The present disclosure relates generally to loop antennas for wireless power transmission, and more particularly to loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals.
Portable electronic devices such as smartphones, tablets, notebooks and other electronic devices have become a necessity for communicating and interacting with others. The frequent use of portable electronic devices, however, uses a significant amount of power, which quickly depletes the batteries attached to these devices. Inductive charging pads and corresponding inductive coils in portable devices allow users to wirelessly charge a device by placing the device at a particular position on an inductive pad to allow for a contact-based charging of the device due to magnetic coupling between respective coils in the inductive pad and in the device.
Conventional inductive charging pads, however, suffer from many drawbacks. For one, users typically must place their devices at a specific position and in a certain orientation on the charging pad because gaps (“dead zones” or “cold zones”) exist on the surface of the charging pad. In other words, for optimal charging, the coil in the charging pad needs to be aligned with the coil in the device in order for the required magnetic coupling to occur. Additionally, placement of other metallic objects near an inductive charging pad may interfere with operation of the inductive charging pad, so even if the user places their device at the exact right position, if another metal object is also on the pad, then magnetic coupling still may not occur and the device will not be charged by the inductive charging pad. This results in a frustrating experience for many users as they may be unable to properly charge their devices.
Charging using electromagnetic radiation (e.g., microwave radiation waves) offers promise, but RF charging is typically focused on far-field charging and not near-field or mid-field charging where the device to be charged is placed on or near the RF energy transmitter.
Accordingly, there is a need for a wireless charging solution that (i) radiates energy at a mid-field distance (and various other distances) to wirelessly deliver power to a receiver, and (ii) allows users to place their devices at any position on or near the pad and still receive wirelessly delivered energy. A method of operating one such example wireless power transmitter is described below.
In the following description, references to “mid-field” transmission refer to radiation of electromagnetic waves by an antenna (e.g., the loop antenna described herein) for distances up to approximately a wavelength of an operating frequency of the antenna (e.g., a wavelength of an operating frequency of 5.8 GHz is approximately 5.17 centimeters, so the mid-field transmission distance of the antenna in this example would be approximately 5.17 centimeters). In some embodiments, the operating frequency ranges from 400 MHz to 60 GHz. For the purposes of the following description, a mid-field charging pad (or mid-field radio-frequency charging pad) is a wireless-power-transmitting device that includes one or more wireless power transmitters, each of which is configured to radiate electromagnetic waves to receiver devices that are located within a mid-field distance of the charging pad (e.g., within 0-5.17 centimeters of the charging pad, if the one or more wireless power transmitters of the charging pad are using an operating frequency of 5.8 GHz).
(A1) In some embodiments, a method of wirelessly charging a receiver device includes, providing a wireless power transmitter including (i) a ground plate, (ii) a conductive wire offset from the ground plate, the conductive wire forming a loop antenna, (iii) a plurality of feed elements extending from the ground plate to the conductive wire, each feed element being connected to the conductive wire at a different position on the conductive wire, and (iv) a power amplifier connected to one or more feed elements of the plurality of feed elements. The method further includes selectively feeding, by the power amplifier, an RF signal to a respective feed element of the one or more feed elements based on a location of a receiver device relative to the plurality of feed elements. The method further includes (i) exciting, by the respective feed element fed by the power amplifier, the conductive wire, and (ii) radiating, by the conductive wire, the RF signal for wirelessly powering the receiver device.
(A2) In some embodiments of the method of A1, the method further includes: (i) selecting, by a controller of the wireless power transmitter, the respective feed element of the one or more feed elements based on the location of the receiver device relative to the plurality of feed elements, and (ii) sending, by the controller, an instruction to the power amplifier that causes the power amplifier to feed the RF signal to the respective feed element.
(A3) In some embodiments of the method of A2, the method further includes receiving, by a communications radio of the wireless power transmitter, a communications signal from a corresponding communications radio of the receiver device. Moreover, the method further includes determining, by the controller, the location of the receiver device relative to the plurality of feed elements based, at least in part, on the communications signal. In some embodiments, the operations of A3 are performed prior to the operations of A2.
(A4) In some embodiments of the method of any of A2-A3, the method further includes detecting, by one or more sensors of the wireless power transmitter, a presence of the receiver device. Moreover, the method further includes determining, by the controller, the location of the receiver device relative to the plurality of feed elements based on information generated by the one or more sensors. In some embodiments, determining the location of the receiver device relative to the plurality of feed elements is based on a combination of the communications signal and the information generated by the one or more sensors. In some embodiments, the operations of A4 are performed prior to the operations of A2.
(A5) In some embodiments of the method of any of A1-A4, radiating the RF signal includes radiating the RF signal from the conductive wire with different propagation patterns (e.g., radiation patterns) depending on which of the plurality of feed elements is fed by the power amplifier.
(A6) In some embodiments of the method of A5, the RF signal is radiated from the conductive wire with the different propagation patterns, wherein the different propagation patterns are based, at least in part, on a plurality of physical dimensions of the wireless power transmitter, including: a width of the conductive wire; a length of the conductive wire; a thickness of the conductive wire; a diameter of the conductive wire; a shape of the loop; and a magnitude of the offset between the ground plate and the conductive wire.
(A7) In some embodiments of the method of any of A5-A6, when the respective feed element is a first feed element of the one or more feed elements that is connected to the conductive wire at a first position, the method further includes feeding, via the power amplifier, the RF signal to the first feed element when the location of the receiver device is within a first threshold distance from the first position.
(A8) In some embodiments of the method of A7, radiating the RF signal includes radiating the RF signal from the conductive wire in a first propagation pattern of the different propagation patterns when the first feed element of the one or more feed elements is fed by the power amplifier, where a high concentration of RF energy in the first propagation pattern is steered to travel towards the location of the receiver device.
(A9) In some embodiments of the method of any of A5-A8, when the respective feed element is a second feed element, distinct from the first feed element, of the one or more feed elements that is connected to the conductive wire at a second position, distinct from the first position, the method further includes feeding, via the power amplifier, the RF signal to the second feed element when the receiver device is located at a second location, distinct from the location, the second location being within a second threshold distance from the second position.
(A10) In some embodiments of the method of A9, radiating the RF signal includes radiating the RF signal in a second propagation pattern of the different propagation patterns when the second feed element of the one or more feed elements is fed by the power amplifier, where a high concentration of RF energy in the second propagation pattern is steered to travel towards the second location of the receiver device.
(A11) In some embodiments of the method of A10, the RF signal radiated in the first propagation pattern propagates away from the first position in a first direction towards the location of the receiver device, and the RF signal radiated in the second propagation pattern propagates away from the second position in a second direction towards the second location of the receiver device. In some embodiments, the second direction is different from the first direction. In some embodiments, the second direction is the same as the first direction.
(A12) In some embodiments of the method of any of A8-A11, the first propagation pattern has a first polarization and the second propagation pattern has a second polarization. In some embodiments, the second polarization differs from the first polarization. In some embodiments, the second polarization is the same as the first polarization.
(A13) In some embodiments of the method of any of A1-A12, the ground plate is disposed in a first plane, the conductive wire is disposed in a second plane, and the second plane is substantially parallel to the first plane.
(A14) In some embodiments of the method of A13, the second plane is offset from the first plane by a distance.
(A15) In some embodiments of the method of any of A13-A14, each of the plurality of feed elements is substantially perpendicular to the first and second planes.
(A16) In some embodiments of the method of any of A1-A15, the one or more feed elements are one or more first feed elements, and the wireless power transmitter further includes a second power amplifier connected to one or more second feed elements of the plurality of feed elements.
(A17) In some embodiments of the method of any of A1-A16, the one or more feed elements includes at least two feed elements, and feeding the RF signal includes feeding the RF signal to the at least two feed elements upon determining that the location of the receiver device is between the two feed elements.
(A18) In some embodiments of the method of any of A1-A17, the conductive wire includes a plurality of contiguous segments and each of the plurality of feed elements is positioned between a respective pair of segments of the plurality of contiguous segments.
(A19) In some embodiments of the method of claim A18, one or more first segments of the plurality of contiguous segments have a first shape and one or more second segments of the plurality of contiguous segments have a second shape different from the first shape.
(A20) In some embodiments of the method of any of A11-A19, further including radiating, via one or more (or each) of the plurality of contiguous segments, the RF signal when one of the plurality of feed elements is fed by the power amplifier.
(A21) In some embodiments of the method of any of A1-A20, the plurality of feed elements is configured to provide the RF signal to the conductive wire at the different positions.
(A22) In some embodiments of the method of any of A1-A21, the RF signal is transmitted at a frequency of 5.8 GHz, 2.4 GHz, or 900 MHz.
(A23) In some embodiments of the method of any of A7 and A9, the RF signal has a wavelength, the first and second threshold distances are within a mid-field transmission distance of the wireless power transmitter, and the mid-field transmission distance is within the wavelength of the RF signal from the wireless power transmitter.
(A24) In one other aspect, a wireless power transmitter is provided, and the wireless power transmitter includes the structural characteristics for a wireless power transmitter described above in any of A1-A22, and the wireless power transmitter is also configured to perform the method steps described above in any of A1-A23.
(A25) In another aspect, a transmitter pad that includes one or more of the wireless power transmitters described in any of A1-A23 is provided. In some embodiments, the transmitter pad is in communication with one or more processors and memory storing one or more programs which, when executed by the one or more processors, cause the transmitter pad to perform the method described in any one of A1-A23.
(A26) In yet another aspect, a transmitter pad (that includes one or more of the wireless power transmitters described in any of A1-A23) is provided and the transmitter pad includes means for performing the method described in any of A1-A23.
(A27) In still another aspect, a non-transitory computer-readable storage medium is provided (e.g., as a memory device, such as external or internal storage, that is in communication with a transmitter pad). The non-transitory computer-readable storage medium stores executable instructions that, when executed by a transmitter pad (that includes a plurality of wireless power transmitters) with one or more processors/cores, cause the transmitter pad to perform the method described in any one of A1-A23.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various embodiments, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.
In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
Numerous details are described herein in order to provide a thorough understanding of the example embodiments illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known processes, components, and materials have not been described in exhaustive detail so as not to unnecessarily obscure pertinent aspects of the embodiments described herein.
The components 102 of the transmitter pad 100 include, for example, one or more processors/cores 104, a memory 106, one or more transmitter zones 110 (each including respective one or more wireless power transmitters 300, and an example transmitter 300 is illustrated in
In some embodiments, the communication component(s) 112 include, e.g., hardware capable of data communications using any of a variety of wireless protocols (e.g., IEEE 802.15.4, Wi-Fi, ZigBee, 6LoWPAN, Thread, Z-Wave, Bluetooth Smart, ISA100.11a, WirelessHART, MiWi, etc.) wired protocols (e.g., Ethernet, HomePlug, etc.), and/or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
In some embodiments, the communications component 112 transmits communication signals to the receiver 120 by way of the electronic device. For example, the communications component 112 may convey information to a communications component of the electronic device, which the electronic device may in turn convey to the receiver 120 (e.g., via a bus).
In some embodiments, the receiver 120 includes a communications component configured to communicate various types of data with the transmitter pad 100, through a respective communication signal generated by a receiver-side communications component. The data may include location indicators for the receiver 120, a power status of the electronic device, status information for the receiver 120 (e.g., a frequency at which a wireless-power-receiving antenna of the receiver 120 is tuned, a polarization of the wireless-power-receiving antenna, etc.), status information for the electronic device (e.g., a current battery-charge level for the electronic device), status information about power waves being transmitted to the receiver 120 by the pad 100 (e.g., an amount of energy the receiver 120 is able to extract from the power waves).
In some embodiments, the data contained within communication signals is used by the electronic device, receiver 120, and/or transmitter pad 100 for determining adjustments of one or more characteristics used by any of the transmitters 300 to transmit power waves. Using a communication signal, the transmitter pad 100 receives data that is used, e.g., to identify receivers 120 on the transmitter pad 100, identify electronic devices, determine safe and effective waveform characteristics for power waves, and/or determine which feed to activate for one or more of the transmitters 300.
In some embodiments, the transmitter pad 100 is designed to lay flat on a surface (e.g., horizontally) while in some embodiments the transmitter pad 100 is designed to be positioned at an angle relative to the surface (e.g., substantially vertical). In some embodiments, a housing for the transmitter pad 100 is shaped such that the transmitter pad 100 is stable when positioned in a substantially vertical manner. Moreover, the transmitter pad 100 may include a stand (e.g., kick stand) that extends away from the transmitter pad 100 to provide additional support.
In some embodiments, the one or more transmitter sensors 114 are positioned at one or more locations on the transmitter pad 100 (e.g., not specific to any transmitter zone 110). Alternatively, in some embodiments, a first set sensors of the one or more sensors 114 is part of a first transmitter zone 110-A, a second set sensors of the one or more sensors 114 is part of a second transmitter zone 110-B, and so on. In such an arrangement, the various sets of sensors provide respective sensor information to the one or more processors 104, and the one or more processors 104 use the sensor information to determine a location of the receiver 120 relative to the one or more transmitter zones 110.
Non-limiting examples of transmitter sensors 114 include, e.g., infrared, pyroelectric, ultrasonic, laser, optical, Doppler, gyro, accelerometer, microwave, millimeter, RF standing-wave sensors, resonant LC sensors, capacitive sensors, light sensor, and/or inductive sensors, and a hall sensor. In some embodiments, technologies for transmitter sensor(s) 114 include binary sensors that acquire stereoscopic sensor data, such as the location of a human or other sensitive object.
In some embodiments, memory 106 of the transmitter pad 100 stores one or more programs (e.g., sets of instructions) and/or data structures, collectively referred to herein as “modules.” In some embodiments, memory 106, or the non-transitory computer readable storage medium of memory 106 stores the following modules 107 (e.g., programs and/or data structures), or a subset or superset thereof:
The above-identified modules (e.g., data structures and/or programs including sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 106 stores a subset of the modules identified above. Furthermore, the memory 106 may store additional modules not described above. In some embodiments, the modules stored in memory 106, or a non-transitory computer readable storage medium of memory 106, provide instructions for implementing respective operations in the methods described below. In some embodiments, some or all of these modules may be implemented with specialized hardware circuits that subsume part or all of the module functionality. One or more of the above-identified elements may be executed by one or more of the processor(s) 104. In some embodiments, one or more of the modules described with regard to memory 106 is implemented on memory of a server (not shown) that is communicatively coupled to the transmitter pad 100 and/or by a memory of electronic device and/or receiver 120. In addition, memory 106 may store other information such as certain thresholds and criteria, as well as identifiers of certain receivers.
Turning to
The receiver 120 converts energy from received signals (also referred to herein as RF power transmission signals, or simply, RF signals, power waves, or power transmission signals) into electrical energy to power and/or charge an electronic device coupled to the receiver 120. For example, the receiver 120 uses power-conversion circuitry to convert captured energy from power waves (received via a wireless-power-receiver antenna) to alternating current (AC) electricity or direct current (DC) electricity usable to power and/or charge an electronic device. Non-limiting examples of power-conversion circuitry can include rectifiers, rectifying circuits, voltage conditioners, among suitable circuitry and devices.
In some embodiments, the receiver 120 is a standalone device that is detachably coupled to one or more electronic devices. For example, the electronic device has processor(s) for controlling one or more functions of the electronic device and the receiver 120 has processor(s) for controlling one or more functions of the receiver 120. In some embodiments, the receiver 120 is a component of the electronic device. For example, processor(s) of the electronic device control functions of the electronic device and the receiver 120. In addition, in some embodiments, the receiver 120 includes processor(s) which communicate with processor(s) of the electronic device. It is noted that the combination of the receiver 120 and the electronic device is sometimes referred to herein simply as a “receiver device.”
In some embodiments, the receiver 120 receives one or more power waves directly from the transmitter pad 100 (and in particular, from one or more of the transmitter(s) 300). In some embodiments, the receiver 120 harvests power from one or more power waves transmitted by transmitter pad 100. As will be discussed in greater detail below, the one or more power waves are generated at one or more different positions along a respective conductive wire 202-A of a respective transmitter 300 that is positioned within a respective transmitter zone 110, and the generated one or more power waves propagate away from the respective transmitter 300 in a particular pattern. In some embodiments, the transmitter pad 100 is a mid-field transmitter that transmits the one or more power waves within a mid-field distance of its charging surface.
In some embodiments, after energy is harvested from the one or more power waves (as discussed in greater detail below), circuitry (e.g., integrated circuits, amplifiers, rectifiers, and/or voltage conditioner) of the receiver 120 converts the energy to usable power (i.e., electricity), which powers the electronic device associated with the receiver 120 (and/or the usable power is stored in a battery of electronic device). In some embodiments, a rectifying circuit of the receiver 120 converts the electrical energy from AC to DC for use by the electronic device. In some embodiments, a voltage conditioning circuit increases or decreases the voltage of the electrical energy as required by the electronic device, and may produce a constant voltage for providing electricity in a form required by the electronic device.
In some embodiments, a plurality of electronic devices may be positioned on a surface of the transmitter pad 100, each having at least one respective receiver 120 that is used to receive power waves from the transmitter pad 100. In some embodiments, the transmitter pad 100 adjusts one or more characteristics (e.g., waveform characteristics, such as phase, gain, amplitude, frequency, etc.) of the power waves and controls which feeds of respective transmitters 110 are activated to controllably form propagation patterns of radio-frequency energy transmitter to each of the respective receivers 120.
In some embodiments, the one or more transmitter zones 110 cover all or a portion of a surface area of the transmitter pad 100. The transmitter zones 110 may also form a top surface (i.e., a charging surface) of the transmitter pad 100. Further, in some embodiments, the one or more transmitter zones 110 and other components 102 of the transmitter pad 100 may be encapsulated within a plastic or other type of covering (e.g., a housing).
In some embodiments, circuits (not shown) of the transmitter pad 100, such as a controller circuit and/or waveform generator, may at least partially control the behavior of the transmitters 110. For example, based on the information received from the receiver 120 by way of a communication signal (or data gathered by transmitter sensor(s) 114), a controller circuit (e.g., controller 209,
As a non-limiting example, the representative transmitter zone 110 includes a transmitter 300 (which includes an antenna element 202, a plurality of feeds 204-A, 204-B, . . . 204-N, and a power amplifier 206 (or multiple power amplifiers)). The components of the representative transmitter zone 110 are coupled via busing 108 or the components are directly coupled to one another. Additionally, the representative transmitter zone 110 includes switches 208-A, 208-B, . . . 208-N positioned between the power amplifier 206 and each respective feed 204. In some embodiments, instead of using switches to couple a single power amplifier 206 with multiple feeds 204, multiple power amplifiers may each be coupled directly with a single feed 204 (or two power amplifiers may each be coupled with one or more of the feeds via the switching arrangement illustrated in
In some embodiments, the power amplifier(s) 206 and any switches 208 can be configured as part of the transmitter 300 (not illustrated) while, in other embodiments, the power amplifier(s) 206 and any switches 208 can be configured as external to the transmitter 300 and coupled to feeds of an antenna element 202 (as illustrated in
The antenna element 202 is coupled with the plurality of feeds 204-A, 204-B, . . . 204-N. In some embodiments (as shown in
Each feed 204 is coupled with the antenna element 202 at a different position (e.g., positions A-D,
The power amplifier is used to selectively provide power to one or more of the feeds 204-A, 204-B, . . . 204-N by closing one or more of the switches 208-A, 208-B, . . . 208-N. The power amplifier 206 may be instructed (e.g., by the controller 209) to close a respective switch of the one or more of the switches 208-A, 208-B, . . . 208-N depending on a location of the receiver 120 relative to the plurality of feeds 204-A-204-D. Although not shown, the one or more of the switches 208-A, 208-B, . . . 208-N may be part of (e.g., internal to) the power amplifier. Operation of the power amplifier is discussed in further detail below with reference to the method 400.
In some embodiments, the power amplifier 206 is coupled with a power supply (not shown), and the power amplifier 206 draws energy from the power supply to provide RF signals to one or more of the feeds 204-A, 204-B, . . . 204-N. Moreover, in some embodiments (not shown), the power amplifier 206 is coupled with an RF power transmitter integrated circuit (e.g., the RF integrated circuit may be part of the transmitter zone 110 or more generally part of the transmitter pad 100). The RF integrated circuit is configured to generate a suitable RF signal and provide that RF signal to the power amplifier 206, and the power amplifier 206 in turn provides the RF signal to one or more of the feeds 204-A, 204-B, . . . 204-N. In some embodiments, the RF integrated circuit includes an RF oscillator and/or a frequency modulator that is used to generate the RF signal so that is appropriate for transmission to an RF receiver 120 (e.g., the RF signal has an appropriate power level, frequency, etc. to ensure that a maximum amount of energy is transferred from the transmitter 300 to the RF receiver 120).
In some embodiments, the power amplifier 206 is coupled to an internal or external (with respect to the transmitter pad 100) controller 209, and in turn is coupled to the one or more processors 104 (
In some embodiments, the controller 209 (or a component thereof, e.g., the one or more processors 104) uses information received by the one or more communication components 112 and/or detected by the one or more transmitter sensors 114 to determine the location of the receiver 120 relative to the feeds 204-A, 204-B, . . . 204-N. Determining the location of the receiver 120 is discussed in further detail below with reference to the method 400.
The ground plate defines a plurality of openings 212-A-212-D, where each of the plurality of openings 212-A-212-D is sized to receive and accommodate one of the plurality of feeds 204. The number of openings corresponds to the number of feeds. In some embodiments, the ground plate 210 forms a bottom surface of the transmitter pad 100. The ground plate 210 can be made from various materials as known by those skilled in the art. As explained below, the transmitter 300 can include any number of feeds, depending on the circumstances.
The antenna element 202 is offset from the ground plate (e.g., distance (D),
Each of the plurality of feeds 204-A-204-D is disposed in a respective opening of the plurality of openings 212-A-212-D, and each of the feeds 204-A-204-D connects to the antenna element 202 at a different position along the conductive wire 202-A. In such an arrangement, the feeds 204-A-204-D support the antenna element 204 along a length of the antenna element 202. For example, with reference to
In some embodiments, the antenna element 202 includes a plurality of contiguous segments 202-A-202-D, and each of the plurality of feeds 204-A-204-D is positioned between a respective pair of adjacent segments (e.g., positioned between abutting ends of adjacent segments). For example, a first feed 204-A of the plurality of feeds 204 is positioned between a third segment 202-C and a fourth segment 202-D of the plurality of contiguous segments (i.e., a first respective pair of adjacent segments), a second feed 204-B of the plurality of feeds 204 is positioned between the fourth segment 202-D and a first segment 202-A of the plurality of contiguous segments (i.e., a second respective pair of adjacent segments), and so on. In such an arrangement, each of the plurality of feeds 204-A-204-D is mechanically (and electrically) coupled with two segments.
In some embodiments (not illustrated), a shape of each segment in the plurality of contiguous segments 202-A-202-D is substantially the same (e.g., each is rectangular or some other shape). In some embodiments, a shape of at least one segment in the plurality of contiguous segments 202-A-202-D differs from shapes of other segments in the plurality of contiguous segments 202-A-202-D. For example, segments 202-B and 202-D have a first shape (e.g., a rectangle) and segments 202-A and 202-C have a second shape that differs from the first shape. It is noted that various combinations of shapes can be used to form the contiguous segments of antenna element 202, and the shapes shown in
Depending on which one of the feeds 204 is selected to be fed by the power amplifier 206, the antenna element 202 is configured to radiate RF energy with different propagation patterns and concentrations. In some circumstances, a high concentration of the radiated RF energy is created at a mid-field distance from the selected feed(s). In some instances, the “high concentration” of RF energy includes approximately 50 percent of the radiated energy, although greater and lesser percentages can be achieved. For example, with reference to
In some embodiments, by activating one of the feeds (e.g., the feed 204-D in the above example), impedance changes may be introduced at each of the feeds that are not activated (e.g., the feeds 204-A, 204-B, and 204-C are not activated in the above example, thereby introducing impedance along the antenna element at respective points where these feeds contact the antenna element 202). The selective activation of different feeds may also help to steer a direction along which the RF energy radiates away from the transmitter 300. For example, as shown in
The connection point arrangement illustrated in
As explained in greater detail below with reference to
In some embodiments, a value for each of the physical dimensions is defined according to a wavelength (λ) and a frequency of the one or more RF signals to be radiated by the antenna element 202. The transmitter pad 100 can include transmitters 300 that are dimensioned to cause transmission of RF signals at frequencies ranging from one or more of 400 MHz (λ=0.75 meters) to 60 GHz (λ=0.005 meters), depending on the application. Accordingly, when operating at a frequency of 900 MHz (λ=0.333 meters), the width (W) of an example antenna element 202 of a transmitter 300 is approximately 0.005994 meters (i.e., approximately 6 mm), the height (L1) of the example antenna element 202 is approximately 0.0333 meters (i.e., approximately 33 mm), the length (L3) of the example antenna element 202 is approximately 0.11655 meters (i.e., approximately 116.5 mm), a length (L2) of segment 202-B and segment 202-D of the example antenna element 202 is approximately 0.04995 meters (i.e., approximately 50 mm), a magnitude (D) of the offset between the ground plate 210 and the example antenna element 202 is approximately 0.02331 meters (i.e., approximately 23.3 mm), a length (LF) of each feed 204 of the example antenna element 202 is approximately 0.02731 meters (i.e., approximately 27.3 mm). Moreover, a height and a length of the ground plate 210 of the example antenna element 202 can be 0.04995 meters (i.e., approximately 50 mm) and 0.14985 meters (i.e., approximately 150 mm), respectively. In some embodiments, the thickness (T) is either equal to or less than the width (W) of the example antenna element 202. One skilled in the art will appreciate that the dimensions above are merely one example. Various other dimensions are possible, depending on the circumstances.
The method 400 includes providing (402) a wireless power transmitter (e.g., transmitter 300,
In some embodiments, the method 400 further includes selecting (404), by a controller (e.g., controller 209 or a component thereof, such as one or more processors 104,
In some embodiments, the method 400 further includes sending (406), by the controller, an instruction to the power amplifier that causes the power amplifier to feed the RF signal to the respective feed element. For example, with reference to
In some embodiments, the wireless power transmitter includes a communications radio (e.g., communications component 112,
In some embodiments, the wireless power transmitter includes one or more sensors (e.g., transmitter sensors 114,
In some embodiments, each of the plurality of feeds is associated with a respective sensor (e.g., the respective sensor is positioned near (or perhaps on) the feed and the respective sensor takes readings near the feed). In this way, readings from each of the sensors can be compared (e.g., by the one or more processors 104), and the controller may determine the location of the receiver device relative to the plurality of feed elements based on the comparing. For example, if a largest change in light occurs at feed 204-A relative to changes in light occurring at the other feeds, then the controller can determine that the receiver device is located closest to the feed 204-A.
In some embodiments, the controller determines the location of the receiver device relative to the plurality of feed elements using two or more forms of information (e.g., signal strength in combination with a thermal imaging data, or some other combination communications-based and sensor-based information).
The method 400 further includes selectively feeding (408), by the power amplifier, an RF signal to the respective feed element of the one or more feed elements based on the location of a receiver device relative to the plurality of feed elements. For example, with reference to
In some embodiments, the selective-feeding operation (408) is performed in response to the power amplifier receiving the instruction from the controller.
The method 400 further includes (i) exciting (410), by the respective feed element fed by the power amplifier, the conductive wire and then (ii) radiating (412), by the conductive wire, the RF signal for wirelessly powering the receiver device. The conductive wire may radiate the RF signal from the conductive wire with different propagation patterns depending on which of the plurality of feed elements is fed by the power amplifier. For example, the conductive wire radiates the RF signal from the conductive wire in a first propagation pattern of the different propagation patterns when a first feed element of the one or more feed elements is fed by the power amplifier. In this example, a high concentration of radiated RF energy in the first propagation pattern is created at a mid-field distance away from the feed 204-C. In some instances, the “high concentration” of RF energy includes approximately 50 percent of the radiated energy, although greater and lesser percentages can be achieved. Also, a concentration of RF energy in the first propagation pattern forms around the first feed element and the first propagation pattern propagates away from the first feed element in a first direction (or a set of first directions) towards the location of the receiver device. To illustrate, with reference to
In another example, the conductive wire may radiate the RF signal in a second propagation pattern of the different propagation patterns when a second feed element of the one or more feed elements is fed by the power amplifier. In this example, a high concentration of RF energy in the second propagation pattern is created at a mid-field distance away from the feed 204-D. Also, a concentration of RF energy in the second propagation pattern forms around the second feed element and the second propagation pattern propagates away from the second feed element in a second direction (or a set of second directions) towards a location of the receiver device. To illustrate, with reference to
In some embodiments, the wireless power transmitter is configured such that in use the first propagation pattern has a first polarization and the second propagation pattern has a second polarization. In some embodiments, the second polarization differs from the first polarization.
In some embodiments, the different propagation patterns are based, at least in part, on a plurality of physical dimensions of the wireless power transmitter. The plurality of physical dimensions may include but is not limited to: (i) a width of the conductive wire (e.g., width (W),
In some embodiments, the conductive wire includes a plurality of contiguous segments (e.g., segments 202-A-202-D,
In some embodiments, the transmitter dynamically adjusts a shape and/or direction of the propagation patterns 600 and 610 by changing one or more characteristics of the RF signal. For example, the one or more characteristics may include but are not limited to frequency, gain, amplitude, and phase. In doing so, with reference to the propagation pattern 600, the transmitter may adjust one or more of the one or more characteristics so that the propagation pattern 600 points more right or less right (or perhaps more up or down, or a combination thereof). The transmitter may adjust the shape and/or direction of a propagation pattern depending on a location of the receiver 120 relative to the one or more feeds of the transmitter. Additionally, the physical dimensions of the transmitter impact the resulting propagation patterns 600 and 610 (e.g., an antenna element having a first width (W) may tend to create a first propagation pattern and an antenna element having a second width (W) may tend to create a second propagation pattern different from the first propagation pattern). The various other dimensions discussed above with reference to
A method of fabricating a wireless power transmitter (e.g., transmitter 300,
In some embodiments, one or more wireless power transmitters are fabricated using the method above, and grouped together to form a transmission pad 100 (i.e., an array of wireless power transmitters). In some embodiments, the ground plate may be a single ground plate used by the one or more wireless power transmitters. Alternatively, in some embodiments, each of the one or more wireless power transmitters has a distinct ground plate. An array of wireless power transmitters may be formed by positioning each of the wireless power transmitters within respective transmitter zones, and then interconnecting components of each of the transmitter zones with a common controller for the transmitter pad.
The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
This application claims priority to U.S. Provisional Patent Application No. 62/643,118, filed Mar. 14, 2018, entitled “Loop Antennas With Selectively-Activated Feeds To Control Propagation Patterns of Wireless Power Signals,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3167775 | Guertler | Jan 1965 | A |
3434678 | Brown et al. | Mar 1969 | A |
3696384 | Lester | Oct 1972 | A |
3754269 | Clavin | Aug 1973 | A |
4101895 | Jones, Jr. | Jul 1978 | A |
4360741 | Fitzsimmons et al. | Nov 1982 | A |
4944036 | Hyatt | Jul 1990 | A |
4995010 | Knight | Feb 1991 | A |
5200759 | McGinnis | Apr 1993 | A |
5211471 | Rohrs | May 1993 | A |
5548292 | Hirshfield et al. | Aug 1996 | A |
5556749 | Mitsuhashi et al. | Sep 1996 | A |
5568088 | Dent et al. | Oct 1996 | A |
5646633 | Dahlberg | Jul 1997 | A |
5697063 | Kishigami et al. | Dec 1997 | A |
5712642 | Hulderman | Jan 1998 | A |
5936527 | Isaacman et al. | Aug 1999 | A |
5982139 | Parise | Nov 1999 | A |
6046708 | MacDonald, Jr. et al. | Apr 2000 | A |
6127799 | Krishnan | Oct 2000 | A |
6127942 | Welle | Oct 2000 | A |
6163296 | Lier et al. | Dec 2000 | A |
6271799 | Rief | Aug 2001 | B1 |
6289237 | Mickle et al. | Sep 2001 | B1 |
6329908 | Frecska | Dec 2001 | B1 |
6421235 | Ditzik | Jul 2002 | B2 |
6437685 | Hanaki | Aug 2002 | B2 |
6456253 | Rummeli et al. | Sep 2002 | B1 |
6476769 | Lehtola | Nov 2002 | B1 |
6476795 | Derocher et al. | Nov 2002 | B1 |
6501414 | Amdt et al. | Dec 2002 | B2 |
6583723 | Watanabe et al. | Jun 2003 | B2 |
6597897 | Tang | Jul 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6650376 | Obitsu | Nov 2003 | B1 |
6664920 | Mott et al. | Dec 2003 | B1 |
6680700 | Hilgers | Jan 2004 | B2 |
6798716 | Charych | Sep 2004 | B1 |
6803744 | Sabo | Oct 2004 | B1 |
6853197 | McFarland | Feb 2005 | B1 |
6856291 | Mickle et al. | Feb 2005 | B2 |
6911945 | Korva | Jun 2005 | B2 |
6960968 | Odendaal et al. | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6988026 | Breed et al. | Jan 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7027311 | Vanderelli et al. | Apr 2006 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7068991 | Parise | Jun 2006 | B2 |
7079079 | Jo et al. | Jul 2006 | B2 |
7183748 | Unno et al. | Feb 2007 | B1 |
7191013 | Miranda et al. | Mar 2007 | B1 |
7193644 | Carter | Mar 2007 | B2 |
7196663 | Bolzer et al. | Mar 2007 | B2 |
7205749 | Hagen et al. | Apr 2007 | B2 |
7215296 | Abramov et al. | May 2007 | B2 |
7222356 | Yonezawa et al. | May 2007 | B1 |
7274334 | o'Riordan et al. | Sep 2007 | B2 |
7274336 | Carson | Sep 2007 | B2 |
7351975 | Brady et al. | Apr 2008 | B2 |
7359730 | Dennis et al. | Apr 2008 | B2 |
7372408 | Gaucher | May 2008 | B2 |
7392068 | Dayan | Jun 2008 | B2 |
7403803 | Mickle et al. | Jul 2008 | B2 |
7443057 | Nunally | Oct 2008 | B2 |
7451839 | Perlman | Nov 2008 | B2 |
7463201 | Chiang et al. | Dec 2008 | B2 |
7471247 | Saily | Dec 2008 | B2 |
7535195 | Horovitz et al. | May 2009 | B1 |
7614556 | Overhultz et al. | Nov 2009 | B2 |
7639994 | Greene et al. | Dec 2009 | B2 |
7643312 | Vanderelli et al. | Jan 2010 | B2 |
7652577 | Madhow et al. | Jan 2010 | B1 |
7679576 | Riedel et al. | Mar 2010 | B2 |
7702771 | Ewing et al. | Apr 2010 | B2 |
7786419 | Hyde et al. | Aug 2010 | B2 |
7812771 | Greene et al. | Oct 2010 | B2 |
7830312 | Choudhury et al. | Nov 2010 | B2 |
7844306 | Shearer et al. | Nov 2010 | B2 |
7868482 | Greene et al. | Jan 2011 | B2 |
7898105 | Greene et al. | Mar 2011 | B2 |
7904117 | Doan et al. | Mar 2011 | B2 |
7911386 | Ito et al. | Mar 2011 | B1 |
7925308 | Greene et al. | Apr 2011 | B2 |
7948208 | Partovi et al. | May 2011 | B2 |
8055003 | Mittleman et al. | Nov 2011 | B2 |
8070595 | Alderucci et al. | Dec 2011 | B2 |
8072380 | Crouch | Dec 2011 | B2 |
8092301 | Alderucci et al. | Jan 2012 | B2 |
8099140 | Arai | Jan 2012 | B2 |
8115448 | John | Feb 2012 | B2 |
8159090 | Greene et al. | Apr 2012 | B2 |
8159364 | Zeine | Apr 2012 | B2 |
8180286 | Yamasuge | May 2012 | B2 |
8228194 | Mickle | Jul 2012 | B2 |
8234509 | Gioscia et al. | Jul 2012 | B2 |
8264101 | Hyde et al. | Sep 2012 | B2 |
8264291 | Morita | Sep 2012 | B2 |
8276325 | Clifton et al. | Oct 2012 | B2 |
8278784 | Cook et al. | Oct 2012 | B2 |
8284101 | Fusco | Oct 2012 | B2 |
8310201 | Wright | Nov 2012 | B1 |
8338991 | Von Novak et al. | Dec 2012 | B2 |
8362745 | Tinaphong | Jan 2013 | B2 |
8380255 | Shearer et al. | Feb 2013 | B2 |
8384600 | Huang et al. | Feb 2013 | B2 |
8410953 | Zeine | Apr 2013 | B2 |
8411963 | Luff | Apr 2013 | B2 |
8432062 | Greene et al. | Apr 2013 | B2 |
8432071 | Huang et al. | Apr 2013 | B2 |
8446248 | Zeine | May 2013 | B2 |
8447234 | Cook et al. | May 2013 | B2 |
8451189 | Fluhler | May 2013 | B1 |
8452235 | Kirby et al. | May 2013 | B2 |
8457656 | Perkins et al. | Jun 2013 | B2 |
8461817 | Martin et al. | Jun 2013 | B2 |
8467733 | Leabman | Jun 2013 | B2 |
8497601 | Hall et al. | Jul 2013 | B2 |
8497658 | Von Novak et al. | Jul 2013 | B2 |
8552597 | Song et al. | Aug 2013 | B2 |
8558661 | Zeine | Oct 2013 | B2 |
8560026 | Chanterac | Oct 2013 | B2 |
8604746 | Lee | Dec 2013 | B2 |
8614643 | Leabman | Dec 2013 | B2 |
8621245 | Shearer et al. | Dec 2013 | B2 |
8626249 | Kuusilinna et al. | Jan 2014 | B2 |
8629576 | Levine | Jan 2014 | B2 |
8653966 | Rao et al. | Feb 2014 | B2 |
8674551 | Low et al. | Mar 2014 | B2 |
8686685 | Moshfeghi | Apr 2014 | B2 |
8686905 | Shtrom | Apr 2014 | B2 |
8712355 | Black et al. | Apr 2014 | B2 |
8712485 | Tam | Apr 2014 | B2 |
8718773 | Wills et al. | May 2014 | B2 |
8729737 | Schatz et al. | May 2014 | B2 |
8736228 | Freed et al. | May 2014 | B1 |
8760113 | Keating | Jun 2014 | B2 |
8770482 | Ackermann et al. | Jul 2014 | B2 |
8772960 | Yoshida | Jul 2014 | B2 |
8823319 | Von Novak, III et al. | Sep 2014 | B2 |
8832646 | Wendling | Sep 2014 | B1 |
8854176 | Zeine | Oct 2014 | B2 |
8860364 | Low et al. | Oct 2014 | B2 |
8897770 | Frolov et al. | Nov 2014 | B1 |
8903456 | Chu et al. | Dec 2014 | B2 |
8917057 | Hui | Dec 2014 | B2 |
8923189 | Leabman | Dec 2014 | B2 |
8928544 | Massie et al. | Jan 2015 | B2 |
8937408 | Ganem et al. | Jan 2015 | B2 |
8946940 | Kim et al. | Feb 2015 | B2 |
8963486 | Kirby et al. | Feb 2015 | B2 |
8970070 | Sada et al. | Mar 2015 | B2 |
8989053 | Skaaksrud et al. | Mar 2015 | B1 |
9000616 | Greene et al. | Apr 2015 | B2 |
9001622 | Perry | Apr 2015 | B2 |
9006934 | Kozakai et al. | Apr 2015 | B2 |
9021277 | Shearer et al. | Apr 2015 | B2 |
9030161 | Lu et al. | May 2015 | B2 |
9059598 | Kang et al. | Jun 2015 | B2 |
9059599 | Won et al. | Jun 2015 | B2 |
9077188 | Moshfeghi | Jul 2015 | B2 |
9083595 | Rakib et al. | Jul 2015 | B2 |
9088216 | Garrity et al. | Jul 2015 | B2 |
9124125 | Leabman et al. | Sep 2015 | B2 |
9130397 | Leabman et al. | Sep 2015 | B2 |
9130602 | Cook | Sep 2015 | B2 |
9142998 | Yu et al. | Sep 2015 | B2 |
9143000 | Leabman et al. | Sep 2015 | B2 |
9143010 | Urano | Sep 2015 | B2 |
9153074 | Zhou et al. | Oct 2015 | B2 |
9178389 | Hwang | Nov 2015 | B2 |
9225196 | Huang et al. | Dec 2015 | B2 |
9240469 | Sun et al. | Jan 2016 | B2 |
9242411 | Kritchman et al. | Jan 2016 | B2 |
9244500 | Cain et al. | Jan 2016 | B2 |
9252628 | Leabman et al. | Feb 2016 | B2 |
9270344 | Rosenberg | Feb 2016 | B2 |
9276329 | Jones et al. | Mar 2016 | B2 |
9282582 | Dunsbergen et al. | Mar 2016 | B1 |
9294840 | Anderson et al. | Mar 2016 | B1 |
9297896 | Andrews | Mar 2016 | B1 |
9318898 | John | Apr 2016 | B2 |
9368020 | Bell et al. | Jun 2016 | B1 |
9401977 | Gaw | Jul 2016 | B1 |
9409490 | Kawashima | Aug 2016 | B2 |
9419335 | Pintos | Aug 2016 | B2 |
9438045 | Leabman | Sep 2016 | B1 |
9438046 | Leabman | Sep 2016 | B1 |
9444283 | Son et al. | Sep 2016 | B2 |
9450449 | Leabman et al. | Sep 2016 | B1 |
9461502 | Lee et al. | Oct 2016 | B2 |
9520725 | Masaoka et al. | Dec 2016 | B2 |
9520748 | Hyde et al. | Dec 2016 | B2 |
9522270 | Perryman et al. | Dec 2016 | B2 |
9537354 | Bell et al. | Jan 2017 | B2 |
9537357 | Leabman | Jan 2017 | B2 |
9537358 | Leabman | Jan 2017 | B2 |
9538382 | Bell et al. | Jan 2017 | B2 |
9544640 | Lau | Jan 2017 | B2 |
9559553 | Bae | Jan 2017 | B2 |
9564773 | Pogorelik et al. | Feb 2017 | B2 |
9571974 | Choi et al. | Feb 2017 | B2 |
9590317 | Zimmerman et al. | Mar 2017 | B2 |
9590444 | Walley | Mar 2017 | B2 |
9620996 | Zeine | Apr 2017 | B2 |
9647328 | Dobric | May 2017 | B2 |
9706137 | Scanlon et al. | Jul 2017 | B2 |
9711999 | Hietala et al. | Jul 2017 | B2 |
9723635 | Nambord et al. | Aug 2017 | B2 |
9793758 | Leabman | Oct 2017 | B2 |
9793764 | Perry | Oct 2017 | B2 |
9800172 | Leabman | Oct 2017 | B1 |
9806564 | Leabman | Oct 2017 | B2 |
9819230 | Petras et al. | Nov 2017 | B2 |
9825674 | Leabman | Nov 2017 | B1 |
9843229 | Leabman | Dec 2017 | B2 |
9847669 | Leabman | Dec 2017 | B2 |
9847677 | Leabman | Dec 2017 | B1 |
9853361 | Chen et al. | Dec 2017 | B2 |
9853692 | Bell et al. | Dec 2017 | B1 |
9866279 | Bell et al. | Jan 2018 | B2 |
9867032 | Verma et al. | Jan 2018 | B2 |
9871301 | Contopanagos | Jan 2018 | B2 |
9876380 | Leabman et al. | Jan 2018 | B1 |
9876394 | Leabman | Jan 2018 | B1 |
9876536 | Bell et al. | Jan 2018 | B1 |
9882394 | Bell et al. | Jan 2018 | B1 |
9887584 | Bell et al. | Feb 2018 | B1 |
9893555 | Leabman et al. | Feb 2018 | B1 |
9893564 | de Rochemont | Feb 2018 | B2 |
9899844 | Bell et al. | Feb 2018 | B1 |
9899861 | Leabman et al. | Feb 2018 | B1 |
9917477 | Bell et al. | Mar 2018 | B1 |
9923386 | Leabman et al. | Mar 2018 | B1 |
9939864 | Bell et al. | Apr 2018 | B1 |
9965009 | Bell et al. | May 2018 | B1 |
9966765 | Leabman | May 2018 | B1 |
9967743 | Bell et al. | May 2018 | B1 |
9973008 | Leabman | May 2018 | B1 |
10003211 | Leabman et al. | Jun 2018 | B1 |
10014728 | Leabman | Jul 2018 | B1 |
10027159 | Hosseini | Jul 2018 | B2 |
10038337 | Leabman et al. | Jul 2018 | B1 |
10050462 | Leabman et al. | Aug 2018 | B1 |
10056782 | Leabman | Aug 2018 | B1 |
10063064 | Bell et al. | Aug 2018 | B1 |
10068703 | Contopanagos | Sep 2018 | B1 |
10075008 | Bell et al. | Sep 2018 | B1 |
10090699 | Leabman | Oct 2018 | B1 |
10090886 | Bell et al. | Oct 2018 | B1 |
10103552 | Leabman et al. | Oct 2018 | B1 |
10122219 | Hosseini et al. | Nov 2018 | B1 |
10124754 | Leabman | Nov 2018 | B1 |
10128686 | Leabman et al. | Nov 2018 | B1 |
10134260 | Bell et al. | Nov 2018 | B1 |
10135112 | Hosseini | Nov 2018 | B1 |
10135294 | Leabman | Nov 2018 | B1 |
10141771 | Hosseini et al. | Nov 2018 | B1 |
10153645 | Bell et al. | Dec 2018 | B1 |
10153653 | Bell et al. | Dec 2018 | B1 |
10153660 | Leabman et al. | Dec 2018 | B1 |
10158257 | Leabman et al. | Dec 2018 | B2 |
10158259 | Leabman | Dec 2018 | B1 |
10164478 | Leabman | Dec 2018 | B2 |
10170917 | Bell et al. | Jan 2019 | B1 |
10186892 | Hosseini et al. | Jan 2019 | B2 |
10193396 | Bell et al. | Jan 2019 | B1 |
10199835 | Bell | Feb 2019 | B2 |
10199849 | Bell | Feb 2019 | B1 |
10205239 | Contopanagos et al. | Feb 2019 | B1 |
10211674 | Leabman et al. | Feb 2019 | B1 |
10223717 | Bell | Mar 2019 | B1 |
10224758 | Leabman et al. | Mar 2019 | B2 |
10224982 | Leabman | Mar 2019 | B1 |
10230266 | Leabman et al. | Mar 2019 | B1 |
10243414 | Leabman et al. | Mar 2019 | B1 |
10256657 | Hosseini et al. | Apr 2019 | B2 |
10256677 | Hosseini et al. | Apr 2019 | B2 |
10263432 | Leabman et al. | Apr 2019 | B1 |
10263476 | Leabman | Apr 2019 | B2 |
10270261 | Bell et al. | Apr 2019 | B2 |
10277054 | Hosseini | Apr 2019 | B2 |
10651670 | Jiang | May 2020 | B1 |
20010027876 | Tsukamoto et al. | Oct 2001 | A1 |
20020001307 | Nguyen et al. | Jan 2002 | A1 |
20020024471 | Ishitobi | Feb 2002 | A1 |
20020028655 | Rosener et al. | Mar 2002 | A1 |
20020034958 | Oberschmidt et al. | Mar 2002 | A1 |
20020054330 | Jinbo et al. | May 2002 | A1 |
20020065052 | Pande et al. | May 2002 | A1 |
20020072784 | Sheppard et al. | Jun 2002 | A1 |
20020095980 | Breed et al. | Jul 2002 | A1 |
20020103447 | Terry | Aug 2002 | A1 |
20020123776 | Von Arx | Sep 2002 | A1 |
20020133592 | Matsuda | Sep 2002 | A1 |
20020171594 | Fang | Nov 2002 | A1 |
20020172223 | Stilp | Nov 2002 | A1 |
20030005759 | Breed et al. | Jan 2003 | A1 |
20030058187 | Billiet et al. | Mar 2003 | A1 |
20030076274 | Phelan et al. | Apr 2003 | A1 |
20030179152 | Watada et al. | Sep 2003 | A1 |
20030179573 | Chun | Sep 2003 | A1 |
20030192053 | Sheppard et al. | Oct 2003 | A1 |
20040019624 | Sukegawa | Jan 2004 | A1 |
20040020100 | O'Brian et al. | Feb 2004 | A1 |
20040036657 | Forster et al. | Feb 2004 | A1 |
20040066251 | Eleftheriades et al. | Apr 2004 | A1 |
20040107641 | Walton et al. | Jun 2004 | A1 |
20040113543 | Daniels | Jun 2004 | A1 |
20040119675 | Washio et al. | Jun 2004 | A1 |
20040130425 | Dayan et al. | Jul 2004 | A1 |
20040130442 | Breed | Jul 2004 | A1 |
20040142733 | Parise | Jul 2004 | A1 |
20040145342 | Lyon | Jul 2004 | A1 |
20040196190 | Mendolia et al. | Oct 2004 | A1 |
20040203979 | Attar et al. | Oct 2004 | A1 |
20040207559 | Milosavljevic | Oct 2004 | A1 |
20040218759 | Yacobi | Nov 2004 | A1 |
20040259604 | Mickle et al. | Dec 2004 | A1 |
20040263124 | Wieck et al. | Dec 2004 | A1 |
20050007276 | Barrick et al. | Jan 2005 | A1 |
20050030118 | Wang | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050055316 | Williams | Mar 2005 | A1 |
20050077872 | Single | Apr 2005 | A1 |
20050093766 | Turner | May 2005 | A1 |
20050116683 | Cheng | Jun 2005 | A1 |
20050117660 | Vialle et al. | Jun 2005 | A1 |
20050134517 | Gottl | Jun 2005 | A1 |
20050171411 | KenKnight | Aug 2005 | A1 |
20050198673 | Kit et al. | Sep 2005 | A1 |
20050227619 | Lee et al. | Oct 2005 | A1 |
20050232469 | Schofield | Oct 2005 | A1 |
20050237249 | Nagel | Oct 2005 | A1 |
20050237258 | Abramov et al. | Oct 2005 | A1 |
20050282591 | Shaff | Dec 2005 | A1 |
20060013335 | Leabman | Jan 2006 | A1 |
20060019712 | Choi | Jan 2006 | A1 |
20060030279 | Leabman et al. | Feb 2006 | A1 |
20060033674 | Essig, Jr. et al. | Feb 2006 | A1 |
20060071308 | Tang et al. | Apr 2006 | A1 |
20060092079 | de Rochemont | May 2006 | A1 |
20060094425 | Mickle et al. | May 2006 | A1 |
20060113955 | Nunally | Jun 2006 | A1 |
20060119532 | Yun et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060160517 | Yoon | Jul 2006 | A1 |
20060183473 | Ukon | Aug 2006 | A1 |
20060190063 | Kanzius | Aug 2006 | A1 |
20060192913 | Shutou et al. | Aug 2006 | A1 |
20060199620 | Greene et al. | Sep 2006 | A1 |
20060238365 | Vecchione et al. | Oct 2006 | A1 |
20060266564 | Perlman et al. | Nov 2006 | A1 |
20060266917 | Baldis et al. | Nov 2006 | A1 |
20060278706 | Hatakayama et al. | Dec 2006 | A1 |
20060284593 | Nagy et al. | Dec 2006 | A1 |
20060287094 | Mahaffey et al. | Dec 2006 | A1 |
20070007821 | Rossetti | Jan 2007 | A1 |
20070019693 | Graham | Jan 2007 | A1 |
20070021140 | Keyes | Jan 2007 | A1 |
20070060185 | Simon et al. | Mar 2007 | A1 |
20070070490 | Tsunoda et al. | Mar 2007 | A1 |
20070090997 | Brown et al. | Apr 2007 | A1 |
20070093269 | Leabman et al. | Apr 2007 | A1 |
20070097653 | Gilliland et al. | May 2007 | A1 |
20070103110 | Sagoo | May 2007 | A1 |
20070106894 | Zhang | May 2007 | A1 |
20070109121 | Cohen | May 2007 | A1 |
20070139000 | Kozuma | Jun 2007 | A1 |
20070149162 | Greene et al. | Jun 2007 | A1 |
20070164868 | Deavours et al. | Jul 2007 | A1 |
20070173196 | Gallic | Jul 2007 | A1 |
20070173214 | Mickle et al. | Jul 2007 | A1 |
20070178857 | Greene et al. | Aug 2007 | A1 |
20070178945 | Cook et al. | Aug 2007 | A1 |
20070182367 | Partovi | Aug 2007 | A1 |
20070191074 | Harrist et al. | Aug 2007 | A1 |
20070191075 | Greene et al. | Aug 2007 | A1 |
20070197281 | Stronach | Aug 2007 | A1 |
20070210960 | Rofougaran et al. | Sep 2007 | A1 |
20070222681 | Greene et al. | Sep 2007 | A1 |
20070228833 | Stevens et al. | Oct 2007 | A1 |
20070257634 | Leschin et al. | Nov 2007 | A1 |
20070273486 | Shiotsu | Nov 2007 | A1 |
20070291165 | Wang | Dec 2007 | A1 |
20070296639 | Hook et al. | Dec 2007 | A1 |
20070298846 | Greene et al. | Dec 2007 | A1 |
20080014897 | Cook et al. | Jan 2008 | A1 |
20080024376 | Norris et al. | Jan 2008 | A1 |
20080048917 | Achour et al. | Feb 2008 | A1 |
20080062062 | Borau et al. | Mar 2008 | A1 |
20080062255 | Gal | Mar 2008 | A1 |
20080067874 | Tseng | Mar 2008 | A1 |
20080074324 | Puzella et al. | Mar 2008 | A1 |
20080089277 | Aledander et al. | Apr 2008 | A1 |
20080110263 | Klessel et al. | May 2008 | A1 |
20080113816 | Mahaffey et al. | May 2008 | A1 |
20080122297 | Arai | May 2008 | A1 |
20080123383 | Shionoiri | May 2008 | A1 |
20080129536 | Randall et al. | Jun 2008 | A1 |
20080140278 | Breed | Jun 2008 | A1 |
20080169910 | Greene et al. | Jul 2008 | A1 |
20080197802 | Onishi | Aug 2008 | A1 |
20080204342 | Kharadly | Aug 2008 | A1 |
20080204350 | Tam et al. | Aug 2008 | A1 |
20080210762 | Osada et al. | Sep 2008 | A1 |
20080211458 | Lawther et al. | Sep 2008 | A1 |
20080233890 | Baker | Sep 2008 | A1 |
20080248758 | Schedelbeck et al. | Oct 2008 | A1 |
20080248846 | Stronach et al. | Oct 2008 | A1 |
20080258981 | Achour | Oct 2008 | A1 |
20080258993 | Gummalla et al. | Oct 2008 | A1 |
20080266191 | Hilgers | Oct 2008 | A1 |
20080278378 | Chang et al. | Nov 2008 | A1 |
20080309452 | Zeine | Dec 2008 | A1 |
20090002493 | Kates | Jan 2009 | A1 |
20090010316 | Rofougaran et al. | Jan 2009 | A1 |
20090019183 | Wu et al. | Jan 2009 | A1 |
20090036065 | Siu | Feb 2009 | A1 |
20090047998 | Alberth, Jr. | Feb 2009 | A1 |
20090058354 | Harrison | Mar 2009 | A1 |
20090058361 | John | Mar 2009 | A1 |
20090058731 | Geary et al. | Mar 2009 | A1 |
20090060012 | Gresset et al. | Mar 2009 | A1 |
20090067208 | Martin et al. | Mar 2009 | A1 |
20090073066 | Jordon et al. | Mar 2009 | A1 |
20090096412 | Huang | Apr 2009 | A1 |
20090096413 | Partovi | Apr 2009 | A1 |
20090102292 | Cook et al. | Apr 2009 | A1 |
20090102296 | Greene et al. | Apr 2009 | A1 |
20090108679 | Porwal | Apr 2009 | A1 |
20090122847 | Nysen et al. | May 2009 | A1 |
20090128262 | Lee et al. | May 2009 | A1 |
20090157911 | Aihara | Jun 2009 | A1 |
20090200985 | Zane et al. | Aug 2009 | A1 |
20090206791 | Jung | Aug 2009 | A1 |
20090207090 | Pettus et al. | Aug 2009 | A1 |
20090207092 | Nysen et al. | Aug 2009 | A1 |
20090218884 | Soar | Sep 2009 | A1 |
20090218891 | McCollough | Sep 2009 | A1 |
20090219903 | Alamouti et al. | Sep 2009 | A1 |
20090243397 | Cook et al. | Oct 2009 | A1 |
20090264069 | Yamasuge | Oct 2009 | A1 |
20090271048 | Wakamatsu | Oct 2009 | A1 |
20090280866 | Lo et al. | Nov 2009 | A1 |
20090281678 | Wakamatsu | Nov 2009 | A1 |
20090284082 | Mohammadian | Nov 2009 | A1 |
20090284083 | Karalis et al. | Nov 2009 | A1 |
20090284220 | Toncich et al. | Nov 2009 | A1 |
20090284227 | Mohammadian et al. | Nov 2009 | A1 |
20090284325 | Rossiter et al. | Nov 2009 | A1 |
20090286475 | Toncich et al. | Nov 2009 | A1 |
20090286476 | Toncich et al. | Nov 2009 | A1 |
20090291634 | Saarisalo | Nov 2009 | A1 |
20090299175 | Bernstein et al. | Dec 2009 | A1 |
20090308936 | Nitzan et al. | Dec 2009 | A1 |
20090312046 | Clevenger et al. | Dec 2009 | A1 |
20090315412 | Yamamoto et al. | Dec 2009 | A1 |
20090322281 | Kamijo et al. | Dec 2009 | A1 |
20100001683 | Huang et al. | Jan 2010 | A1 |
20100007307 | Baarman et al. | Jan 2010 | A1 |
20100007569 | Sim et al. | Jan 2010 | A1 |
20100019686 | Gutierrez, Jr. | Jan 2010 | A1 |
20100019908 | Cho et al. | Jan 2010 | A1 |
20100026605 | Yang et al. | Feb 2010 | A1 |
20100027379 | Saulnier et al. | Feb 2010 | A1 |
20100029383 | Dai | Feb 2010 | A1 |
20100033021 | Bennett | Feb 2010 | A1 |
20100033390 | Alamouti et al. | Feb 2010 | A1 |
20100034238 | Bennett | Feb 2010 | A1 |
20100041453 | Grimm, Jr. | Feb 2010 | A1 |
20100044123 | Perlman et al. | Feb 2010 | A1 |
20100054200 | Tsai | Mar 2010 | A1 |
20100060534 | Oodachi | Mar 2010 | A1 |
20100066631 | Puzella et al. | Mar 2010 | A1 |
20100075607 | Hosoya | Mar 2010 | A1 |
20100079005 | Hyde et al. | Apr 2010 | A1 |
20100082193 | Chiappetta | Apr 2010 | A1 |
20100087227 | Francos et al. | Apr 2010 | A1 |
20100090524 | Obayashi | Apr 2010 | A1 |
20100090656 | Shearer et al. | Apr 2010 | A1 |
20100109443 | Cook et al. | May 2010 | A1 |
20100117926 | DeJean, II | May 2010 | A1 |
20100119234 | Suematsu et al. | May 2010 | A1 |
20100123618 | Martin et al. | May 2010 | A1 |
20100123624 | Minear et al. | May 2010 | A1 |
20100127660 | Cook et al. | May 2010 | A1 |
20100142418 | Nishioka et al. | Jun 2010 | A1 |
20100142509 | Zhu et al. | Jun 2010 | A1 |
20100148723 | Cook et al. | Jun 2010 | A1 |
20100151808 | Toncich et al. | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100156741 | Vazquez et al. | Jun 2010 | A1 |
20100164296 | Kurs et al. | Jul 2010 | A1 |
20100164433 | Janefalker et al. | Jul 2010 | A1 |
20100167664 | SzinI | Jul 2010 | A1 |
20100171461 | Baarman et al. | Jul 2010 | A1 |
20100174629 | Taylor et al. | Jul 2010 | A1 |
20100176934 | Chou et al. | Jul 2010 | A1 |
20100181961 | Novak et al. | Jul 2010 | A1 |
20100181964 | Huggins et al. | Jul 2010 | A1 |
20100194206 | Burdo et al. | Aug 2010 | A1 |
20100201189 | Kirby et al. | Aug 2010 | A1 |
20100201201 | Mobarhan et al. | Aug 2010 | A1 |
20100201314 | Toncich et al. | Aug 2010 | A1 |
20100207572 | Kirby et al. | Aug 2010 | A1 |
20100210233 | Cook et al. | Aug 2010 | A1 |
20100213895 | Keating et al. | Aug 2010 | A1 |
20100214177 | Parsche | Aug 2010 | A1 |
20100222010 | Ozaki et al. | Sep 2010 | A1 |
20100225270 | Jacobs et al. | Sep 2010 | A1 |
20100227570 | Hendin | Sep 2010 | A1 |
20100231470 | Lee et al. | Sep 2010 | A1 |
20100237709 | Hall et al. | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100256831 | Abramo et al. | Oct 2010 | A1 |
20100259110 | Kurs et al. | Oct 2010 | A1 |
20100259447 | Crouch | Oct 2010 | A1 |
20100264747 | Hall et al. | Oct 2010 | A1 |
20100277003 | Von Novak et al. | Nov 2010 | A1 |
20100277121 | Hall et al. | Nov 2010 | A1 |
20100279606 | Hillan et al. | Nov 2010 | A1 |
20100289341 | Ozaki et al. | Nov 2010 | A1 |
20100295372 | Hyde et al. | Nov 2010 | A1 |
20100308767 | Rofougaran et al. | Dec 2010 | A1 |
20100309079 | Rofougaran et al. | Dec 2010 | A1 |
20100309088 | Hyvonen et al. | Dec 2010 | A1 |
20100315045 | Zeine | Dec 2010 | A1 |
20100316163 | Forenza et al. | Dec 2010 | A1 |
20100327766 | Recker et al. | Dec 2010 | A1 |
20100328044 | Waffenschmidt et al. | Dec 2010 | A1 |
20100332401 | Prahlad et al. | Dec 2010 | A1 |
20110013198 | Shirley | Jan 2011 | A1 |
20110018360 | Baarman et al. | Jan 2011 | A1 |
20110028114 | Kerselaers | Feb 2011 | A1 |
20110031928 | Soar | Feb 2011 | A1 |
20110032149 | Leabman | Feb 2011 | A1 |
20110032866 | Leabman | Feb 2011 | A1 |
20110034190 | Leabman | Feb 2011 | A1 |
20110034191 | Leabman | Feb 2011 | A1 |
20110043047 | Karalis et al. | Feb 2011 | A1 |
20110043163 | Baarman et al. | Feb 2011 | A1 |
20110043327 | Baarman et al. | Feb 2011 | A1 |
20110050166 | Cook et al. | Mar 2011 | A1 |
20110055037 | Hayashigawa et al. | Mar 2011 | A1 |
20110056215 | Ham | Mar 2011 | A1 |
20110057607 | Carobolante | Mar 2011 | A1 |
20110057853 | Kim et al. | Mar 2011 | A1 |
20110062788 | Chen et al. | Mar 2011 | A1 |
20110074342 | MacLaughlin | Mar 2011 | A1 |
20110074349 | Ghovanloo | Mar 2011 | A1 |
20110074620 | Wintermantel | Mar 2011 | A1 |
20110078092 | Kim et al. | Mar 2011 | A1 |
20110090126 | Szini et al. | Apr 2011 | A1 |
20110109167 | Park et al. | May 2011 | A1 |
20110114401 | Kanno et al. | May 2011 | A1 |
20110115303 | Baarman et al. | May 2011 | A1 |
20110115432 | El-Maleh | May 2011 | A1 |
20110115605 | Dimig et al. | May 2011 | A1 |
20110121660 | Azancot et al. | May 2011 | A1 |
20110122018 | Tarng et al. | May 2011 | A1 |
20110122026 | DeLaquil et al. | May 2011 | A1 |
20110127845 | Walley et al. | Jun 2011 | A1 |
20110127952 | Walley et al. | Jun 2011 | A1 |
20110133655 | Recker et al. | Jun 2011 | A1 |
20110133691 | Hautanen | Jun 2011 | A1 |
20110148578 | Aloi et al. | Jun 2011 | A1 |
20110151789 | Viglione et al. | Jun 2011 | A1 |
20110154429 | Stantchev | Jun 2011 | A1 |
20110156494 | Mashinsky | Jun 2011 | A1 |
20110156640 | Moshfeghi | Jun 2011 | A1 |
20110163128 | Taguchi et al. | Jul 2011 | A1 |
20110175455 | Hashiguchi | Jul 2011 | A1 |
20110175461 | Tinaphong | Jul 2011 | A1 |
20110181120 | Liu et al. | Jul 2011 | A1 |
20110182245 | Malkamaki et al. | Jul 2011 | A1 |
20110184842 | Melen | Jul 2011 | A1 |
20110188207 | Won et al. | Aug 2011 | A1 |
20110194543 | Zhao et al. | Aug 2011 | A1 |
20110195722 | Walter et al. | Aug 2011 | A1 |
20110199046 | Tsai et al. | Aug 2011 | A1 |
20110215086 | Yeh | Sep 2011 | A1 |
20110217923 | Ma | Sep 2011 | A1 |
20110220634 | Yeh | Sep 2011 | A1 |
20110221389 | Won et al. | Sep 2011 | A1 |
20110222272 | Yeh | Sep 2011 | A1 |
20110243040 | Khan et al. | Oct 2011 | A1 |
20110243050 | Yanover | Oct 2011 | A1 |
20110244913 | Kim et al. | Oct 2011 | A1 |
20110248573 | Kanno et al. | Oct 2011 | A1 |
20110248575 | Kim et al. | Oct 2011 | A1 |
20110249678 | Bonicatto | Oct 2011 | A1 |
20110254377 | Widmer et al. | Oct 2011 | A1 |
20110254503 | Widmer et al. | Oct 2011 | A1 |
20110259953 | Baarman et al. | Oct 2011 | A1 |
20110273977 | Shapira et al. | Nov 2011 | A1 |
20110278941 | Krishna et al. | Nov 2011 | A1 |
20110279226 | Chen et al. | Nov 2011 | A1 |
20110281535 | Low et al. | Nov 2011 | A1 |
20110282415 | Eckhoff et al. | Nov 2011 | A1 |
20110285213 | Kowalewski | Nov 2011 | A1 |
20110286374 | Shin et al. | Nov 2011 | A1 |
20110291489 | Tsai et al. | Dec 2011 | A1 |
20110302078 | Failing | Dec 2011 | A1 |
20110304216 | Bauman | Dec 2011 | A1 |
20110304437 | Beeler | Dec 2011 | A1 |
20110304521 | Ando et al. | Dec 2011 | A1 |
20120013196 | Kim et al. | Jan 2012 | A1 |
20120013198 | Uramoto et al. | Jan 2012 | A1 |
20120013296 | Heydari et al. | Jan 2012 | A1 |
20120019419 | Prat et al. | Jan 2012 | A1 |
20120043887 | Mesibov | Feb 2012 | A1 |
20120051109 | Kim et al. | Mar 2012 | A1 |
20120051294 | Guillouard | Mar 2012 | A1 |
20120056486 | Endo et al. | Mar 2012 | A1 |
20120056741 | Zhu et al. | Mar 2012 | A1 |
20120068906 | Asher et al. | Mar 2012 | A1 |
20120074891 | Anderson et al. | Mar 2012 | A1 |
20120080944 | Recker et al. | Apr 2012 | A1 |
20120080957 | Cooper et al. | Apr 2012 | A1 |
20120086284 | Capanella et al. | Apr 2012 | A1 |
20120095617 | Martin et al. | Apr 2012 | A1 |
20120098350 | Campanella et al. | Apr 2012 | A1 |
20120098485 | Kang et al. | Apr 2012 | A1 |
20120099675 | Kitamura et al. | Apr 2012 | A1 |
20120103562 | Clayton | May 2012 | A1 |
20120104849 | Jackson | May 2012 | A1 |
20120105252 | Wang | May 2012 | A1 |
20120112532 | Kesler et al. | May 2012 | A1 |
20120119914 | Uchida | May 2012 | A1 |
20120126743 | Rivers, Jr. | May 2012 | A1 |
20120132647 | Beverly et al. | May 2012 | A1 |
20120133214 | Yun et al. | May 2012 | A1 |
20120142291 | Rath et al. | Jun 2012 | A1 |
20120146426 | Sabo | Jun 2012 | A1 |
20120146576 | Partovi | Jun 2012 | A1 |
20120146577 | Tanabe | Jun 2012 | A1 |
20120147802 | Ukita et al. | Jun 2012 | A1 |
20120149307 | Terada et al. | Jun 2012 | A1 |
20120150670 | Taylor et al. | Jun 2012 | A1 |
20120153894 | Widmer et al. | Jun 2012 | A1 |
20120157019 | Li | Jun 2012 | A1 |
20120161531 | Kim et al. | Jun 2012 | A1 |
20120161544 | Kashiwagi et al. | Jun 2012 | A1 |
20120169276 | Wang | Jul 2012 | A1 |
20120169278 | Choi | Jul 2012 | A1 |
20120173418 | Beardsmore et al. | Jul 2012 | A1 |
20120179004 | Roesicke et al. | Jul 2012 | A1 |
20120181973 | Lyden | Jul 2012 | A1 |
20120182427 | Marshall | Jul 2012 | A1 |
20120187851 | Huggins et al. | Aug 2012 | A1 |
20120193999 | Zeine | Aug 2012 | A1 |
20120200399 | Chae | Aug 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jian et al. | Aug 2012 | A1 |
20120206299 | Valdes-Garcia | Aug 2012 | A1 |
20120211214 | Phan | Aug 2012 | A1 |
20120212071 | Myabayashi et al. | Aug 2012 | A1 |
20120212072 | Miyabayashi et al. | Aug 2012 | A1 |
20120214462 | Chu et al. | Aug 2012 | A1 |
20120214536 | Kim et al. | Aug 2012 | A1 |
20120228392 | Cameron et al. | Sep 2012 | A1 |
20120228956 | Kamata | Sep 2012 | A1 |
20120231856 | Lee et al. | Sep 2012 | A1 |
20120235636 | Partovi | Sep 2012 | A1 |
20120242283 | Kim et al. | Sep 2012 | A1 |
20120248886 | Kesler et al. | Oct 2012 | A1 |
20120248888 | Kesler et al. | Oct 2012 | A1 |
20120248891 | Drennen | Oct 2012 | A1 |
20120249051 | Son et al. | Oct 2012 | A1 |
20120262002 | Widmer et al. | Oct 2012 | A1 |
20120265272 | Judkins | Oct 2012 | A1 |
20120267900 | Huffman et al. | Oct 2012 | A1 |
20120268238 | Park et al. | Oct 2012 | A1 |
20120274154 | DeLuca | Nov 2012 | A1 |
20120280650 | Kim et al. | Nov 2012 | A1 |
20120286582 | Kim et al. | Nov 2012 | A1 |
20120292993 | Mettler et al. | Nov 2012 | A1 |
20120293021 | Teggatz et al. | Nov 2012 | A1 |
20120293119 | Park et al. | Nov 2012 | A1 |
20120299389 | Lee et al. | Nov 2012 | A1 |
20120299540 | Perry | Nov 2012 | A1 |
20120299541 | Perry | Nov 2012 | A1 |
20120299542 | Perry | Nov 2012 | A1 |
20120300588 | Perry | Nov 2012 | A1 |
20120300592 | Perry | Nov 2012 | A1 |
20120300593 | Perry | Nov 2012 | A1 |
20120306705 | Sakurai et al. | Dec 2012 | A1 |
20120306707 | Yang et al. | Dec 2012 | A1 |
20120306720 | Tanmi et al. | Dec 2012 | A1 |
20120309295 | Maguire | Dec 2012 | A1 |
20120309308 | Kim et al. | Dec 2012 | A1 |
20120309332 | Liao | Dec 2012 | A1 |
20120313449 | Kurs | Dec 2012 | A1 |
20120313835 | Gebretnsae | Dec 2012 | A1 |
20120326660 | Lu et al. | Dec 2012 | A1 |
20130002550 | Zalewski | Jan 2013 | A1 |
20130018439 | Chow et al. | Jan 2013 | A1 |
20130024059 | Miller et al. | Jan 2013 | A1 |
20130026981 | Van Der Lee | Jan 2013 | A1 |
20130026982 | Rothenbaum | Jan 2013 | A1 |
20130032589 | Chung | Feb 2013 | A1 |
20130033571 | Steen | Feb 2013 | A1 |
20130038124 | Newdoll et al. | Feb 2013 | A1 |
20130038402 | Karalis et al. | Feb 2013 | A1 |
20130043738 | Park et al. | Feb 2013 | A1 |
20130044035 | Zhuang | Feb 2013 | A1 |
20130049471 | Oleynik | Feb 2013 | A1 |
20130049475 | Kim et al. | Feb 2013 | A1 |
20130049484 | Weissentern et al. | Feb 2013 | A1 |
20130057078 | Lee | Mar 2013 | A1 |
20130057205 | Lee et al. | Mar 2013 | A1 |
20130057210 | Negaard et al. | Mar 2013 | A1 |
20130057364 | Kesler et al. | Mar 2013 | A1 |
20130058379 | Kim et al. | Mar 2013 | A1 |
20130063082 | Lee et al. | Mar 2013 | A1 |
20130063143 | Adalsteinsson et al. | Mar 2013 | A1 |
20130069444 | Waffenschmidt et al. | Mar 2013 | A1 |
20130077650 | Traxler et al. | Mar 2013 | A1 |
20130078918 | Crowley et al. | Mar 2013 | A1 |
20130082651 | Park et al. | Apr 2013 | A1 |
20130082653 | Lee et al. | Apr 2013 | A1 |
20130083774 | Son et al. | Apr 2013 | A1 |
20130088082 | Kang et al. | Apr 2013 | A1 |
20130088090 | Wu | Apr 2013 | A1 |
20130088192 | Eaton | Apr 2013 | A1 |
20130088331 | Cho | Apr 2013 | A1 |
20130093388 | Partovi | Apr 2013 | A1 |
20130099389 | Hong et al. | Apr 2013 | A1 |
20130099586 | Kato | Apr 2013 | A1 |
20130106197 | Bae et al. | May 2013 | A1 |
20130107023 | Tanaka et al. | May 2013 | A1 |
20130119777 | Rees | May 2013 | A1 |
20130119778 | Jung | May 2013 | A1 |
20130119929 | Partovi | May 2013 | A1 |
20130120217 | Ueda et al. | May 2013 | A1 |
20130132010 | Winger et al. | May 2013 | A1 |
20130134923 | Smith | May 2013 | A1 |
20130137455 | Xia | May 2013 | A1 |
20130141037 | Jenwatanavet et al. | Jun 2013 | A1 |
20130148341 | Williams | Jun 2013 | A1 |
20130149975 | Yu et al. | Jun 2013 | A1 |
20130154387 | Lee et al. | Jun 2013 | A1 |
20130155748 | Sundstrom | Jun 2013 | A1 |
20130157729 | Tabe | Jun 2013 | A1 |
20130162335 | Kim et al. | Jun 2013 | A1 |
20130169061 | Microshnichenko et al. | Jul 2013 | A1 |
20130169219 | Gray | Jul 2013 | A1 |
20130169348 | Shi | Jul 2013 | A1 |
20130171939 | Tian et al. | Jul 2013 | A1 |
20130175877 | Abe et al. | Jul 2013 | A1 |
20130178253 | Karaoguz | Jul 2013 | A1 |
20130181881 | Christie et al. | Jul 2013 | A1 |
20130187475 | Vendik | Jul 2013 | A1 |
20130190031 | Persson et al. | Jul 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130197320 | Albert et al. | Aug 2013 | A1 |
20130200064 | Alexander | Aug 2013 | A1 |
20130207477 | Nam et al. | Aug 2013 | A1 |
20130207604 | Zeine | Aug 2013 | A1 |
20130207879 | Rada et al. | Aug 2013 | A1 |
20130210357 | Qin et al. | Aug 2013 | A1 |
20130221757 | Cho et al. | Aug 2013 | A1 |
20130222201 | Ma et al. | Aug 2013 | A1 |
20130234530 | Miyauchi | Sep 2013 | A1 |
20130234536 | Chemishkian et al. | Sep 2013 | A1 |
20130234658 | Endo et al. | Sep 2013 | A1 |
20130241306 | Aber et al. | Sep 2013 | A1 |
20130241468 | Moshfeghi | Sep 2013 | A1 |
20130241474 | Moshfeghi | Sep 2013 | A1 |
20130249478 | Hirano | Sep 2013 | A1 |
20130249479 | Partovi | Sep 2013 | A1 |
20130250102 | Scanlon et al. | Sep 2013 | A1 |
20130254578 | Huang et al. | Sep 2013 | A1 |
20130264997 | Lee et al. | Oct 2013 | A1 |
20130268782 | Tam et al. | Oct 2013 | A1 |
20130270923 | Cook et al. | Oct 2013 | A1 |
20130278076 | Proud | Oct 2013 | A1 |
20130278209 | Von Novak | Oct 2013 | A1 |
20130285464 | Miwa | Oct 2013 | A1 |
20130285477 | Lo et al. | Oct 2013 | A1 |
20130285606 | Ben-Shalom et al. | Oct 2013 | A1 |
20130288600 | Kuusilinna et al. | Oct 2013 | A1 |
20130288617 | Kim et al. | Oct 2013 | A1 |
20130293423 | Moshfeghi | Nov 2013 | A1 |
20130307751 | Yu-Juin et al. | Nov 2013 | A1 |
20130310020 | Kazuhiro | Nov 2013 | A1 |
20130311798 | Sultenfuss | Nov 2013 | A1 |
20130328417 | Takeuchi | Dec 2013 | A1 |
20130334883 | Kim et al. | Dec 2013 | A1 |
20130339108 | Ryder et al. | Dec 2013 | A1 |
20130343208 | Sexton et al. | Dec 2013 | A1 |
20130343251 | Zhang | Dec 2013 | A1 |
20140001846 | Mosebrook | Jan 2014 | A1 |
20140001875 | Nahidipour | Jan 2014 | A1 |
20140001876 | Fujiwara et al. | Jan 2014 | A1 |
20140006017 | Sen | Jan 2014 | A1 |
20140008992 | Leabman | Jan 2014 | A1 |
20140008993 | Leabman | Jan 2014 | A1 |
20140009108 | Leabman | Jan 2014 | A1 |
20140009110 | Lee | Jan 2014 | A1 |
20140011531 | Burstrom et al. | Jan 2014 | A1 |
20140015336 | Weber et al. | Jan 2014 | A1 |
20140015344 | Mohamadi | Jan 2014 | A1 |
20140021907 | Yun et al. | Jan 2014 | A1 |
20140021908 | McCool | Jan 2014 | A1 |
20140035524 | Zeine | Feb 2014 | A1 |
20140035526 | Tripathi et al. | Feb 2014 | A1 |
20140035786 | Ley | Feb 2014 | A1 |
20140043248 | Yeh | Feb 2014 | A1 |
20140049422 | Von Novak et al. | Feb 2014 | A1 |
20140054971 | Kissin | Feb 2014 | A1 |
20140055098 | Lee et al. | Feb 2014 | A1 |
20140057618 | Zirwas et al. | Feb 2014 | A1 |
20140062395 | Kwon et al. | Mar 2014 | A1 |
20140082435 | Kitgawa | Mar 2014 | A1 |
20140086125 | Polo et al. | Mar 2014 | A1 |
20140086592 | Nakahara et al. | Mar 2014 | A1 |
20140091756 | Ofstein et al. | Apr 2014 | A1 |
20140091968 | Harel et al. | Apr 2014 | A1 |
20140103869 | Radovic | Apr 2014 | A1 |
20140104157 | Burns | Apr 2014 | A1 |
20140111147 | Soar | Apr 2014 | A1 |
20140113689 | Lee | Apr 2014 | A1 |
20140117946 | Muller et al. | May 2014 | A1 |
20140118140 | Amis | May 2014 | A1 |
20140128107 | An | May 2014 | A1 |
20140132210 | Partovi | May 2014 | A1 |
20140133279 | Khuri-Yakub | May 2014 | A1 |
20140139034 | Sankar et al. | May 2014 | A1 |
20140139039 | Cook et al. | May 2014 | A1 |
20140139180 | Kim et al. | May 2014 | A1 |
20140141838 | Cai et al. | May 2014 | A1 |
20140142876 | John et al. | May 2014 | A1 |
20140143933 | Low et al. | May 2014 | A1 |
20140145879 | Pan | May 2014 | A1 |
20140145884 | Dang et al. | May 2014 | A1 |
20140152117 | Sanker | Jun 2014 | A1 |
20140159651 | Von Novak et al. | Jun 2014 | A1 |
20140159652 | Hall et al. | Jun 2014 | A1 |
20140159662 | Furui | Jun 2014 | A1 |
20140159667 | Kim et al. | Jun 2014 | A1 |
20140169385 | Hadani et al. | Jun 2014 | A1 |
20140175893 | Sengupta et al. | Jun 2014 | A1 |
20140176054 | Porat et al. | Jun 2014 | A1 |
20140176061 | Cheatham, III et al. | Jun 2014 | A1 |
20140176082 | Visser | Jun 2014 | A1 |
20140177399 | Teng et al. | Jun 2014 | A1 |
20140184148 | Van Der Lee et al. | Jul 2014 | A1 |
20140184155 | Cha | Jul 2014 | A1 |
20140184163 | Das et al. | Jul 2014 | A1 |
20140184170 | Jeong | Jul 2014 | A1 |
20140191568 | Partovi | Jul 2014 | A1 |
20140194092 | Wanstedt et al. | Jul 2014 | A1 |
20140194095 | Wanstedt et al. | Jul 2014 | A1 |
20140197691 | Wang | Jul 2014 | A1 |
20140206384 | Kim et al. | Jul 2014 | A1 |
20140210281 | Ito et al. | Jul 2014 | A1 |
20140217955 | Lin | Aug 2014 | A1 |
20140217967 | Zeine et al. | Aug 2014 | A1 |
20140225805 | Pan et al. | Aug 2014 | A1 |
20140232320 | Ento July et al. | Aug 2014 | A1 |
20140232610 | Shigemoto et al. | Aug 2014 | A1 |
20140239733 | Mach et al. | Aug 2014 | A1 |
20140241231 | Zeine | Aug 2014 | A1 |
20140245036 | Oishi | Aug 2014 | A1 |
20140246416 | White | Sep 2014 | A1 |
20140247152 | Proud | Sep 2014 | A1 |
20140252813 | Lee et al. | Sep 2014 | A1 |
20140252866 | Walsh et al. | Sep 2014 | A1 |
20140265725 | Angle et al. | Sep 2014 | A1 |
20140265727 | Berte | Sep 2014 | A1 |
20140265943 | Angle et al. | Sep 2014 | A1 |
20140266025 | Jakubowski | Sep 2014 | A1 |
20140266946 | Bily et al. | Sep 2014 | A1 |
20140273892 | Nourbakhsh | Sep 2014 | A1 |
20140281655 | Angle et al. | Sep 2014 | A1 |
20140292090 | Cordeiro et al. | Oct 2014 | A1 |
20140300452 | Rofe et al. | Oct 2014 | A1 |
20140312706 | Fiorello et al. | Oct 2014 | A1 |
20140325218 | Shimizu et al. | Oct 2014 | A1 |
20140327320 | Muhs et al. | Nov 2014 | A1 |
20140327390 | Park et al. | Nov 2014 | A1 |
20140333142 | Desrosiers | Nov 2014 | A1 |
20140346860 | Aubry et al. | Nov 2014 | A1 |
20140354063 | Leabman et al. | Dec 2014 | A1 |
20140354221 | Leabman et al. | Dec 2014 | A1 |
20140355718 | Guan et al. | Dec 2014 | A1 |
20140357309 | Leabman et al. | Dec 2014 | A1 |
20140368048 | Leabman | Dec 2014 | A1 |
20140368161 | Leabman et al. | Dec 2014 | A1 |
20140368405 | Ek et al. | Dec 2014 | A1 |
20140375139 | Tsukamoto | Dec 2014 | A1 |
20140375253 | Leabman et al. | Dec 2014 | A1 |
20140375255 | Leabman et al. | Dec 2014 | A1 |
20140375258 | Arkhipenkov | Dec 2014 | A1 |
20140375261 | Manova-Elssibony et al. | Dec 2014 | A1 |
20140376646 | Leabman et al. | Dec 2014 | A1 |
20150001949 | Leabman et al. | Jan 2015 | A1 |
20150002086 | Matos et al. | Jan 2015 | A1 |
20150003207 | Lee et al. | Jan 2015 | A1 |
20150008980 | Kim et al. | Jan 2015 | A1 |
20150011160 | Uurgovan et al. | Jan 2015 | A1 |
20150015180 | Miller et al. | Jan 2015 | A1 |
20150015182 | Brandtman et al. | Jan 2015 | A1 |
20150015192 | Leabamn | Jan 2015 | A1 |
20150015194 | Leabman et al. | Jan 2015 | A1 |
20150015195 | Leabman et al. | Jan 2015 | A1 |
20150021990 | Myer et al. | Jan 2015 | A1 |
20150022008 | Leabman et al. | Jan 2015 | A1 |
20150022009 | Leabman et al. | Jan 2015 | A1 |
20150022010 | Leabman et al. | Jan 2015 | A1 |
20150023204 | Wil et al. | Jan 2015 | A1 |
20150028688 | Masaoka | Jan 2015 | A1 |
20150028694 | Leabman et al. | Jan 2015 | A1 |
20150028697 | Leabman et al. | Jan 2015 | A1 |
20150028875 | Irie et al. | Jan 2015 | A1 |
20150029397 | Leabman et al. | Jan 2015 | A1 |
20150035378 | Calhoun et al. | Feb 2015 | A1 |
20150035715 | Kim et al. | Feb 2015 | A1 |
20150039482 | Fuinaga | Feb 2015 | A1 |
20150041459 | Leabman et al. | Feb 2015 | A1 |
20150042264 | Leabman et al. | Feb 2015 | A1 |
20150042265 | Leabman et al. | Feb 2015 | A1 |
20150044977 | Ramasamy et al. | Feb 2015 | A1 |
20150046526 | Bush et al. | Feb 2015 | A1 |
20150061404 | Lamenza et al. | Mar 2015 | A1 |
20150076917 | Leabman et al. | Mar 2015 | A1 |
20150076927 | Leabman et al. | Mar 2015 | A1 |
20150077036 | Leabman et al. | Mar 2015 | A1 |
20150077037 | Leabman et al. | Mar 2015 | A1 |
20150091520 | Blum et al. | Apr 2015 | A1 |
20150091706 | Chemishkian et al. | Apr 2015 | A1 |
20150097442 | Muurinen | Apr 2015 | A1 |
20150097663 | Sloo et al. | Apr 2015 | A1 |
20150102681 | Leabman et al. | Apr 2015 | A1 |
20150102764 | Leabman et al. | Apr 2015 | A1 |
20150102769 | Leabman et al. | Apr 2015 | A1 |
20150102973 | Hand et al. | Apr 2015 | A1 |
20150108848 | Joehren | Apr 2015 | A1 |
20150109181 | Hyde et al. | Apr 2015 | A1 |
20150115877 | Aria et al. | Apr 2015 | A1 |
20150115878 | Park | Apr 2015 | A1 |
20150123483 | Leabman et al. | May 2015 | A1 |
20150123496 | Leabman et al. | May 2015 | A1 |
20150128733 | Taylor et al. | May 2015 | A1 |
20150130285 | Leabman et al. | May 2015 | A1 |
20150130293 | Hajimiri et al. | May 2015 | A1 |
20150137612 | Yamakawa et al. | May 2015 | A1 |
20150148664 | Stolka et al. | May 2015 | A1 |
20150155737 | Mayo | Jun 2015 | A1 |
20150155738 | Leabman et al. | Jun 2015 | A1 |
20150162751 | Leabman et al. | Jun 2015 | A1 |
20150162779 | Lee et al. | Jun 2015 | A1 |
20150171513 | Chen et al. | Jun 2015 | A1 |
20150171656 | Leabman et al. | Jun 2015 | A1 |
20150171658 | Manova-Elssibony et al. | Jun 2015 | A1 |
20150171931 | Won et al. | Jun 2015 | A1 |
20150177326 | Chakraborty et al. | Jun 2015 | A1 |
20150180133 | Hunt | Jun 2015 | A1 |
20150181117 | Park et al. | Jun 2015 | A1 |
20150187491 | Yanagawa | Jul 2015 | A1 |
20150188352 | Peek et al. | Jul 2015 | A1 |
20150199665 | Chu | Jul 2015 | A1 |
20150201385 | Mercer et al. | Jul 2015 | A1 |
20150207333 | Baarman et al. | Jul 2015 | A1 |
20150207542 | Zeine | Jul 2015 | A1 |
20150222126 | Leabman et al. | Aug 2015 | A1 |
20150233987 | Von Novak, III et al. | Aug 2015 | A1 |
20150234144 | Cameron et al. | Aug 2015 | A1 |
20150236520 | Baarman | Aug 2015 | A1 |
20150244070 | Cheng et al. | Aug 2015 | A1 |
20150244080 | Gregoire | Aug 2015 | A1 |
20150244187 | Horie | Aug 2015 | A1 |
20150244201 | Chu | Aug 2015 | A1 |
20150244341 | Ritter et al. | Aug 2015 | A1 |
20150249484 | Mach et al. | Sep 2015 | A1 |
20150255989 | Walley et al. | Sep 2015 | A1 |
20150256097 | Gudan et al. | Sep 2015 | A1 |
20150263534 | Lee et al. | Sep 2015 | A1 |
20150263548 | Cooper | Sep 2015 | A1 |
20150270618 | Zhu et al. | Sep 2015 | A1 |
20150270622 | Takasaki et al. | Sep 2015 | A1 |
20150270741 | Leabman et al. | Sep 2015 | A1 |
20150280484 | Radziemski et al. | Oct 2015 | A1 |
20150288074 | Harper et al. | Oct 2015 | A1 |
20150288438 | Maltsev et al. | Oct 2015 | A1 |
20150311585 | Church et al. | Oct 2015 | A1 |
20150312721 | Singh | Oct 2015 | A1 |
20150318729 | Leabman | Nov 2015 | A1 |
20150326024 | Bell et al. | Nov 2015 | A1 |
20150326025 | Bell et al. | Nov 2015 | A1 |
20150326051 | Bell et al. | Nov 2015 | A1 |
20150326063 | Leabman et al. | Nov 2015 | A1 |
20150326068 | Bell et al. | Nov 2015 | A1 |
20150326069 | Petras et al. | Nov 2015 | A1 |
20150326070 | Petras et al. | Nov 2015 | A1 |
20150326071 | Contopanagos | Nov 2015 | A1 |
20150326072 | Petras et al. | Nov 2015 | A1 |
20150326142 | Petras et al. | Nov 2015 | A1 |
20150326143 | Petras et al. | Nov 2015 | A1 |
20150327085 | Hadani | Nov 2015 | A1 |
20150333528 | Leabman | Nov 2015 | A1 |
20150333529 | Leabman | Nov 2015 | A1 |
20150333573 | Leabman | Nov 2015 | A1 |
20150333800 | Perry et al. | Nov 2015 | A1 |
20150340759 | Bridgelall et al. | Nov 2015 | A1 |
20150340903 | Bell et al. | Nov 2015 | A1 |
20150340909 | Bell et al. | Nov 2015 | A1 |
20150340910 | Petras et al. | Nov 2015 | A1 |
20150340911 | Bell et al. | Nov 2015 | A1 |
20150341087 | Moore et al. | Nov 2015 | A1 |
20150349574 | Leabman | Dec 2015 | A1 |
20150358222 | Berger et al. | Dec 2015 | A1 |
20150365137 | Miller et al. | Dec 2015 | A1 |
20150365138 | Miller et al. | Dec 2015 | A1 |
20160005068 | Im et al. | Jan 2016 | A1 |
20160012695 | Bell et al. | Jan 2016 | A1 |
20160013656 | Bell et al. | Jan 2016 | A1 |
20160013677 | Bell et al. | Jan 2016 | A1 |
20160013678 | Bell et al. | Jan 2016 | A1 |
20160013855 | Campos | Jan 2016 | A1 |
20160020636 | Khlat | Jan 2016 | A1 |
20160020647 | Leabman et al. | Jan 2016 | A1 |
20160020649 | Bell et al. | Jan 2016 | A1 |
20160020830 | Bell et al. | Jan 2016 | A1 |
20160042206 | Pesavento et al. | Feb 2016 | A1 |
20160054395 | Bell et al. | Feb 2016 | A1 |
20160054396 | Bell et al. | Feb 2016 | A1 |
20160054440 | Younis | Feb 2016 | A1 |
20160056635 | Bell | Feb 2016 | A1 |
20160056640 | Mao | Feb 2016 | A1 |
20160056669 | Bell | Feb 2016 | A1 |
20160056966 | Bell | Feb 2016 | A1 |
20160065005 | Won et al. | Mar 2016 | A1 |
20160079799 | Khlat | Mar 2016 | A1 |
20160087483 | Hietala et al. | Mar 2016 | A1 |
20160087486 | Pogorelik et al. | Mar 2016 | A1 |
20160094091 | Shin et al. | Mar 2016 | A1 |
20160094092 | Davlantes et al. | Mar 2016 | A1 |
20160099601 | Leabman et al. | Apr 2016 | A1 |
20160099602 | Leabman et al. | Apr 2016 | A1 |
20160099609 | Leabman et al. | Apr 2016 | A1 |
20160099610 | Leabman et al. | Apr 2016 | A1 |
20160099611 | Leabman et al. | Apr 2016 | A1 |
20160099612 | Leabman et al. | Apr 2016 | A1 |
20160099613 | Leabman et al. | Apr 2016 | A1 |
20160099614 | Leabman et al. | Apr 2016 | A1 |
20160099755 | Leabman et al. | Apr 2016 | A1 |
20160099756 | Leabman et al. | Apr 2016 | A1 |
20160099757 | Leabman et al. | Apr 2016 | A1 |
20160099758 | Leabman et al. | Apr 2016 | A1 |
20160100124 | Leabman et al. | Apr 2016 | A1 |
20160100312 | Bell et al. | Apr 2016 | A1 |
20160112787 | Rich | Apr 2016 | A1 |
20160126752 | Vuori et al. | May 2016 | A1 |
20160126776 | Kim et al. | May 2016 | A1 |
20160141908 | Jakl et al. | May 2016 | A1 |
20160164563 | Khawand et al. | Jun 2016 | A1 |
20160181849 | Govindaraj | Jun 2016 | A1 |
20160181854 | Leabman | Jun 2016 | A1 |
20160181867 | Daniel et al. | Jun 2016 | A1 |
20160181873 | Mitcheson et al. | Jun 2016 | A1 |
20160191121 | Bell | Jun 2016 | A1 |
20160202343 | Okutsu | Jul 2016 | A1 |
20160204622 | Leabman | Jul 2016 | A1 |
20160204642 | Oh | Jul 2016 | A1 |
20160233582 | Piskun | Aug 2016 | A1 |
20160238365 | Wixey et al. | Aug 2016 | A1 |
20160240908 | Strong | Aug 2016 | A1 |
20160248276 | Hong et al. | Aug 2016 | A1 |
20160294225 | Blum et al. | Oct 2016 | A1 |
20160299210 | Zeine | Oct 2016 | A1 |
20160301240 | Zeine | Oct 2016 | A1 |
20160323000 | Liu et al. | Nov 2016 | A1 |
20160336804 | Son et al. | Nov 2016 | A1 |
20160339258 | Perryman et al. | Nov 2016 | A1 |
20160359367 | Rothschild | Dec 2016 | A1 |
20160380464 | Chin et al. | Dec 2016 | A1 |
20160380466 | Yang et al. | Dec 2016 | A1 |
20170005481 | Von Novak, III | Jan 2017 | A1 |
20170005516 | Leabman et al. | Jan 2017 | A9 |
20170005524 | Akuzawa et al. | Jan 2017 | A1 |
20170005530 | Zeine et al. | Jan 2017 | A1 |
20170025903 | Song et al. | Jan 2017 | A1 |
20170026087 | Tanabe | Jan 2017 | A1 |
20170040700 | Leung | Feb 2017 | A1 |
20170043675 | Jones et al. | Feb 2017 | A1 |
20170047784 | Jung et al. | Feb 2017 | A1 |
20170187225 | Hosseini | Feb 2017 | A1 |
20170063168 | Uchida | Mar 2017 | A1 |
20170077733 | Jeong et al. | Mar 2017 | A1 |
20170077735 | Leabman | Mar 2017 | A1 |
20170077736 | Leabman | Mar 2017 | A1 |
20170077764 | Bell et al. | Mar 2017 | A1 |
20170077765 | Bell et al. | Mar 2017 | A1 |
20170077995 | Leabman | Mar 2017 | A1 |
20170085112 | Leabman et al. | Mar 2017 | A1 |
20170085120 | Leabman et al. | Mar 2017 | A1 |
20170085127 | Leabman | Mar 2017 | A1 |
20170085437 | Condeixa et al. | Mar 2017 | A1 |
20170092115 | Sloo et al. | Mar 2017 | A1 |
20170104263 | Hosseini | Apr 2017 | A1 |
20170110888 | Leabman | Apr 2017 | A1 |
20170110889 | Bell | Apr 2017 | A1 |
20170110914 | Bell | Apr 2017 | A1 |
20170127196 | Blum et al. | May 2017 | A1 |
20170134686 | Leabman | May 2017 | A9 |
20170163076 | Park et al. | Jun 2017 | A1 |
20170168595 | Sakaguchi et al. | Jun 2017 | A1 |
20170179763 | Leabman | Jun 2017 | A9 |
20170179771 | Leabman | Jun 2017 | A1 |
20170187198 | Leabman | Jun 2017 | A1 |
20170187222 | Hosseini | Jun 2017 | A1 |
20170187223 | Hosseini | Jun 2017 | A1 |
20170187228 | Hosseini | Jun 2017 | A1 |
20170187248 | Leabman | Jun 2017 | A1 |
20170187422 | Hosseini | Jun 2017 | A1 |
20170214422 | Na et al. | Jul 2017 | A1 |
20170338695 | Port | Nov 2017 | A1 |
20180040929 | Chappelle | Feb 2018 | A1 |
20180048178 | Leabman | Feb 2018 | A1 |
20180123400 | Leabman | May 2018 | A1 |
20180131238 | Leabman | May 2018 | A1 |
20180159338 | Leabman et al. | Jun 2018 | A1 |
20180159355 | Leabman | Jun 2018 | A1 |
20180166924 | Hosseini | Jun 2018 | A1 |
20180166925 | Hosseini | Jun 2018 | A1 |
20180198199 | Hosseini | Jul 2018 | A1 |
20180212474 | Hosseini | Jul 2018 | A1 |
20180226840 | Leabman | Aug 2018 | A1 |
20180241255 | Leabman | Aug 2018 | A1 |
20180248409 | Johnston | Aug 2018 | A1 |
20180262014 | Bell | Sep 2018 | A1 |
20180262040 | Contopanagos | Sep 2018 | A1 |
20180262060 | Johnston | Sep 2018 | A1 |
20180269570 | Hosseini | Sep 2018 | A1 |
20180287431 | Liu et al. | Oct 2018 | A1 |
20180331429 | Kornaros | Nov 2018 | A1 |
20180331581 | Hosseini | Nov 2018 | A1 |
20180337534 | Bell et al. | Nov 2018 | A1 |
20180375340 | Bell et al. | Dec 2018 | A1 |
20180375368 | Leabman | Dec 2018 | A1 |
20180376235 | Leabman | Dec 2018 | A1 |
20190074133 | Contopanagos | Mar 2019 | A1 |
20190229397 | Rizzo | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
102292896 | Dec 2011 | CN |
102860037 | Jan 2013 | CN |
203826555 | Sep 2014 | CN |
104090265 | Oct 2014 | CN |
103380561 | Sep 2017 | CN |
200216655 | Feb 2002 | DE |
1028482 | Aug 2000 | EP |
1081506 | Mar 2001 | EP |
2397973 | Jun 2010 | EP |
2346136 | Jul 2011 | EP |
2545635 | Jan 2013 | EP |
3067983 | Sep 2016 | EP |
3145052 | Mar 2017 | EP |
2404497 | Feb 2005 | GB |
2002319816 | Oct 2002 | JP |
2006157586 | Jun 2006 | JP |
2007043432 | Feb 2007 | JP |
2008167017 | Jul 2008 | JP |
2013162624 | Aug 2013 | JP |
2015128349 | Jul 2015 | JP |
WO2015177859 | Apr 2017 | JP |
20060061776 | Jun 2006 | KR |
20070044302 | Apr 2007 | KR |
100755144 | Sep 2007 | KR |
20110132059 | Dec 2011 | KR |
20110135540 | Dec 2011 | KR |
20120009843 | Feb 2012 | KR |
20120108759 | Oct 2012 | KR |
20130026977 | Mar 2013 | KR |
WO 9952173 | Oct 1999 | WO |
WO 200111716 | Feb 2001 | WO |
WO 2003091943 | Nov 2003 | WO |
WO 2004077550 | Sep 2004 | WO |
WO 2006122783 | Nov 2006 | WO |
WO 2008156571 | Dec 2008 | WO |
WO 2010022181 | Feb 2010 | WO |
WO 2010039246 | Apr 2010 | WO |
WO 2010138994 | Dec 2010 | WO |
WO 2011112022 | Sep 2011 | WO |
WO 2012177283 | Dec 2012 | WO |
WO 2013031988 | Mar 2013 | WO |
WO 2013035190 | Mar 2013 | WO |
WO 2013038074 | Mar 2013 | WO |
WO 2013042399 | Mar 2013 | WO |
WO 2013052950 | Apr 2013 | WO |
WO 2013105920 | Jul 2013 | WO |
WO 2014075103 | May 2014 | WO |
WO 2014132258 | Sep 2014 | WO |
WO 2014182788 | Nov 2014 | WO |
WO 2014182788 | Nov 2014 | WO |
WO 2014197472 | Dec 2014 | WO |
WO 2014209587 | Dec 2014 | WO |
WO 2015038773 | Mar 2015 | WO |
WO 2015097809 | Jul 2015 | WO |
WO 2015161323 | Oct 2015 | WO |
WO 2016024869 | Feb 2016 | WO |
WO 2016048512 | Mar 2016 | WO |
WO 2016187357 | Nov 2016 | WO |
Entry |
---|
Energous Corp. ISRWO, PCT/US2014/037170, Sep. 15, 2014, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/037170, Nov. 10, 2015, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/041534, Oct. 13, 2014, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/041534, Dec. 29, 2015, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/046956, Nov. 12, 2014, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/046956, Jan. 19, 2016, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/037072, Sep. 12, 2014, 8 pgs. |
Energous Corp., IPRP, PCT/US2014/037072, Nov. 10, 2015, 6 pgs. |
Energous Corp., ISRWO, PCT/US2014/068568, Mar. 20, 2015, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/068568, Jun. 14, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/055195, Dec. 22, 2014, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/055195, Mar. 22, 2016, 9 pgs. |
Energous Corp., ISRWO, PCT/US2015/067291, Mar. 4, 2016, 10 pgs. |
Energous Corp., IPRP, PCT/US2015/067291, Jul. 4, 2017, 4 pgs. |
Energous Corp., ISRWO, PCT/US2015/067242, Mar. 16, 2016, 9 pgs. |
Energous Corp., IPRP, PCT/US2015/067242, Jun. 27, 2017, 7 pgs. |
Energous Corp., ISRWO, PCT/US2015/067243, Mar. 10, 2016, 11 pgs. |
Energous Corp., IPRP, PCT/US2015/067243, Jun. 27, 2017, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/037109, Apr. 8, 2016, 12 pgs. |
Energous Corp., IPRP, PCT/US2014/037109, Apr. 12, 2016, 9 pgs. |
Energous Corp., ISRWO, PCT/US2015/067275, Mar. 3, 2016, 8 pgs. |
Energous Corp., IPRP, PCT/US2015/067275, Jul. 4, 2017, 7 pgs. |
Energous Corp., ISRWO, PCT/US2015/067245, Mar. 17, 2016, 8 pgs. |
Energous Corp., IPRP, PCT/US2015/067245, Jun. 27, 2017, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/041546, Oct. 16, 2014, 12 pgs. |
Energous Corp., IPRP, PCT/US2014/041546, Dec. 29, 2015, 9 pgs. |
Energous Corp., ISRWO, PCT/US2015/67250, Mar. 30, 2016, 11 pgs. |
Energous Corp., IPRP, PCT/US2015/67250, Mar. 30, 2016, 10 pgs. |
Energous Corp., ISRWO, PCT/US2015/067325, Mar. 10, 2016, 9 pgs. |
Energous Corp., IPRP, PCT/US2015/067325, Jul. 4, 2017, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/040697, Oct. 1, 2014, 12 pgs. |
Energous Corp., IPRP, PCT/US2014/040697, Dec. 8, 2015, 9 pgs. |
Energous Corp., ISRWO, PCT/US2014/040705, Sep. 23, 2014, 8 pgs. |
Energous Corp., IPRP, PCT/US2014/040705, Dec. 8, 2015, 6 pgs. |
Energous Corp., ISRWO, PCT/US2015/067249, Mar. 29, 2016, 8 pgs. |
Energous Corp., IPRP, PCT/US2015/067249, Jun. 27, 2017, 7 pgs. |
Energous Corp., ISRWO, PCT/US2015/067246, May 11, 2016, 18 pgs. |
Energous Corp., IPRP, PCT/US2015/067246, Jun. 27, 2017, 9 pgs. |
Energous Corp., ISRWO, PCT/US2014/059317, Feb. 24, 2015, 13 pgs. |
Energous Corp., IPRP, PCT/US2014/059317, Apr. 12, 2016, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/049669, Nov. 13, 2014, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/049669, Feb. 9, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/041323, Oct. 1, 2014, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/041323, Dec. 22, 2015, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/048002, Nov. 13, 2014, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/048002, Feb. 12, 2015 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/062682, Feb. 12, 2015, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/062682, May 3, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/049666, Nov. 10, 2014, 7 pgs. |
Energous Corp., IPRP, PCT/US2014/049666, Feb. 9, 2016, 5 pgs. |
Energous Corp., ISRWO, PCT/US2014/046961, Nov. 24, 2014, 16 pgs. |
Energous Corp., IPRP, PCT/US2014/046961, Jan. 19, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2015/067279, Mar. 11, 2015, 13 pgs. |
Energous Corp., IPRP, PCT/US2015/067279, Jul. 4, 2017, 7 pgs. |
Energous Corp., ISRWO, PCT/US2014/041342, Jan. 27, 2015, 10 pgs. |
Energous Corp., IPRP, PCT/US2014/041342, Dec. 15, 2015, 8 pgs. |
Energous Corp., ISRWO, PCT/US2014/046941, Nov. 6, 2014, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/046941, Jan. 19, 2016, 9 pgs. |
Energous Corp., ISRWO, PCT/US2014/062661, Jan. 27, 2015, 12 pgs. |
Energous Corp., IPRP, PCT/US2014/062661, May 3, 2016, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/059871, Jan. 23, 2015, 12 pgs. |
Energous Corp., IPRP, PCT/US2014/059871, Apr. 12, 2016, 9 pgs. |
Energous Corp., ISRWO, PCT/US2014/045102, Oct. 28, 2014, 14 pgs. |
Energous Corp., IPRP, PCT/US2014/045102, Jan. 12, 2016, 11 pgs. |
Energous Corp., ISRWO, PCT/US2014/059340, Jan. 15, 2015, 13 pgs. |
Energous Corp., IPRP, PCT/US2014/059340, Apr. 12, 2016, 11 pgs. |
Energous Corp., ISRWO, PCT/US2015/067282, Jul. 5, 2016, 7 pgs. |
Energous Corp., IPRP, PCT/US2015/067282, Jul. 4, 2017, 6 pgs. |
Energous Corp., ISRWO, PCT/US2014/041558, Oct. 10, 2014, 8 pgs. |
Energous Corp., IPRP, PCT/US2014/041558, Dec. 29, 2015, 6 pgs. |
Energous Corp., ISRWO, PCT/US2014/045119, Oct. 13, 2014, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/045119, Jan. 12, 2016, 9 pgs. |
Energous Corp., ISRWO PCT/US2014/045237, Oct. 13, 2014, 16 pgs. |
Energous Corp., IPRP , PCT/US2014/045237, Jan. 12, 2016, 12 pgs. |
Energous Corp., ISRWO , PCT/US2014/054897, Feb. 17, 2015, 10 pgs. |
Energous Corp., IPRP , PCT/US2014/054897, Mar. 15, 2016, 8 pgs. |
Energous Corp., ISRWO , PCT/US2015/067334, Mar. 3, 2016, 6 pgs. |
Energous Corp., IPRP , PCT/US2015/067334, Jul. 4, 2017, 5 pgs. |
Energous Corp., ISRWO , PCT/US2014/047963, Nov. 7, 2014, 13 pgs. |
Energous Corp., IPRP , PCT/US2014/047963, Jan. 26, 2016, 10 pgs. |
Energous Corp., ISRWO , PCT/US2014/054891, Dec. 18, 2014, 12 pgs. |
Energous Corp., IPRP , PCT/US2014/054891, Mar. 15, 2016, 10 pgs. |
Energous Corp., ISRWO , PCT/US2014/054953, Dec. 4, 2014, 7 pgs. |
Energous Corp., IPRP , PCT/US2014/054953, Mar. 22, 2016, 5 pgs. |
Energous Corp., ISRWO , PCT/US2015/067294, Mar. 29, 2016, 7 pgs. |
Energous Corp., IPRP , PCT/US2015/067294, Jul. 4, 2017, 6 pgs. |
Energous Corp., ISRWO , PCT/US2014/062672 Jan. 26, 2015, 11 pgs. |
Energous Corp., IPRP , PCT/US2014/062672 May 10, 2016, 8 pgs. |
Energous Corp., ISRWO , PCT/US2016/069313 Nov. 13, 2017, 10 pgs. |
Energous Corp., IPRP , PCT/US2016/069313 Jul. 3, 2018, 7 pgs. |
Energous Corp., ISRWO , PCT/US2014/044810 Oct. 21, 2014, 12 pgs. |
Energous Corp., IPRP , PCT/US2014/044810, Jan. 5, 2016, 10 pgs. |
Energous Corp., ISRWO , PCT/US2015/067271, Mar. 11, 2016, 6 pgs. |
Energous Corp., IPRP , PCT/US2015/067271, Jul. 4, 2017, 5 pgs. |
Energous Corp., ISRWO , PCT/US2014/040648, Oct. 10, 2014, 11 pgs. |
Energous Corp., IPRP , PCT/US2014/040648, Dec. 8, 2015, 8 pgs. |
Energous Corp., ISRWO , PCT/US2014/049673, Nov. 18, 2014, 10 pgs. |
Energous Corp., IPRP , PCT/US2014/049673, Feb. 9, 2016, 6 pgs. |
Energous Corp., ISRWO , PCT/US2014/068282, Mar. 19, 2015, 13 pgs. |
Energous Corp., IPRP, PCT/US2014/068282, Jun. 7, 2016, 10 pgs. |
Energous Corp., ISRWO, PCT/US2014/068586, Mar. 20, 2015, 11 pgs. |
Energous Corp., IPRP, PCT/US2014/068586, Jun. 14, 2016, 8 pgs. |
Energous Corp., ISRWO, PCT/US2016/068504, Mar. 30, 2017, 8 pgs. |
Energous Corp., IPRP, PCT/US2016/068504, Jun. 26, 2018, 5 pgs. |
Energous Corp., ISRWO, PCT/US2016/068495, Mar. 30, 2017, 9 pgs. |
Energous Corp., IPRP, PCT/US2016/068495, Jun. 26, 2018, 7 pgs. |
Energous Corp., ISRWO, PCT/US2015/067287, Feb. 2, 2016, 8 pgs. |
Energous Corp., IPRP, PCT/US2015/067287, Jul. 4, 2017, 6 pgs. |
Energous Corp., ISRWO, PCT/US2016/068551, Mar. 17, 2017, 8 pgs. |
Energous Corp., IPRP, PCT/US2016/068551, Jun. 26, 2018, 6 pgs. |
Energous Corp., ISRWO, PCT/US2016/068498, May 17, 2017, 8 pgs. |
Energous Corp., IPRP, PCT/US2016/068498, Jun. 26, 2018, 6 pgs. |
Energous Corp., ISRWO, PCT/US2016/068993, Mar. 13, 2017, 12 pgs. |
Energous Corp., IPRP, PCT/US2016/068993, Jul. 3, 2018, 10 pgs. |
Energous Corp., ISRWO, PCT/US2016/068565, Mar. 8, 2017, 11 pgs. |
Energous Corp., IPRP, PCT/US2016/068565, Jun. 26, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2016/068987, May 8, 2017, 10 pgs. |
Energous Corp., IPRP, PCT/US2016/068987, Jul. 3, 2018, 7 pgs. |
Energous Corp., ISRWO, PCT/US2016/069316 , Mar. 16, 2017, 15 pgs. |
Energous Corp., IPRP, PCT/US2016/069316 , Jul. 3, 2018, 12 pgs. |
Energous Corp., ISRWO, PCT/US2018/012806 , Mar. 23, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2017/046800, Sep. 11, 2017, 13 pgs. |
Energous Corp., IPRP, PCT/US2017/046800, Feb. 12, 2019, 10 pgs. |
Energous Corp., ISRWO, PCT/US2017/065886, Apr. 6, 2018, 13 pgs. |
Energous Corp., ISRWO, PCT/US2018/031768, Jul. 3, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/0351082, Dec. 12, 2018, 9 pgs. |
Energous Corp., ISRWO, PCT/US2018/064289, Mar. 28, 2019, 14 pgs. |
Order Granting Reexamination Request Control No. 90013793 Aug. 31, 2016, 23 pgs. |
Ossia Inc. vs Energous Corp., PGR2016-00023-Institution Decision, Nov. 29, 2016, 29 pgs. |
Ossia Inc. vs Energous Corp., PGR2016-00024-Institution Decision, Nov. 29, 2016, 50 pgs. |
Ossia Inc. vs Energous Corp., PGR2016-00024-Judgement-Adverse, Jan. 20, 2017, 3 pgs. |
ReExam Ordered Control No. 90013793 Feb. 2, 2017, 8 pgs. |
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00024, May 31, 2016, 122 pgs. |
Ossia Inc. vs Energous Corp., Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 92 pgs. |
Ossia Inc. vs Energous Corp., Patent Owner Preliminary Response, dated Sep. 8, 2016, 95 pgs. |
Ossia Inc. vs Energous Corp., Petition for Post Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 86 pgs. |
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00023, May 31, 2016, 144 pgs. |
Supplementary European Search Report, EP Patent Application No. EP14818136-5, dated Jul. 21, 2016, 9 pgs. |
European Search Report, EP Patent Application No. EP16189052.0, dated Jan. 31, 2017, 11 pgs. |
European Search Report, EP Patent Application No. EP16189319-3, dated Feb. 1, 2017, 9 pgs. |
European Search Report, EP Patent Application No. EP14822971, dated Feb. 1, 2017, 9 pgs. |
European Search Report, EP Patent Application No. EP16189987, dated Feb. 1, 2017, 8 pgs. |
European Search Report, EP Patent Application No. 16196205.5, dated Mar. 28, 2017, 7 pgs. |
European Search Report, EP Patent Application No. 16189300, dated Feb. 28, 2017, 4 pgs. |
European Search Report, EP Patent Application No. 16189988.5, dated Mar. 1, 2017, 4 pgs. |
European Search Report, EP Patent Application No. 16189982.8, dated Jan. 27, 2017, 9 pgs. |
European Search Report, EP Patent Application No. 16189974, dated Mar. 2, 2017, 5 pgs. |
European Search Report, EP Patent Application No. 16193743, dated Feb. 2, 2017, 5 pgs. |
European Search Report, EP Patent Application No. 14868901.1, dated Jul. 7, 2017, 5 pgs. |
European Search Report. EP15876036, dated May 3, 2018, 8 pgs. |
Supplemental European Search Report. EP15874273.4, dated May 11, 2018, 7 pgs. |
Supplemental European Search Report. EP15876033.0, dated Jun. 13, 2018, 10 pgs. |
Supplemental European Search Report. EP15876043.9, dated Aug. 8, 2018, 9 pgs. |
Extended European Search Report. EP18204043.6, dated Feb. 14, 2019, 5 pgs. |
L.H. Hsieh et al. Development of a Retrodirective Wireless Microwave Power Transmission System, IEEE, 2003 pp. 393-396. |
B.D. Van Veen et al., Beamforming: A Versatile Approach to Spatial Filtering, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24. |
Leabman, Adaptive Band-partitioning for Interference Cancellation in Communication System, Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70. |
Panda, SIW based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications, IEEE APSURSI, Jul. 2012, 2 pgs. |
Singh, Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN: In Fourth International Conference on Advances in Computing and Communications (ICACC), Aug. 27-29, 2014, Abstract 299. |
T. Gill et al. “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs. |
J. Han et al. Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybernetics vol. 43, No. 5. pp. 1318-1334, Oct. 3, 2013. |
Zhai, “A Practical wireless charging system based on ultra-wideband retro-reflective beamforming” 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON 2010, pp. 1-4. |
Mao: BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA US, vol. 6, No. 11, Nov. 1, 2007, 13 pgs. |
Smolders—Institute of Electrical 1-15 and Electronics Engineers: “Broadband microstrip array antennas” Digest of the Antennas and Propagation Society International Symposium. Seattle, WA Jun. 19-24, 1994. Abstract 3 pgs. |
Paolo Nenzi et al; “U-Helix: On-chip short conical antenna”, 2013 7th European Conference on Antennas and Propagation (EUCAP), ISBN:978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs. |
Adamiuk G et al; “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, ISSN: 0018-926X, abstract; Figure 1, Feb. 1, 2010, 8 pgs. |
Mascarenas et al.; “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes.” Nov. 28, 2009, Journal of Sound and Vibration, pp. 2421-2433. |
Li et al. High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management, Mar./Apr. 2012 Issue, 8 pgs. |
Energous Corp., ISRWO, PCT/US2019/021817, Apr. 6, 2019, 11 pgs. |
Energous Corp., IPRP, PCT/US2019/021817, Sep. 15, 2020, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20190288567 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62643118 | Mar 2018 | US |