Lordotic expandable fusion implant

Information

  • Patent Grant
  • 11690730
  • Patent Number
    11,690,730
  • Date Filed
    Monday, March 15, 2021
    3 years ago
  • Date Issued
    Tuesday, July 4, 2023
    11 months ago
Abstract
The present disclosure provides an expandable spinal implant comprising a plurality of moveable endplates pivotably connect to a housing.
Description
FIELD OF THE DISCLOSURE AND BACKGROUND

The present disclosure pertains to the field spinal implants. More specifically, the present disclosure relates to an expandable spinal fusion implant for use in spine surgery, an insertion tool for use with the expandable fusion implant and a measurement tool useful during spinal surgery.


The expandable spinal fusion implant may be used in combination with bone graft materials to facilitate fusion across the intervertebral region.





BRIEF DESCRIPTION OF THE DRAWINGS

To further illustrate the advantages and features of the present disclosure, a more particular description of the invention will be rendered by reference to specific embodiments which are illustrated in the drawings. It is appreciated that these drawings are not to be considered limiting in scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1 shows one embodiment of the expandable spinal implant disclosed herein.



FIG. 2 shows one embodiment of the housing of the expandable spinal implant disclosed 3 herein.



FIG. 3 shows an alternate embodiment of the housing of the expandable spinal implant disclosed herein.



FIG. 4 shows yet another alternate embodiment of the housing of the expandable spinal implant disclosed herein.



FIG. 5 shows a top view of the outer surface of one embodiment of the top moveable endplate of the expandable spinal implant of present disclosure.



FIG. 6 shows a top view of the inner surface of one embodiment of the bottom moveable endplate of the expandable spinal implant of the present disclosure.



FIGS. 7A-7C show a perspective view, top view and side view of one embodiment of the central body of the expandable spinal endplate of the present disclosure.



FIG. 7D shows a side view of one embodiment of the central body and lower moveable endplate of the expandable spinal implant of the present disclosure together.



FIG. 8 shows a cross sectional view of one embodiment of the expandable spinal implant of the present disclosure.



FIG. 9 shows a cross sectional view of an alternate embodiment of the expandable spinal implant of the present disclosure.



FIG. 10 shows a top view of one embodiment of the lead screw, central body and top moveable endplate of the expandable spinal implant of the present disclosure.



FIG. 11A shows one embodiment of the locking collar of the present disclosure.



FIG. 11B shows one embodiment of the lead screw of the present disclosure.



FIG. 12 shows one embodiment of the locking collar positioned onto a lead screw of the present disclosure.



FIG. 13 shows one embodiment of the lead screw inserted into the housing.



FIGS. 14-17 show perspective and cross sectional views of one embodiment of the expandable spinal implant of the present disclosure in the expanded and collapsed configurations.



FIG. 18 shows an alternate cross section view of the expandable spinal implant of the present disclosure in the expanded configuration.



FIG. 18 shows a side view of the expandable spinal implant of the present disclosure in the expanded configuration.



FIGS. 20 and 21 show one embodiment of the insertion tool of the present disclosure.



FIGS. 22-25 show various views of the measurement tool of the present disclosure.





SUMMARY OF THE DISCLOSURE

In a first aspect, the present disclosure provides an expandable spinal implant comprising a plurality of moveable endplates pivotably connect to a housing. In a second aspect, the present disclosure provides an expandable spinal implant comprising a plurality of moveable endplates pivotably connect to a housing, a central body, a lead screw engaged with the central body and a passive locking mechanism.


DETAILED DESCRIPTION

Unless otherwise defined, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of this disclosure. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in this context of the specification and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well known functions or constructions may not be described in detail herein for brevity or clarity.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular foil is “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.


The terms “about” and “approximately” shall generally mean an acceptable degree of error or variation for the quantity measured given the nature or precision of the measurements. Typical, exemplary degrees of error or variation are within 20 percent (%), preferably within 10%, and more preferably within 5% of a given value or range of values. Numerical quantities given herein are approximate unless stated otherwise, meaning that the term “about” or “approximately” can be inferred when not expressly stated.


Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The expandable spinal fusion implant and related instruments disclosed herein boast a variety of novel features and components that warrant patent protection, both individually and in combination.


In general, the implant 10 described herein includes a housing 20, upper and lower moveable endplates 30, 40, a central body 70 positioned between the upper and lower endplates 30, 40 and within the housing 20, and a lead screw 60. The implant 10 is designed to be inserted into the disc space between adjacent vertebral bodies. The implant 10 may be made of any suitable, biocompatible material or combination of materials. For example, the implant components may be metal, poly ether ether ketone (PEEK), or a combination of the metal and PEEK. The implant 10 is configured to be inserted into the disc space in a collapsed state and upon being seated in a desired location within the disc space the distal end of the implant is expanded in height to create an implant 10 with a lordotic angle (i.e. the anterior height of the implant 10 is greater than the posterior height of the implant 10, thereby restoring a more natural lordotic curvature of the particular segment of the lumbar spine).


Now, referring to FIGS. 1-19, various embodiments of the implant 10 and its features and elements are shown. The implant 10 includes a housing 20 and upper and lower moveable endplates 30, 40 which are pivotably connected to the housing 20 via pins 50. The upper and lower moveable endplates 30, 40 are pivoted about the housing 20 by the action of a lead screw 60 coupled to a central body 70 as described herein.


The housing 20 is comprised of first and second lateral walls 21, 22 which are opposite one another and separated by a first and second end wall 23, 24 which are likewise opposite of one another. The first and second lateral walls 21, 22 and first and second end walls 23, 24 define a hollow or empty space which both serves to enclose the various elements required for expanding the implant 10 (as discussed in more detail below) and a fusion aperture 25. The housing may be shaped in a variety of shapes such as a parallelogram as depicted in the FIGS. 4B and C, of course rectangular and square configurations of the housing 20 should be considered within the scope of this disclosure. The first end wall 23 may be tapered to aid insertion into the disc space as shown in FIGS. 1 and 2. The first wall 23 also may include an aperture 27 which receives the rounded end 64 of the drive screw 60 to help secure the drive screw 60 in position. Further, the second end wall 24 comprises an aperture 27A through bone graft composition material can be passed into the fusion aperture 25 after the implant 10 is inserted.


The housing 20 may also have one or more fixed horizontal or nearly horizontal sections 28 that contact the vertebral bodies adjacent the disc space in which the implant 10 is inserted. The fixed horizontal section 28 may have anti-migration features 29 which help prevent shifting of the implant 10 insertion. The anti-migration features 29 may be teeth as depicted herein and may also be treated (for example, through a sandblasting like procedure) to produce a coarse or rough surface on the anti-migration features 29 to encourage bone growth.


The housing 20 may also comprise a recessed deck formed by a flat surface 26C. The recessed deck is configured to receive the upper and lower moveable endplates 30, 40 when the implant is in the collapsed configuration. The recessed deck is offset vertically towards the interior of the housing 20 from the fixed horizontal sections 28 and the vertical distance between the fixed horizontal section 28 and the flat surface 26C may be spanned by a ledge 26 as shown in FIGS. 2-4. In embodiments with the recessed deck, the housing 20 may also include a ramp 26B and a lip 26C on the tapered first end wall 22 of the implant 10. The ramp 26B and lip 26c serve to aid in the insertion of the implant 10 into the disc space while preventing tissue or other unwanted material from working its way into the space between the flat surface 26C and the upper and lower moveable endplates 30, 40.


As will be discussed in more detail below, the housing 20 also comprises portions of the passive locking mechanism as shown in FIGS. 2-4.


The implant 10 also includes upper and lower moveable endplates 30, 40. In the exemplary embodiment shown in FIGS. 1-19 and especially FIGS. 5-6, the upper and lower endplates 30, 40 are mirror images of one another, though it is contemplated that the upper and lower endplates may each have unique structural features. The upper and lower moveable endplates 30, 40 have bone contact surfaces 31, 41 which contact the vertebral bodies adjacent the disc space in which the implant 10 is inserted. The bone contact surfaces 31, 41 have anti-migration features 35, 45 which aid in preventing the implant 10 from shifting after insertion. The anti-migration features 35, 45 may be teeth as depicted herein and may also be treated (for example, through a sandblasting type procedure) that serves to produce a coarse or rough surface on the anti-migration features 35, 45 to encourage bone growth. The upper and lower moveable endplates 30, 40 are pivotable relative the housing 20 via the turning of the drive screw 60.


The upper and lower moveable endplates 30, 40 are pivotably connected to the housing 20 through pins 50 which pass through pin holes 52 in the housing 20 and the upper and lower moveable endplates 30, 40. In its collapsed configuration, the upper and lower moveable endplates 30, 40 lie flat or nearly flat in the recessed deck of the housing 20 on the flat surface 26C to aid in the insertion of the implant 10 into the disc space. For example, as shown in FIGS. 1-6, the upper and lower moveable endplates 30, 40 rest on flat surface 26C such that in the collapsed configuration the upper and lower moveable endplates 30, 40 are in horizontal alignment with the fixed horizontal sections 28. As the upper and lower end plates 30, 40 pivot relative to the housing 20, the angle of lordosis increases. In one embodiment, the implant 10 may provide between 1 and 40 degrees of lordosis.


The implant 10 also has a central body 70 between the upper and lower moveable endplates 30, 40 and at least partially surrounded by the housing 20. The central body 70 comprises a lead screw aperture 71 which is in vertical and horizontal alignment with the aperture 27 on the first end wall 23. The lead screw 60 may be inserted through the aperture 27 on the first end wall 23 until the rounded end 64 rests against, or abuts, the aperture 27 and the opposite end of the lead screw 60 is in the lead screw aperture 71 which comprises threads 72 complimentary to the threads 66 on the lead screw 60. The end of the lead screw 60 in the lead screw aperture 71 may comprise either a socket or other mechanism (such as a slotted or cross screwdriver head configuration) that can be connected to the insertion tool 100 through which the manipulation of the insertion tool 100 causes the lead screw 60 to turn. This end of the lead screw 60 is accessible via aperture 27A.


As the lead screw 60 turns in either the clockwise or counter-clockwise direction, the threads on the central body 70 cause the central body 70 to move laterally either towards the first end wall 23 or the second end wall 24 of the implant 10. In one embodiment, turning the lead screw 60 clockwise causes the central body 70 to move laterally towards the first end wall 23 while turning the lead screw 60 counter-clockwise causes the middle wall 70 to move laterally towards the second end wall 24 away from the first end wall 23.


As the central body 70 moves, wedges 73 contact ramps 36 on the interior surface of the upper and lower moveable endplates 30, 40 and cause the upper and lower endplates 30, 40 to rise outwardly away from the central body 70 (in other words, the upper and lower moveable endplates 30, 40 move towards the vertebral bodies above and below the disc space in which the implant has been inserted). Eventually, implant 10 is expanded the amount desired to restore the height of the intervertebral disc space. FIGS. 14-18 show the movement of the various parts of the implant 10 as it moves from the collapsed configuration to the expanded configuration.



FIG. 14 shows the implant 10 in the collapsed configuration ready for insertion along line x-x′ into a disc space. FIG. 15 shows the same view of the implant as FIG. 14, but the housing 20 is not shown. In FIG. 15, the wedges 73 have not moved along the axis of line x-x′ and therefore the upper and lower moveable endplates 30, 40 have not moved vertically along line y-y′. FIGS. 16 and 17 are similar views of the implant 10 as FIGS. 14 and 15, but the implant 10 is in the expanded configuration. As shown in FIGS. 16 and 17, in the expanded configuration the moveable upper and lower endplates 30, 40 have moved vertically along line y-y′ by the movement of wedges 73 against ramps 36 along line x-x′.


Now referring to FIGS. 3-4 and 5-13, the implant 10 may also comprise a passive locking mechanism 80. As the patient returns to normal activity, the implant 10 will be subjected to forces and strains that could cause the lead screw 60 to back out thereby allowing the implant 10 to collapse as either the upper moveable endplate 30, the lower moveable endplate 40 or both retract from their extended position. The passive locking mechanism 80 prevents the lead screw 60 from working loose or backing out. There are several embodiments of the passive locking mechanism 80 contemplated by this disclosure.


In a first embodiment shown in FIGS. 11A-13, the passive locking mechanism comprises a locking collar 81 that is fitted to one end of the lead screw 60. The locking collar 81 is then positioned between the threads 66 of the lead screw 60 and the first end wall 23 where the lead screw 60 passes through the aperture 27. The locking collar 81 comprises one or more recess engagement tabs 82 that engages one or more recesses 83 (shown in FIG. 3) present on the interior surface of the first end wall 23 surrounding aperture 27. The one or more recess may be spaced evenly around the aperture 27. In one embodiment, the implant 10 comprises between two and twenty recesses 83. In alternate embodiments, the implant 10 comprises between eight and twelve recesses 83.


The locking collar 81 is affixed to the lead screw 60 so that as the lead screw 60 turns, the locking collar 81 also turns. As the amount of force applied to the lead screw 60 by the surgeon during implantation increases to an amount sufficient to cause the one or more recess engagement tabs 82 to be displaced from the one or more recesses 83, the one or more recess engagement tabs 82 will rotate towards the next recesses 83 until the one or more recess engagement tabs 82 settle or fall into the next recesses 83. If the surgeon then stops turning the lead screw 60 the locking collar 82 will stop turning as well. In this embodiment of the passive locking mechanism 80 the fitment of the one or more recess engagement tabs 82 into the one or more recesses 83 prevents the lead screw 60 from backing out as the forces and strains imparted on the locking collar 82 via the lead screw 60 through normal everyday patient activity will not be great enough to overcome the force securing the one or more recess engagement tabs 82 into the one or more recesses 83 and thus the lead screw 60 is locked in place.


In an alternate embodiment of the passive locking mechanism 80 shown in FIGS. 4 and 11B, the lead screw 60 comprises a lead screw collar 68 positioned between the rounded end 64 and the threads 66 which comprises one or more recesses 69 spaced round the lead screw collar 68. The interior surface of the first end wall 23 comprises the aperture 27 through which the lead screw 60 passes (as described above) and one or more extended arms 90 that extend from the first end wall 23 towards the center of the housing 20. The extended arms 90 comprise a recess engagement tab 91 with a bump that is configured to fit into the one or more recesses 69 on the lead screw collar 68. In a similar fashion to the first embodiment of the passive locking mechanism 80 described above, as the amount of force applied to the lead screw 60 by the surgeon during implantation increases to an amount sufficient to cause the one or more recess engagement tabs 91 to be displaced from the one or more recesses 69, the one or more recess engagement tabs 91 will rotate towards the next recesses 69 until the one or more recess engagement tabs 91 settle or fall into the recesses 69. In this embodiment of the passive locking mechanism 80 the fitment of the one or more recess engagement tabs 91 into the one or more recesses 69 prevents the lead screw 60 from backing out as the forces and strains imparted on the lead screw locking collar 81 via the lead screw 60 through normal everyday patient activity will not be great enough to overcome the force securing the one or more recess engagement tabs 91 into the one or more recesses 69 and thus the lead screw 60 is locked in place.


Additionally the implant 10 may comprise one or more anterior supports 74 on the central body 70. In order to achieve a successful surgical outcome in vertebral fusion surgeries, the amount of motion between the implant 10 and the adjacent vertebral bodies needs to be minimized—this may be accomplished by the use of screws, rods and/or plates as is well known in the art. Additionally, the motion within the implant 10 itself needs to be minimized as well. As discussed above, the one or more wedges 73 serve to either lift or lower the upper and lower moveable endplates 30, 40 and the one or more wedges 73 also provide support for the upper and lower moveable endplates 30, 40 to prevent them from collapsing. However, it may be advantage to provide a second means of support such as the one or more anterior supports 74 to prevent the upper and lower moveable endplates 30, 40 from pivoting around the one or more pins 50. The one or more anterior supports 74 extend axially from the central body (see, e.g., FIG. 7A) opposite the one or more wedges 73. When the upper and lower moveable endplates are raised and the implant 10 is in the expanded configuration, one end of the upper and lower moveable endplates 30, 40 will contact the one or more anterior supports thereby preventing the upper and lower moveable endplates 30, 40 from rotating about the pins 50 thus minimizing the amount of movement within the implant 10 after insertion.


The present disclosure also provides an insertion tool 100, as shown in FIGS. 20 and 21, that engages with the implant 10 and aids in the insertion of the implant 10 during surgery. The insertion tool 100 comprises a rotatable element 101 in the end opposite the attachment point 102 with the implant 10. The rotatable element 102 may be in communication with the implant and specifically the lead screw 60 so that as the rotatable element 101 is rotated by the surgeon the lead screw 60 likewise rotates thus translating the wedges 73 and moving the upper and lower moveable endplates 30, 40. The attachment point 101 serves to provide a reversible, yet secure means of attaching the implant 10 to the insertion tool 100. The implant 10 may be attached to the insertion tool 100 prior to insertion of the implant between the vertebral bodies and may be unattached by the surgeon from the insertion tool 100 after insertion between the vertebral bodies. The means of attaching the implant 10 to the insertion tool 100 should allow the implant to be unattached from the insertion tool 100 quickly and easily so as to not disturb the implant after insertion.


The insertion tool 100 may comprise a hollow cylinder running its length. The hollow cylinder allows a surgeon to pack or insert bone graft composition into the fusion aperture 25 in the implant 10 after insertion and after the implant 10 is in its expanded configuration. As shown in FIG. 21, it may be desirable to use a funnel 103 to aid in the packing of the bone graft composition into the hollow cylinder of the insertion tool 100.


In another aspect, the present disclosure provides a measurement tool 110 useful for determining the approximate height required by the implant 10 upon insertion between vertebral bodies. One embodiment of this measurement tool is shown in FIGS. 22-25. The measurement tool comprises a first end 111 with a driver 112 and a second end 113 with two moveable endplates 114.


The driver 112 is rotatable and as it rotates, its rotational movement is translated by a series of linkages 115 located in the shaft 116 of the measurement tool 110 into a force that expands the moveable endplates 114. The endplates 114 at attached to a series of arms 117 which are in turn attached to the linkages 115. As the driver 112 rotates, the endplates 114 may be either raised away from the shaft 116 or lowered towards it.


The measurement tool 110 may also comprise an indicator feature 117 near the first end 111 that visually translates the movement of the endplates 114 into a series of predetermined units so that the surgeon can observe the movement of the endplates via the indicator feature 117. For example, the indicator feature may comprise an aperture on the shaft 116 that has a range of numbers from 1-10 printed (such as by laser printing) around the end of the aperture. As the endplates 114 are inserted between the vertebral bodies in their collapsed configuration, the indicator feature may have some marker correlating the height of the endplates 114 in the collapsed position to position “1” and as the endplates 114 are moved into their expanded configuration by the rotation of the driver 112, the marker may move from position “1” to position “2”, “3”, etc. The position numbers may then be correlated with the actual height of the endplates 114 providing the surgeon an estimate of the height of implant 10 for the particular patient's anatomy. Alternatively the numbers provided on the indicator feature 117 may directly provide the height of the endplates 114—in other words, the numbers may represent the height, in millimeters, of the endplates in the expanded configuration.


Although particular embodiments of the present disclosure have been described, it is not intended that such references be construed as limitations upon the scope of this disclosure except as set forth in the claims.

Claims
  • 1. An expandable spinal implant comprising: a plurality of moveable endplates pivotably connected to a housing;a central body located within the housing;a lead screw engaged with the central body; anda passive locking mechanism,wherein the passive locking mechanism comprises a series of recesses on the lead screw and a plurality of arms extending from an interior of the housing, each arm of said plurality of arms comprising an engagement tab configured to engage a corresponding recess in the series of recesses.
  • 2. The expandable spinal implant of claim 1, wherein the central body comprises a lead screw aperture configured to threadably engage the lead screw, and a wedge positioned adjacent to the lead screw aperture.
  • 3. The expandable spinal implant of claim 2, wherein central body is laterally translatable with respect to the housing.
  • 4. The expandable spinal implant of claim 3, wherein each moveable endplate of the plurality of moveable endplates comprises a ramp on a tapered first end wall, configured to oppose the wedge of the central body.
  • 5. The expandable spinal implant of claim 1, wherein the plurality of moveable endplates comprises an upper moveable endplate and a lower moveable endplate.
  • 6. The expandable spinal implant of claim 5, wherein the upper moveable endplate and lower moveable endplate are each pivotally connected to the housing via one or more pins.
  • 7. The expandable spinal implant of claim 5, wherein the housing comprises a recessed deck configured to receive the upper moveable endplate and the lower moveable endplate in a collapsed configuration.
  • 8. The expandable spinal implant of claim 7, wherein the housing further comprises: a first end wall opposite a second end wall;a first lateral wall opposite a second lateral wall, wherein the first and second lateral walls extend between the first and second end walls,wherein the recessed deck extends along a portion of the first lateral wall, a portion of the second lateral wall, and a portion of the first end wall;a ramp disposed on the first end wall; anda lip disposed on the first end wall between the ramp and the recessed deck,wherein the ramp and the lip are configured to aid in the insertion of the expandable spinal implant into a disc space of a patient.
  • 9. The expandable spinal implant of claim 1, wherein each of the plurality of moveable endplates comprises anti-migration features configured to prevent shifting and to encourage bone growth.
  • 10. The expandable spinal implant of claim 1, wherein the central body comprises a lead screw aperture having an internal thread complimentary to an external thread of the lead screw.
  • 11. The expandable spinal implant of claim 1, wherein the central body comprises one or more anterior supports configured to minimize an amount of motion of the expandable spinal implant relative to an adjacent vertebral body of a patient.
  • 12. The expandable spinal implant of claim 1, wherein the plurality of moveable endplates are configured to pivot relative to the housing, thereby adjusting an angle of lordosis.
  • 13. The expandable spinal implant of claim 12, wherein the angle of lordosis is in a range between one and forty degrees.
  • 14. The expandable spinal implant of claim 1, wherein the lead screw comprises a socket configured to engage an insertion tool.
  • 15. A system comprising: an expandable spinal implant, comprising: a plurality of moveable endplates pivotably connected to a housing,a central body located within the housing,a lead screw engaged with the central body, anda passive locking mechanism,wherein the passive locking mechanism comprises a series of recesses on the lead screw and a plurality of arms extending from an interior of the housing, each arm of said plurality of arms comprising an engagement tab configured to engage a corresponding recess in the series of recesses; andan insertion tool configured to position the expandable spinal implant into a disc space of a patient.
  • 16. The system of claim 15, wherein the central body comprises a lead screw aperture configured to threadably engage the lead screw, and a wedge positioned adjacent to the lead screw aperture.
  • 17. The system of claim 16, wherein central body is laterally translatable with respect to the housing.
  • 18. The system of claim 17, wherein each moveable endplate of the plurality of moveable endplates comprises a ramp on a tapered first end wall, configured to oppose the wedge of the central body.
  • 19. The system of claim 15, wherein the plurality of moveable endplates comprises an upper moveable endplate and a lower moveable endplate, each endplate pivotally connected to the housing via one or more pins.
  • 20. The system of claim 19, wherein the housing comprises: a first end wall opposite a second end wall;a first lateral wall opposite a second lateral wall, wherein the first and second lateral walls extend between the first and second end walls;a recessed deck configured to receive the upper moveable endplate and the lower moveable endplate in a collapsed configuration,wherein the recessed deck extends along a portion of the first lateral wall, a portion of the second lateral wall, and a portion of the first end wall;a ramp disposed on the first end wall; anda lip disposed on the first end wall between the ramp and the recessed deck,wherein the ramp and the lip are configured to aid in the insertion of the expandable spinal implant into the disc space of the patient.
CROSS REFERENCE TO OTHER APPLICATIONS

This application claims priority to, and the benefit of, United States Provisional Patent Application Nos.: 62/273,390 filed Dec. 30, 2015 and 62/273,441 filed Dec. 31, 2015.

US Referenced Citations (190)
Number Name Date Kind
5171278 Pisharodi Dec 1992 A
5390683 Pisharodi Feb 1995 A
5693100 Pisharodi Dec 1997 A
5725588 Errico Mar 1998 A
5782832 Larsen et al. Jul 1998 A
6102950 Vaccaro Aug 2000 A
6126689 Brett Oct 2000 A
6174334 Suddaby Jan 2001 B1
6183517 Suddaby Feb 2001 B1
6332895 Suddaby Dec 2001 B1
6340369 Ferree Jan 2002 B1
6344058 Ferree Feb 2002 B1
6352557 Ferree Mar 2002 B1
6368351 Glenn et al. Apr 2002 B1
6409766 Brett Jun 2002 B1
6419702 Ferree Jul 2002 B1
6488710 Besselink Dec 2002 B2
6491724 Ferree Dec 2002 B1
6500205 Michelson Dec 2002 B1
6582451 Marucci et al. Jun 2003 B1
6648918 Ferree Nov 2003 B2
6652584 Michelson Nov 2003 B2
6709458 Michelson Mar 2004 B2
6716247 Michelson Apr 2004 B2
6719797 Ferree Apr 2004 B1
6743255 Ferree Jun 2004 B2
6793679 Michelson Sep 2004 B2
6808537 Michelson Oct 2004 B2
6814756 Michelson Nov 2004 B1
6962606 Michelson Nov 2005 B2
6972035 Michelson Dec 2005 B2
6986772 Michelson Jan 2006 B2
7008453 Michelson Mar 2006 B1
7044971 Suddaby May 2006 B2
7070598 Lim et al. Jul 2006 B2
7083650 Moskowitz et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7118579 Michelson Oct 2006 B2
7118598 Michelson Oct 2006 B2
7547325 Biedermann et al. Jun 2009 B2
7608107 Michelson Oct 2009 B2
7615052 Serbousek Nov 2009 B2
7621951 Glenn et al. Nov 2009 B2
7625377 Veldhuizen et al. Dec 2009 B2
7655027 Michelson Feb 2010 B2
7678148 Peterman Mar 2010 B2
7682400 Zwirkoski Mar 2010 B2
7763028 Lim et al. Jul 2010 B2
7763074 Altarac et al. Jul 2010 B2
7846206 Oglaza et al. Dec 2010 B2
7892286 Michelson Feb 2011 B2
7901409 Canaveral et al. Mar 2011 B2
7922729 Michelson Apr 2011 B2
8007534 Michelson Aug 2011 B2
8025665 Lim et al. Sep 2011 B2
8075621 Michelson Dec 2011 B2
8097034 Michelson Jan 2012 B2
8097035 Glenn et al. Jan 2012 B2
8128662 Altarac et al. Mar 2012 B2
8152837 Altarac et al. Apr 2012 B2
8182538 O'Neil et al. May 2012 B2
8251891 Moskowitz et al. Aug 2012 B2
8268001 Butler et al. Sep 2012 B2
8303658 Peterman Nov 2012 B2
8317798 Lim et al. Nov 2012 B2
8328818 Seifert et al. Dec 2012 B1
8377071 Lim et al. Feb 2013 B2
8409282 Kim Apr 2013 B2
8444692 Michelson May 2013 B2
8496664 Michelson Jul 2013 B2
8523944 Jimenez et al. Sep 2013 B2
8540452 Jimenez et al. Sep 2013 B2
8551173 Lechmann et al. Oct 2013 B2
8579907 Lim et al. Nov 2013 B2
8603173 Biedermann et al. Dec 2013 B2
8628577 Jimenez Jan 2014 B1
8663329 Ernst Mar 2014 B2
8685095 Miller et al. Apr 2014 B2
8690917 Suh et al. Apr 2014 B2
8828085 Jensen Apr 2014 B1
8734520 Zwirkoski May 2014 B2
8771321 Michelson Jul 2014 B2
8771358 Michelson Jul 2014 B2
8795365 Arcenio et al. Aug 2014 B2
8795374 Chee Aug 2014 B2
8845726 Tebbe et al. Sep 2014 B2
8845730 De Villiers et al. Sep 2014 B2
8894652 Seifert et al. Nov 2014 B2
8906100 Jimenez et al. Dec 2014 B2
8940049 Jimenez et al. Jan 2015 B1
8986386 Oglaza et al. Mar 2015 B2
8998992 Seifert et al. Apr 2015 B2
9005291 Loebl et al. Apr 2015 B2
9034040 Seifert et al. May 2015 B2
9039742 Altarac et al. May 2015 B2
9119726 Wei Sep 2015 B2
9125692 Kim Sep 2015 B2
9138327 McClellan, III Sep 2015 B1
9155572 Altarac et al. Oct 2015 B2
9204973 Aflatoon et al. Dec 2015 B2
9220535 Robling et al. Dec 2015 B2
9233009 Gray et al. Jan 2016 B2
9259328 Pabst et al. Feb 2016 B2
9289308 Marino et al. Mar 2016 B2
9295562 Lechmann et al. Mar 2016 B2
9333093 Aflatoon May 2016 B2
9345584 Michelson May 2016 B2
9351846 De Villiers et al. May 2016 B2
9351851 Huffmaster et al. May 2016 B2
9381092 Jimenez et al. Jul 2016 B2
9393130 Suddaby et al. Jul 2016 B2
9408707 Oglaza et al. Aug 2016 B2
9408721 Eastlack et al. Aug 2016 B2
9414933 Banouskou Aug 2016 B2
9421111 Baynham Aug 2016 B2
9433510 Lechmann et al. Sep 2016 B2
9445856 Seifert et al. Sep 2016 B2
9445917 Jimenez et al. Sep 2016 B2
9463099 Levy et al. Oct 2016 B2
9801734 Stein Oct 2017 B1
20030236520 Lim et al. Dec 2003 A1
20050080422 Otte et al. Apr 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060004455 Leonard et al. Jan 2006 A1
20070118222 Lang May 2007 A1
20070149978 Shezifi et al. Jun 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080114367 Meyer May 2008 A1
20090076607 Aalsma et al. Mar 2009 A1
20090157084 Aalsma et al. Jun 2009 A1
20090281628 Oglaza et al. Nov 2009 A1
20100137862 Diao et al. Jun 2010 A1
20100137987 Diao et al. Jun 2010 A1
20100217335 Chirico et al. Aug 2010 A1
20110029086 Glazer et al. Feb 2011 A1
20110093074 Glerum Apr 2011 A1
20110257748 Liu Oct 2011 A1
20120101530 Robling et al. Apr 2012 A1
20120185049 Varela Jul 2012 A1
20120290094 Lim et al. Nov 2012 A1
20130103154 Trieu et al. Apr 2013 A1
20130116791 Theofilos May 2013 A1
20130144388 Emery et al. Jun 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130297029 Kana et al. Nov 2013 A1
20130304213 Aflatoon et al. Nov 2013 A1
20140018922 Marino et al. Jan 2014 A1
20140031940 Banouskou Jan 2014 A1
20140039625 To et al. Feb 2014 A1
20140114420 Robinson Apr 2014 A1
20140135776 Huffmaster et al. May 2014 A1
20140148904 Robinson May 2014 A1
20140156007 Pabst et al. Jun 2014 A1
20140163682 Iott et al. Jun 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140180419 Dmuschewsky Jun 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140243983 Galea et al. Aug 2014 A1
20140277139 Vrionis et al. Sep 2014 A1
20140277471 Gray Sep 2014 A1
20140277492 Wei Sep 2014 A1
20140277498 Ainsworth et al. Sep 2014 A1
20140277499 Ainsworth et al. Sep 2014 A1
20140277508 Baynham Sep 2014 A1
20140277510 Robinson Sep 2014 A1
20140296984 Etminan Oct 2014 A1
20140309741 Ganter et al. Oct 2014 A1
20140343677 Davis et al. Nov 2014 A1
20140343678 Suddaby et al. Nov 2014 A1
20140358246 Levy et al. Dec 2014 A1
20140364951 De Villiers et al. Dec 2014 A1
20150012097 Ibarra Jan 2015 A1
20150012098 Eastlack et al. Jan 2015 A1
20150112437 Davis et al. Apr 2015 A1
20150173917 Radcliffe Jun 2015 A1
20150182347 Robinson Jul 2015 A1
20150230935 Aflatoon Aug 2015 A1
20150238230 Suh et al. Aug 2015 A1
20150272743 Jimenez et al. Oct 2015 A1
20150342586 Lim et al. Dec 2015 A1
20160022434 Robinson Jan 2016 A1
20160022438 Lamborne et al. Jan 2016 A1
20160030190 Robinson Feb 2016 A1
20160067056 Armstrong et al. Mar 2016 A1
20160074174 Halverson et al. Mar 2016 A1
20160081724 Robling et al. Mar 2016 A1
20160089247 Nichols et al. Mar 2016 A1
20160242927 Seifert et al. Aug 2016 A1
20160250034 Loebl et al. Sep 2016 A1
20160256148 Huffmaster et al. Sep 2016 A1
Foreign Referenced Citations (43)
Number Date Country
2007202404 Jun 2007 AU
2011203582 Aug 2011 AU
101502436 Aug 2009 CN
202568534 Dec 2012 CN
203183090 Sep 2013 CN
104248465 Dec 2014 CN
204306881 May 2015 CN
105232191 Jan 2016 CN
204931904 Jan 2016 CN
20314708 Nov 2003 DE
10344019 May 2005 DE
2777633 Sep 2014 EP
2717068 Sep 1995 FR
2813519 Mar 2002 FR
3006169 Dec 2014 FR
2008054710 Mar 2008 JP
2011516181 May 2011 JP
2011520580 Jul 2011 JP
2013508031 Mar 2013 JP
2014073405 Apr 2014 JP
2015533337 Nov 2015 JP
2016013460 Jan 2016 JP
20020084349 Nov 2002 KR
2070006 Dec 1996 RU
1992014423 Sep 1992 WO
1995025485 Sep 1995 WO
2001003616 Jan 2001 WO
2005006944 Jan 2005 WO
2006042334 Apr 2006 WO
2007038349 Apr 2007 WO
2007070024 Jun 2007 WO
2008003952 Jan 2008 WO
2008044057 Apr 2008 WO
2010078468 Jul 2010 WO
2012089317 Jul 2012 WO
2014091028 Jun 2014 WO
2014144696 Sep 2014 WO
2014186384 Nov 2014 WO
2015063719 May 2015 WO
2015063721 May 2015 WO
2015097416 Dec 2015 WO
2015198335 Dec 2015 WO
2016040125 Mar 2016 WO
Non-Patent Literature Citations (2)
Entry
International Search Report for application No. PCT/US2016/069453, ISA/EP, dated Apr. 6, 2017, 3 pgs.
Written Opinion of the International Searching Authority for application No. PCT/US2016/069453, ISA/EP, dated Apr. 6, 2017, 5 pgs.
Related Publications (1)
Number Date Country
20210267767 A1 Sep 2021 US
Provisional Applications (2)
Number Date Country
62273441 Dec 2015 US
62273390 Dec 2015 US
Continuations (1)
Number Date Country
Parent 16068606 US
Child 17201218 US