The present invention relates generally to looped-cord tensioners for architectural coverings and treatments, such as blinds, curtains, and the like. More particularly, the present invention relates to a looped-cord tensioner that prevents operation of the architectural covering unless the tensioner is first mounted to a wall or other non-moveable structure.
Many types of architectural coverings and treatments, such as Venetian blinds, cellular or pleated shades, and variants of these (herein represented without restriction merely by “shades”) utilize an actuator known as a looped-cord or continuous looped-cord. Such cords are distinct from the basic pull cord style shades in that the looped-cord does not connect directly to the shade material, but rather engages a clutch on a rotating shaft in a headrail of the shade. Movement of the looped-cord in a first direction operates that clutch to accumulate shade material when opening, and movement of the looped-cord in a second direction lets out shade material. The looped-cord may be made at different lengths than the shade and may be configured to make multiple circulations during opening and closing of the shade. The benefits of a looped-cord system versus a standard pull cord system are that the exposed looped-cord remains at a constant length whether the shade is open or closed (avoiding the problem of stowing the long exposed pull cord when the shade is opened). Moreover, a looped-cord system also provides a mechanical advantage to raise relatively large, heavy shades with reasonable cord forces.
However, looped-cords also have a significant disadvantage. Generally, looped-cords hang freely along a side of the shade they are used to operate. Many looped-cords are long enough that they reach the floor and are easily grasped by babies and young children as a potential play toy. Rather than a play toy, however, a dangling looped-cord has proved to be a health hazard to babies and young children. In recent years, cases of death or injury have been documented in which a person, typically a baby or a small child, has become entangled in the looped-cord and has choked or become asphyxiated when the looped-cord became wrapped around their neck and constricted their airways.
In an effort to alleviate this health risk, current safety regulations require that looped-cord style shades be supplied with a device commonly known as a tensioner. A tensioner typically includes a two-piece housing with a through passage for a looped-cord and a provision for attaching the tensioner to a wall or other fixed structure. The tensioner is designed to be mounted to a wall or other non-movable structure at some distance away from the clutch. The tensioner allows the looped-cord to be pulled taut during the mounting process, at rest, and during operation, so that it may be difficult to spread the two sides of the looped-cord apart enough for it to pass over a child's head, thereby preventing injury and possibly death. However, because a taut looped-cord is difficult to operate, a number of tensioners are installed incorrectly. Specifically, some tensioners are installed with a dangerous amount of slack in the looped-cord and some tensioners may not be installed at all.
To minimize the limitations of known tensioners, improved versions of the aforementioned tensioner design have been developed. One design includes a tensioning spring between a cord contacting member and a tensioner mounting body. This improved design allows the tensioner to be mounted with the looped-cords fully taut and the tensioning spring partially loaded. The pre-loaded spring holds the looped-cord taut while not in operation, thus preventing a baby or young child from spreading the looped-cord wide enough to pass their head through. During operation of the looped-cord, an adult operating the looped-cord will be able to overcome the remainder of the spring loading and easily pull the looped-cord to open or close the shade. However, even this improved tensioner design has not fully addressed the safety concerns associated with the looped-cord because there is no requirement that the tensioner be installed to effectively operate the shade. The end user may elect not to mount the tensioner to the wall or other non-moveable structure and instead use the tensioner as a weight at the bottom of the looped-cord. Although new tensioner designs include safety improvements, if the tensioner is not mounted to the wall, as discussed above, it will not prevent the opening of the looped-cord to a dangerous width.
Therefore, a need exists for a tensioner that is prevented from operating to open and close a shade unless it is mounted to a wall or other non-moveable structure.
A looped-cord tensioner for an architectural covering including a housing adapted for attachment to a looped-cord, an abutment member positioned within the housing, a slide member positioned within the housing, and at least one biasing element having a first end and a second end. One of the slide member and the abutment member is adapted to engage the second end of the biasing element and the first end of said biasing element is adapted to engage the housing such that one of the slide member and the abutment member is moveably positioned in the housing so as to bias one of the slide member and the abutment member toward engagement with the looped-cord such that the looped-cord is normally non-movably sandwiched between the slide member and the abutment member prior to installation of the looped-cord tensioner. One of the slide member and the housing is adapted to be fixedly installed to a non-movable structure adjacent the architectural covering such that one of the slide member and the abutment member is disengaged from the looped-cord and the looped-cord is free to moveably pass through the housing following proper installation.
The features and inventive aspects of the present invention will become more apparent upon reading the following detailed description, claims, and drawings, of which the following is a brief description;
Referring now to
Headrail 12 includes a rotating shaft 18 having a clutch 20. Clutch 20 includes a looped-cord 22 that is used in operating clutch 20 to raise and lower shade 10. Lift cord 16 is attached to rotating shaft 18 and is wound about rotating shaft 18 during the raising of shade 10 and unwound during the lowering of shade 10, Looped-cord 22 does not connect directly to shade 10, but rather drives clutch 20, which in turn rotates shaft 18 and either winds lift cord 16 on shaft 18 to raise shade 10 or unwinds lift cord 16 from shaft 18 to lower shade 10. Looped-cord 22 may be made at different lengths than shade 10 and may be configured to make multiple circulations during operation of clutch 20. A looped-cord tensioner 24 is mounted to a wall or other non-movable structure adjacent to shade 10. Among other benefits, the window treatment design shown in
With reference to
In an embodiment an interior portion 44 of first surface 34 includes an abutment member 46. In this particular embodiment, abutment member 46 is an outer cylinder having slots 72 for engaging locking tabs 48 of an inner cylinder 50 on female member 28 (also see 72′ and 48′ in
As shown in
In an embodiment of the present invention, lock 30 may be generally rectangular in shape with hole 56 passing though boss 31 to accept the fastener. Lock 30 may also include a face 76 at an edge 78 that engages and locks looped-cord 22 against movement when lock 30 is not in tension (i.e. tensioner 24 is not secured to a wall or other non-moveable structure by lock 30). Face 76 of lock 30 may be of any general shape, provided face 76 engages and locks looped-cord 22 and prevents operation of looped-cord 22 until tensioner 24 is properly mounted. Face 76 may be serrated, saw-toothed, cleated or have some other means of increasing the friction between the face/looped-cord 76/22 interface to prevent movement of looped-cord 22 within tensioner 24 until tensioner 24 is properly mounted. As discussed boss 31 surrounds hole 56 that passes though lock 30. Boss 31 is sized to fit into slots 54 and 74, such that tensioner 24 permits lock 30 to be moved within slots 54 and 74 and allows the disengagement of face 76 from looped-cord 22 when lock 30 is moved out of engagement with looped-cord 22. Components of tensioner 24 may be manufactured from any metallic or polymeric material, such as aluminum, steel, nylon, and the like.
In an embodiment of the present invention, tensioner 24 is assembled in the following manner. First, looped-cord 22 is placed onto outer cylinder 46 of male member 26. Next, lock 30 is set in slot 54 of male member 26 such that boss 31 extends through slot 54 and biasing element 32 is positioned between lock 30 and post 60 at first and second engagement points 58 and 61, respectively. Face 76 of lock 30 is now in engagement with looped-cord 22 to prevent its movement about cylinder 46. Female member 28 is then press-fit onto male member 26 so that locking tabs 42 engage depressions 68 and locking tabs 48 of inner cylinder 50 engage slots 72 of outer cylinder 46 forming a resilient interference fit. Boss 31 now extends through slot 74 of female member 28 as well. As stated above, lock 30 is positioned such that face 76 engages and locks looped-cord 22 and prevents movement of looped-cord 22 within tensioner 24.
To install tensioner 24 and operate shade 10; shade 10 should first be installed in a location determined by the user, usually over a window unit or other architectural opening. After installation of shade 10, tensioner 24 is located and secured to a wall or other non-movable structure adjacent shade 10 in the following manner. Tensioner 24 is located on the wall such that all the slack has been removed from looped-cord 22. Once tensioner 24 has been positioned on the wall such that looped-cord 22 is taut, lock 30 may be slid downward through slots 54 and 74, compressing biasing element 32, such that face 76 will disengage and unlock looped-cord 22. Thereafter, a fastener should be driven through hole 56 of lock 30 and into a wall to position lock 30 in a manner that does not inhibit the movement of looped-cord 22 around outer cylinder 46. Positioning of lock 30 in this manner allows looped-cord 22 to enter and exit tensioner 24 freely in order to make multiple circulations so that shade 10 may be raised and lowered. Only by properly installing tensioner 24, which compresses its biasing element 32, thereby unlocking looped-cord 22, may looped-cord 22 travel freely through tensioner 24 to permit operation of shade 10, Following installation, biasing element 32 continues to exert a downward force on post 60 and members 26 and 28, thereby maintaining the desired tautness in looped-cord 22.
Now referring to
In another embodiment shown in
In another embodiment shown in
The above embodiments illustrate tensioners 24, 24′, 24″, and 24′″ that may require looped-cord 22 to be included in the assembly of tensioner 24 prior to operation. In another embodiment of the present invention shown in
As will be appreciated, the present invention may be used with any number of different window treatments including cellular shades, Venetian blinds, other pleated shades, and the like, which employ looped cords for opening and closing the window treatment. Although the preferred embodiment is described and shown for use with window treatments, it is important to note, however, that the present invention is not so limited and may be used with any architectural covering that requires a looped-cord for operation.
The present invention has been particularly shown and described with reference to the foregoing embodiments, which are merely illustrative of the best modes for carrying out the invention. It should be understood by those skilled in the art that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention without departing from the spirit and scope of the invention as defined in the following claims. It is intended that the following claims define the scope of the invention and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. This description of the invention should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Moreover, the foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application.