A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
1. Field of the Invention
The present invention relates generally to internal antennas for use in portable radio devices and more particularly in one exemplary aspect to a passive loop resonator structure to control antenna ground plane field distribution in order to improve hearing aid compliance, and methods of utilizing and manufacturing the same.
2. Description of Related Technology
Internal antennas are an element found in most modern portable radio devices, such as mobile phones, Blackberry® devices, smartphones, personal digital assistants (PDAs), or other personal communication devices (PCD). Typically, these antennas comprise a planar radiating plane and a ground plane parallel thereto, which are connected to each other by a short-circuit conductor in order to achieve the matching of the antenna. The structure is dimensioned so that it functions as a resonator at the operating frequency. It is a common requirement that the antenna operate in more than one frequency band (such as dual band, tri-band, or quad-band mobile phones) in which case two or more resonators are used.
Typically, internal antennas are constructed to comprise at least a part of a printed wired board (PWB) assembly, also commonly referred to as the printed circuit board (PCB).
For example, the Hearing Aid Compatibility Act of 1988 (HAC Act) mandated that all telephones made or imported into the United States be compatible with hearing aids, but specifically exempted mobile telephones. In July 2003, the Federal Communications Commission FCC modified the HAC Act's exemption for mobile phones, mandating that manufacturers provide certain numbers of models or percentages of mobile phones that are hearing aid compatible HAC by 2005 and 2008.
Increased electric field energy in the vicinity of the earpiece results in high field values in the hearing aid compliance measurement. Numerous methodologies exist for reducing electrical interference and improving hearing aid compliance in mobile radio devices, including for example, those disclosed in U.S. Pat. No. 6,009,311 to Killion, et al. issued Dec. 28, 1999, and entitled “Method and apparatus for reducing audio interference from cellular telephone transmissions”; United States Patent Pub. No. 2009/0243944 to Jung, et al. published Oct. 1, 2001, and entitled “Portable Terminal”; United States Patent Pub No. 2009/0219214 to Oh published Sep. 3, 2009 and entitled “Wireless handset with improved hearing aid compatibility”; U.S. Pat. No. 5,442,280 to Johnson, issued Oct. 28, 2003 and entitled “Device and method of use for reducing hearing aid RF interference”, each of the foregoing being incorporated herein by reference in its entirety. However, exiting approaches require additional energy absorbing elements, electric field reducing units, external field shaping conductors, and/or signal processing methods that add cost and complexity.
The prior art commonly addresses the HAC requirements for mobile phones by implementing monopole grounded resonator strips on both ends 110 and 106 of the PWB 100 in order to change the electric field distribution. This approach inherently has drawbacks, such as increased PWB size, and makes mechanical implementation difficult. For instance, in the low band, the antenna becomes more sensitive to dielectric loading from mechanics and user body parts, and additional contacts between the PWB ground plane and the device mechanics are required.
Therefore, there is a salient need for apparatus and methods for altering radio antenna ground field distribution in mobile radio devices so as to reduce electric field interference, and improve hearing aid compliance for mobile phones and other mobile radio devices.
The present invention satisfies the foregoing needs by providing, inter alia, a loop resonator structure and associated methods which alter antenna ground plane field distribution.
In a first aspect of the invention, an antenna assembly for use in a mobile wireless device is disclosed. In one embodiment, said antenna comprises: a dielectric element having a longitudinal direction and a transverse direction and first and second substantially planar sides; a conductive coating deposited on the first substantially planar side forming a ground plane; a radiating element disposed on the second substantially planar side; an audio component disposed at least partly on the first planar side; and a resonant element having a longitudinal dimension and a transverse dimension and formed at least partially on said ground plane proximate to one longitudinal side of said dielectric element, said resonant element further comprising a first portion and a second portion. The conductive coating is removed from beneath said first and second portions thus forming an opening on said one longitudinal side, and a resonance is formed substantially between the first portion and the second portion.
In one variant, the assembly further comprises a capacitive element electrically coupled to said ground plane between a first side and a second side of said opening.
In another variant, said resonant element comprises a resonance having a center frequency of approximately 1880 MHz. In yet another variant, said resonant element comprises a resonance having a center frequency below 900 MHz.
In a further variant, said audio component comprises a speaker.
In a second aspect of the invention, a method of tuning an antenna for use in a mobile device is disclosed. In one embodiment, the mobile device further comprise an audio component, and said method comprises: disposing at least one resonator element onto a ground plane of said antenna, said element comprising at least a capacitance and an inductance; selecting said capacitance to create a electric resonance at a first frequency, and adjusting location of said resonator element on said ground plane to optimize an electric field distribution across said ground plane. The optimization of said electric field distribution comprises reducing an electric field strength at a location proximate to said audio component.
In one variant, said audio component comprises a speaker, and said tuning comprises tuning so that said antenna is compliant with at least one hearing aid compatibility standard or requirement (e.g., the Hearing Aid Compatibility Act of 1988 (HAC Act) as amended in 2003).
In another variant, the electric resonance is formed between said capacitance and said inductance.
In a third aspect of the invention, a method of altering the electric field distribution across a ground plane of a mobile device antenna is disclosed. In one embodiment, said method comprises: disposing a resonator element onto antenna ground plane, said resonator element comprising at least a capacitance and inductance; selecting said capacitance to form a resonance at a first frequency; and adjusting a location of said resonator element on said ground plane to optimize and electric field distribution across said ground plane.
In one variant, said mobile device further comprises an electrically sensitive component disposed proximate said ground plane, and said act of adjusting a location comprises adjusting said location so that an electric field strength is minimized substantially coincident with a location of said electrically sensitive component. The electrically sensitive component comprises an audio speaker, and said act of adjusting a location enables said mobile device to be compliant with a hearing aid audio-related requirement.
In a fourth aspect of the invention, a method of enabling hearing aid compliance is disclosed. In one embodiment, the method is adapted for use in a mobile radio device comprising a ground plane, an antenna and an audio component, and comprises: providing at least one resonator element for use on a ground plane of said antenna, said at least one resonator element comprising at least a capacitance and an inductance, said capacitance configured to form a resonance at a first frequency; and disposing said at least one resonator element on said ground plane at a location selected to reduce electric field strength proximate to said audio component location, thereby reducing interference of said antenna with said audio component and effecting said hearing aid compliance.
In a fifth aspect of the invention, an antenna for use in a mobile radio device is disclosed. In one embodiment, the antenna comprises: a ground plane; and at least one resonator element disposed on said ground plane of said antenna, said at least one resonator element comprising at least a capacitance and an inductance and configured to form a resonance at a first frequency. The at least one resonator element is disposed on said ground plane at a selected first location so as to reduce electric field strength at a second location.
In one variant, said mobile radio device comprises an interference-sensitive component, and said second location is proximate to a location of said interference-sensitive component, said reduced electrical field strength thereby reducing interference of said antenna with said interference-sensitive component.
In another variant, the interference-sensitive component comprises an audio component.
In yet another variant, said interference-sensitive component comprises an electric coil component.
In still a further variant, said at least one resonator element comprises a loop-type shape having at least one gap formed therein. The at least one gap comprises e.g., a single gap formed proximate a longitudinal edge of a substrate onto which said ground plane is formed.
In a sixth aspect of the invention, a method of operating an antenna within a mobile device is disclosed. In one embodiment, the method comprises: receiving an antenna input signal from an electronic component of said mobile device; and creating a resonance within a resonator element of said antenna based at least in part on said input signal and a capacitance of said resonator element, said capacitance at least in part causing an electric field generated by way of said resonance to be mitigated in a desired location on said antenna while still emitting a desired radio frequency signal from said antenna.
In a seventh aspect of the invention, a method of designing a mobile device antenna is disclosed. In one embodiment, the method is adapted for design of a HAC-compliant antenna, and comprises selecting a readily identifiable location for one or more resonators on a PWB, and disposing the one or more resonators at that location on the PWB so as to suppress electric field strength at another desired location on the PWB. This process obviates the need for computerized simulation of E- and H-fields for the device.
In an eighth aspect of the invention, a mobile device is disclosed. In one embodiment, the mobile device is adapted to radiate wireless signals via a substantially planar form factor antenna having a resonator, which mitigates at least one electric field intensity level at a desired location within the mobile device, so as to mitigate interference with interference-sensitive components such as audio earpieces. In one variant, the mobile device comprises a cellular telephone or smartphone adapted to radiate at approximately 1900 MHz.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention.
The features, objectives, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
All Figures disclosed herein are © Copyright 2009 Pulse Engineering, Inc. All rights reserved.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
As used herein, the terms “board” and “substrate” refer generally and without limitation to any substantially planar or curved surface or component upon which other components can be disposed. For example, a substrate may comprise a single or multi-layered printed circuit board (e.g., FR4), a semi-conductive die or wafer, or even a surface of a housing or other device component, and may be substantially rigid or alternatively at least somewhat flexible.
As used herein, the terms “radiator,” “radiating plane,” and “radiating element” refer without limitation to an element that can function as part of a system that receives and/or transmits radio-frequency electromagnetic radiation; e.g., an antenna.
The terms “feed,” “RF feed,” “feed conductor,” and “feed network” refer without limitation to any energy conductor and coupling element(s) that can transfer energy, transform impedance, enhance performance characteristics, and conform impedance properties between an incoming/outgoing RF energy signals to that of one or more connective elements, such as for example a radiator.
Furthermore, the terms “antenna,” “antenna system,” and “multi-band antenna” refer without limitation to any system that incorporates a single element, multiple elements, or one or more arrays of elements that receive/transmit and/or propagate one or more frequency bands of electromagnetic radiation. The radiation may be of numerous types, e.g., microwave, millimeter wave, radio frequency, digital modulated, analog, analog/digital encoded, digitally encoded millimeter wave energy, or the like. The energy may be transmitted from location to another location, using, or more repeater links, and one or more locations may be mobile, stationary, or fixed to a location on earth such as a base station.
The terms “communication systems” and communication devices” refer to without limitation any services, methods, or devices that utilize wireless technology to communicate information, data, media, codes, encoded data, or the like from one location to another location.
The terms “frequency range”, “frequency band”, and “frequency domain” refer to without limitation any frequency range for communicating signals. Such signals may be communicated pursuant to one or more standards or wireless air interfaces
As used herein, the terms “electrical component” and “electronic component” are used interchangeably and refer to components adapted to provide some electrical function, including without limitation inductive reactors (“choke coils”), transformers, filters, gapped core toroids, inductors, capacitors, resistors, operational amplifiers, and diodes, whether discrete components or integrated circuits, whether alone or in combination.
As used herein, the term “integrated circuit” or “IC)” refers to any type of device having any level of integration (including without limitation ULSI, VLSI, and LSI) and irrespective of process or base materials (including, without limitation Si, SiGe, CMOS and GaAs). ICs may include, for example, memory devices (e.g., DRAM, SRAM, DDRAM, EEPROM/Flash, ROM), digital processors, SoC devices, FPGAs, ASICs, ADCs, DACs, transceivers, memory controllers, and other devices, as well as any combinations thereof.
As used herein, the term “memory” includes any type of integrated circuit or other storage device adapted for storing digital data including, without limitation, ROM. PROM, EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDO/FPMS, RLDRAM, SRAM, “flash” memory (e.g., NAND/NOR), and PSRAM.
As used herein, the terms “microprocessor” and “digital processor” are meant generally to include all types of digital processing devices including, without limitation, digital signal processors (DSPs), reduced instruction set computers (RISC), general-purpose (CISC) processors, microprocessors, gate arrays (e.g., FPGAs), PLDs, reconfigurable compute fabrics (RCFs), array processors, and application-specific integrated circuits (ASICs). Such digital processors may be contained on a single unitary IC die, or distributed across multiple components.
As used herein, the terms “mobile device”, “client device”, “peripheral device” and “end user device” include, but are not limited to, personal computers (PCs) and minicomputers, whether desktop, laptop, or otherwise, set-top boxes, personal digital assistants (PDAs), handheld computers, personal communicators, J2ME equipped devices, cellular telephones, smartphones, personal integrated communication or entertainment devices, or literally any other device capable of interchanging data with a network or another device.
As used herein, the term “hearing aid” refers without limitation to a device that aids a person's hearings, for example, devices that condition or modify sounds (e.g., amplify, attenuate, and/or filter), as well as devices that deliver sound to a specific person such as headsets for portable music players or radios.
As used herein, the term “signal conditioning” or “conditioning” shall be understood to include, but not be limited to, signal voltage transformation, filtering and noise mitigation, signal splitting, impedance control and correction, current limiting, capacitance control, and/or time delay.
As used herein, the terms “top”, “bottom”, “side”, “up”, “down” and the like merely connote a relative position or geometry of one component to another, and in no way connote an absolute frame of reference or any required orientation. For example, a “top” portion of a component may actually reside below a “bottom” portion when the component is mounted to another device (e.g., to the underside of a PCB).
As used herein, the term “wireless” means any wireless signal, data, communication, or other interface including without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2, and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g., IS-95A, WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX (802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS, Long Term Evolution (LTE) or LTE-Advanced (LTE-A), analog cellular, CDPD, satellite systems, millimeter wave or microwave systems, optical, acoustic, and infrared (i.e., IrDA).
The present invention provides, in one salient aspect, an antenna apparatus and mobile radio device with improved hearing aid compliance, and methods for manufacturing and utilizing the same. In one embodiment, the mobile radio device comprises a printed wired board (PWB) with a monopole antenna and an ear piece disposed on substantially opposing ends of the PWB. A loop resonator is formed on the PWB ground plane. The loop resonator is constructed so as to form a conductor-free area on the PWB and a gap in the PWB ground plane proximate to the edge of the PWB. The loop resonator forms an LC resonator structure where the capacitance is determined by the loop perimeter, and the inductance is determined by the PWB gap opening. The resonator dimensions are chosen so as to achieve sufficient inductance required for proper coupling to a PWB resonant mode.
Placement of the loop resonant structure onto the PWB alters the electromagnetic field distribution across the PWB ground plane. By placing the loop resonator apparatus on the PWB edge(s), the PWB electrical length is modified so that the PWB has an electric field maximum disposed at a location closer to the antenna, and a minimum disposed at an end that is proximate to the earpiece. The electric field strength proximate the earpiece is reduced, therefore advantageously diminishing potential electromagnetic interference with hearing aid devices and hence facilitating hearing aid compliance of the mobile radio device.
Different loop resonator placement options may be implemented according to different exemplary embodiments. In a first embodiment, placement of the loop resonator apparatus proximate the location of the magnetic intensity (H) maximum on the PWB produced the largest electric field reduction at the earpiece location. In a second embodiment, when the loop resonator apparatus is installed substantially at the midpoint of the PWB, the electric field reduction is not as substantial as compared to the prior embodiment. However, as the determination of the mid-point location is typically more straightforward, this second embodiment provides a lower-cost implementation alternative. Yet other locations are also contemplated under the invention.
In another exemplary embodiment, the antenna and the earpiece are disposed substantially at the same end of the PWB to allow for a smaller PWB dimensions. A pair of loop resonators is disposed along the opposing edges of the PWB in order to reduce electric field strength at the earpiece location, thus effecting hearing aid compliance.
A method for tuning one or more antenna in a mobile radio device is also disclosed. The method in one embodiment comprises using one or more loop resonators to shift an E-field local minimum as close to the earpiece location as possible. By changing the resonator(s) location along PWB edges relative to antenna element, the local E-field minimum is moved proximate to the earpiece location, where HAC is typically measured. Fine tuning of the resonator location, dimensions, capacitance and inductance is further used to set the effective electrical length of the PWB, in order to support high band antenna operation, and increase antenna efficiency bandwidth in small antenna cases. Accordingly, E-field distribution can be made more symmetrical, and provide the opportunity for the E-field “null” to be moved towards a desired location.
Detailed descriptions of the various embodiments and variants of the apparatus and methods of the invention are now provided. While primarily discussed in the context of mobile devices, the various apparatus and methodologies discussed herein are not so limited. In fact, many of the apparatus and methodologies described herein are useful in the manufacture of any number of complex antennas that can benefit from the segmented manufacturing methodologies and apparatus described herein, including devices that do not utilize or need a pass-through or return conductor, whether fixed, portable, or otherwise.
Referring now to
It will be appreciated that while these exemplary embodiments of the antenna apparatus of the invention are implemented using a loop resonator technology due to its desirable attributes and performance, the invention is in no way limited to loop resonator-based configurations, and in fact can be implemented using other technologies.
Moreover, although a single earpiece is shown for clarity, it is appreciated that alternative implementations are available that include a plurality (two or more) speakers such as in the LG enV®3 or Samsung SCH-F609 devices.
Referring now to
The removal of the conductive coating creates an opening 216 in PWB vertical side 214, as shown.
In another embodiment, the PWB comprises a square shaped structure, and the loop resonator is placed proximate either the horizontal or vertical edge of the PWB (provided it is placed effectively parallel with the antenna main dipole-like axis).
The exemplary loop structure according to the embodiment shown in
The dimensions of the resonator loop that optimize the electrical current path length are determined using a combination of computer modeling and measurements for each antenna configuration. Typically, shorter loop lengths require larger capacitance values. However this combination produces narrower band resonance within the loop. To effectively couple the resonator loop to the ground plane resonance, it is desirable to maximize the loop dimension normal to ground plane edge, while taking into consideration the PWB layout design compactness.
The dimensions shown above have been used in simulation, with an air-filled opening on the ground plane. As persons skilled in the art will appreciate given the present disclosure, the foregoing dimensions may be modified as required by the particular application. Moreover, the configurations of the embodiments presented in
Referring now to
Referring now to
As yet another alternative, the resonant loop structure 210 can be formed as a separate element (not shown) with an integrated capacitor and attached to PWB via dedicated additional contact points. This separate element can be oriented parallel, normal or at an angle to the plane of PWB, while being parallel to the antenna main dipole-like axis, as required by a specific application
It is also appreciated that while a single capacitor is shown in the present embodiment, multiple (i.e., two or more) components arranged in an electrically equivalent configuration may be used consistent with the present invention. Moreover, various types of capacitors may be used, such as discrete (e.g., plastic film, mica, glass, or paper) capacitors, or chip capacitors. Myriad other capacitor configurations useful with the present invention exist, as will be recognized by those of ordinary skill.
It is also recognized that the loop resonator structure according to the present invention can be used with a wide variety of configurations, including all quarter-wave antenna types (e.g. PIFA, monopole, etc.) that utilize the ground plane as a part of the radiating structure.
Exemplary embodiments of the antenna of the present invention utilize an LC (inductive-capacitive) resonating circuit. LC resonating circuits are well known in the electrical arts. Specifically, if a charged capacitor is connected across an inductor, electric charge will start to flow through the inductor, generating a magnetic field around it, and reducing the voltage across the capacitor. Eventually, the electric charge of the capacitor will be dissipated. However, the current will continue to flow through the inductor because inductors tend to resist rapid current changes, and energy will be extracted from the magnetic field to keep the current flowing. The current will begin to charge the capacitor with a voltage of opposite polarity to its original charge therefore depleting the magnetic field of the inductor. When the magnetic field is completely dissipated, the current will cease, and the electric charge will again be stored in the capacitor (with the opposite polarity). Then the discharge cycle will begin again, with the current flowing in the opposite direction through the inductor.
As the electric charge flows back and forth between the plates of the capacitor, through the inductor the energy oscillates back and forth between the capacitor and the inductor until (if not replenished by power from an external circuit) internal resistance of the electric circuit dissipates all of the electrical energy into heat. This action is known mathematically as a harmonic oscillator.
The resonance occurs when inductive and capacitive reactance values are equal in absolute value. That is:
X
L
=ωL=X
C=1/ωC (1)
where L is the inductance in henries, and C is the capacitance in farads, and w is the circular frequency in rad/s. Therefore the resonant frequency of the LC circuit is:
The loop 210 forms an LC resonator structure, where the capacitance is determined by the loop perimeter, and the inductance is determined by the size and configuration the PWB opening 216. Typically, a 1 pF capacitance is sufficient to generate loop resonance. A ceramic capacitive block 222 is used to achieve more accurate capacitive tuning of the resonator structure 210 if necessary.
Placement of the loop resonant structure 210 onto PWB 200 alters the electromagnetic field distribution across the PWB ground plane. By using loop resonators on the PWB edges, the PWB electrical length is modified so that PWB has a field maximum at a location closer to antenna, and a second maximum at the top end of the PWB (resonator loops create a high impedance point at the PWB).
Referring now to
Simulations performed by the Assignee hereof presented in
Referring now to
Although the HAC improvement provided by the embodiment described in
Referring now to
Referring now to
Referring now to
Referring now to
As discussed above with reference to
Comparing the E-field distributions of
For the antenna element placement depicted in
Referring now to
In the exemplary embodiment described in
In the exemplary embodiment described in
Referring now to
When the antenna element and E-field point of interest (audio component) are on same end of the ground plane, use of loop resonators to modify the field distribution is not as effective, as in case where antenna is placed to the opposite end of the PWB. In this case, a second (or yet additional) resonator should be added so that the resonators are placed on both sides of the ground plane to bring the null to the center of the PWB x-axis.
It is also noted that in various implementations of the invention, several “points of interest” may exist (such as where two or more electrically sensitive components are disposed on the PWB at different locations). Specifically, various component/device configurations can be used to achieve acceptable results at each of the points of interest, versus perhaps optimizing the performance at one point of interest to the detriment of one or more other points of interest. Hence, the present invention contemplates a “holistic” tuning approach, wherein multiple points are considered simultaneously, and more modest improvements in field reduction at multiple such points are traded for a more significant reduction at one point, and lesser reductions at other points (“balanced” approach).
A method of tuning antenna in a mobile radio device in accordance with an embodiment of the present invention is now described in detail. The method comprises using one or more loop resonators to shift the E-field local minimum as close to the earpiece location as possible. By changing the resonator(s) location along PWB edges relative to antenna element (the y-distance), the local E-field minimum is moved proximate to the earpiece location (where HAC is typically measured). Fine-tuning of the resonator location is further used to “set” the effective electrical length of the PWB to support high-band antenna operation, and increase antenna efficiency bandwidth in small antenna cases. As described above with respect to
Referring now to
Referring now to
In addition to varying the location of loop resonator structures as described above, antenna tuning may be performed by varying the capacitance or inductance (or both) values of the LC resonator.
Referring now to
Hence, the HAC compliance methodology of the present embodiment is more effective when operating in the high band frequency range (e.g. 1800 MHZ or 1900 MHz) where antenna efficiency is typically less dependent on PWB length. However, benefits are none-the-less provided in lower frequency bands (albeit not quite as large as those in the higher bands).
It will be appreciated that while the foregoing variants are described primarily in the context of a candy-bar, flip-type, or slide-to-open cellular telephone and one or more associated cellular (e.g., 3GPP, PCS, UMTS, GSM, LTE, etc.) air interfaces, the various methods and apparatus of the invention may be adapted to other types of applications and/or air interfaces. For example, many extant or incipient “smartphone” designs include multiple air interfaces, including WLAN, Bluetooth, and/or WiMAX interfaces as well as a cellular interface(s). For instance, a WLAN (e.g., Wi-Fi or IEEE Std. 802.11) interface typically operates at roughly 2.4 GHz, and can also create electric field interference with sensitive devices such as earpieces. Hence, the present invention explicitly recognizes that the techniques described supra may be applied to the antenna(s) associated with these auxiliary (e.g., PAN/WLAN/WMAN) interfaces, so as to mitigate or shift the field strength at the desired location(s). Moreover, the field created by the PAN/WLAN/WMAN interface may also be additive with that created by the cellular interface(s), such as where the cellular interface is being used simultaneously with the WLAN interface (e.g., the user is talking on the phone and also sending packetized data over the WLAN interface). Hence, the present invention further contemplates “complex” application, modeling and design scenarios, such that two or more interfaces are considered in the design and/or compensation process (e.g., loop resonators may be used on the antenna of both interfaces if separate, such that the additive fields from both antennas are mitigated sufficiently to produce HAC compliance or other desired objectives). For example, in one embodiment, several separate loop resonators are each tuned to the corresponding radio frequency band, and are located so as to achieve the best coupling to the PWB ground plane, and to accomplish the greatest electric field reduction at a point(s) of interest.
It will be recognized that while certain aspects of the invention are described in terms of a specific sequence of steps of a method, these descriptions are only illustrative of the broader methods of the invention, and may be modified as required by the particular application. Certain steps may be rendered unnecessary or optional under certain circumstances. Additionally, certain steps or functionality may be added to the disclosed embodiments, or the order of performance of two or more steps permuted. All such variations are considered to be encompassed within the invention disclosed and claimed herein.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the invention. The foregoing description is of the best mode presently contemplated of carrying out the invention. This description is in no way meant to be limiting, but rather should be taken as illustrative of the general principles of the invention. The scope of the invention should be determined with reference to the claims.