first end 208 of the tubular member 206. For example, particles captured by the second screen 202B can be carried out through the second flow path 228B in the second section 212B and the aligned second flow path 228A of the first section 212A (such as opposite the arrows 232B, 232A). Particles carried through the first flow path 226B of the second section 212B can pass through the gap 234 and out through the second flow path 228A of the first section 212A (such as opposite the arrows 230B, 232A). The first rim 218A can include a tapered portion 220A that tapers away from the first flow path 226B of the second section 2128 and toward the second flow path 228A of the first section 212A. Such a tapered portion 220A can direct flushed particles toward the open and unscreened second flow path 228A of the first section 212A. Similarly, the second rim 218B can include a tapered portion 220B that directs particles from away from the screened second flow path 228B (e.g., away from edges of the second screen 202B) and toward the open and unscreened first flow path 226B of the second section 212B.
In some aspects, a downhole assembly, a system, or a method is provided according to one or more of the following examples or according to some combination of the elements thereof. In some aspects, a tool or a system described in one or more of these examples can be utilized to perform a method described in one of the other examples.
Provided can be a downhole assembly comprising (I) a first screen covering a first portion of a cross-sectional area of a tubular, the first portion being less than an entirety of the cross-sectional area; and (II) a second screen covering a second portion of the cross-sectional area, the second portion being less than the entirety of the cross-sectional area and different from the first portion, the second screen longitudinally offset from the first screen within the tubular.
Provided can be the downhole assembly of Example #1, wherein the entirety of the cross-sectional area is covered by a group of longitudinally offset screens including the first screen and the second screen.
Provided can be the downhole assembly of Example #1 (or any of Examples #1-2), wherein the first screen further comprises a first rim positioned at a boundary of the first portion, the first rim sized to prevent particulate caught by the first screen from crossing the boundary of the first portion and flowing past the first screen.
Provided can be the downhole assembly of Example #3 (or any of Examples #1-3), wherein the second screen further comprises a second rim positioned at a boundary of the second portion, the second rim sized to prevent particulate caught by the second screen from crossing the boundary of the second portion and flowing past the second screen, wherein the first rim and the second rim are longitudinally aligned.
Provided can be the downhole assembly of Example #4 (or any of Examples #1-4), comprising a longitudinal gap between the first rim and the second rim.
Provided can be the downhole assembly of Example #4 (or any of Examples #1-5), wherein the first rim and the second rim are longitudinally offset from each other.
Provided can be the downhole assembly of Example #1 (or any of Examples #1-6), wherein the second portion is a central portion of the cross-sectional area of the tubular and the first portion is an annular portion about the central portion or a peripheral portion of the cross-sectional area of the tubular.
Provided can be a downhole assembly (or the downhole assembly of any of Examples #1-7), comprising (I) a first section of a tubular, the first section comprising (i) a first section first flow path, (ii) a first screen positioned in the first section first flow path, and (iii) a first section second flow path; and (II) a second section of the tubular, the second section disposed longitudinally from the first section, the second section comprising (i) a second section first flow path longitudinally aligned with the first section first flow path, (ii) a second section second flow path longitudinally aligned with the first section second flow path, and (iii) a second screen positioned in the second section second flow path.
Provided can be the downhole assembly of Example #8 (or any of Examples #1-8), further comprising a third flow path permitting fluid flow between the first section second flow path and the second section first flow path.
Provided can be the downhole assembly of Example #8 (or any of Examples #1-9), wherein the first section first flow path is separated from the first section second flow path by a first rim extending from the first screen toward a first end of the tubular.
Provided can be the downhole assembly of Example #10 (or any of Examples #1-10), wherein the first rim comprises a section that tapers away from the second section first flow path and towards the first section second flow path.
Provided can be the downhole assembly of Example #10 (or any of Examples #1-11), wherein the second section first flow path is separated from the second section second flow path by a second rim extending from the second screen toward the first end of the tubular.
Provided can be the downhole assembly of Example #12 (or any of Examples #1-12), wherein the first rim comprises a first tube and the second rim comprises a second tube.
Provided can be the downhole assembly of Example #13 (or any of Examples #1-13), further comprising one or more flanges supporting at least one of the first tube or the second tube relative to the tubular.
Provided can be the downhole assembly of Example #12 (or any of Examples #1-14), wherein the first rim is supported relative to the tubular by the first screen or the second rim is supported relative to the tubular by the second screen.
Provided can be the downhole assembly of Example #12 (or any of Examples #1-15), wherein the first screen is supported relative to the tubular by the first rim or the second screen is supported relative to the tubular by the second rim.
Provided can be the downhole assembly of Example #8 (or any of Examples #1-16), wherein the first screen covers an entirety of a cross-section of the first section first flow path, and wherein the second screen covers an entire cross-section of the second section second flow path.
Provided can be a method comprising (I) directing a fluid to flow away from a first end of a tubular and through a first section of the tubular so that (i) at least some of the fluid flows through a first screen of a first screened flow path of the first section and at least some particles carried by the fluid are prevented from passing the first section by the first screen, and (ii) at least some of the fluid flows through a first open flow path of the first section, the first open flow path being less screened than the first screened flow path; and (II) directing the fluid flowing through the first section to flow through a second section of the tubular so that at least some of the fluid flowing through the first open flow path flows through a second screen of a second screened flow path of the second section and at least some particles carried by the fluid are prevented from passing the second section by the second screen.
Provided can be the method of Example #18, further comprising directing the fluid flowing through the first section to flow through the second section of the tubular so that, when the second screen is blocked by particles, at least some of the fluid flowing through the first open flow path flows through a second open flow path of the second section, the second open flow path being less screened than the second screened flow path.
Provided can be the method of Example #18 (or any of Examples #18-19), further comprising (I) directing a fluid to flow toward the first end of the tubular and through the second section so that at least some of the fluid flows through the second screen so that particles that were captured by the second screen are carried by the fluid through the second screened flow path and out of the second section; and (II) directing the fluid flowing through the second section to flow through the first section so that at least some of the fluid flowing out of the second screened flow path with particles flows through the first open flow path and carries at least some of the particles out of the first section.
The foregoing description, including illustrated aspects and examples, has been presented only for the purpose of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Numerous modifications, adaptations, and uses thereof will be apparent to those skilled in the art without departing from the scope of this disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/062701 | 10/28/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/068887 | 5/6/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3401758 | Talbert | Sep 1968 | A |
3831753 | Gaylord | Aug 1974 | A |
4154313 | Dysart | May 1979 | A |
4341273 | Walker | Jul 1982 | A |
4515212 | Krugh | May 1985 | A |
4732677 | Thornton et al. | Mar 1988 | A |
4981368 | Smith | Jan 1991 | A |
5249626 | Gibbins | Oct 1993 | A |
6276452 | Davis | Aug 2001 | B1 |
6352111 | Bode et al. | Mar 2002 | B1 |
6382318 | Whitlock et al. | May 2002 | B1 |
6574869 | McHenry et al. | Jun 2003 | B1 |
7093653 | Metcalfe et al. | Aug 2006 | B2 |
7188687 | Rudd et al. | Mar 2007 | B2 |
7188688 | LeJeune et al. | Mar 2007 | B1 |
7472745 | Lynde | Jan 2009 | B2 |
20040040703 | Longmore et al. | Mar 2004 | A1 |
20040244988 | Preston et al. | Dec 2004 | A1 |
20050039813 | Dougherty et al. | Feb 2005 | A1 |
20050200127 | Johnson et al. | Sep 2005 | A1 |
20080087419 | Fair | Apr 2008 | A1 |
20080308274 | MacDougall et al. | Dec 2008 | A1 |
20090238729 | Glover et al. | Sep 2009 | A1 |
20110049025 | Davis | Mar 2011 | A1 |
20110192602 | Yeh | Aug 2011 | A1 |
20120292047 | Knobloch, Jr. et al. | Nov 2012 | A1 |
20130025865 | Knobloch, Jr. et al. | Jan 2013 | A1 |
20150267511 | Patterson | Sep 2015 | A1 |
20170355624 | Baski | Dec 2017 | A1 |
20180266231 | Rogers | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2245261 | Sep 2013 | EP |
07025912 | May 1995 | JP |
1020020092569 | Dec 2002 | KR |
1021873 | May 2004 | NL |
2014065962 | May 2014 | WO |
2016060648 | Apr 2016 | WO |
2016068885 | May 2016 | WO |
2016072982 | May 2016 | WO |
2017007447 | Jan 2017 | WO |
Entry |
---|
Australian Application No. 2014410222, First Examination Report dated Oct. 12, 2017, 3 pages. |
Canadian Application No. 2,962,008, Office Action dated Feb. 8, 2018, 3 pages. |
European Application No. 14905015.5, Extended European Search Report dated Mar. 16, 2018, 10 pages. |
International Patent Application No. PCT/US2014/062701, International Search Report and Written Opinion dated Jul. 28, 2015, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20170218735 A1 | Aug 2017 | US |