This invention relates generally to monitoring the movements of a human being and, more particularly, to methods and systems for studying and determining a patient's activity, a loss of balance, or a fall event.
There are many devices that are designed to determine a subject's physical position or movement. The field may be segmented into (a) devices that detect an event only and provide some kind of action in response to the event, and (b) devices that log data for the purposes of study and prediction as well as provide real-time event detection. U.S. Pat. No. 7,248,172 is an example of the former and U.S. Pat. No. 6,834,436 is an example of the latter.
Physically, such devices fall into two categories. The first category is a sensor module that is worn somewhere on the body and transmits to a remote location when an event has been detected (as described in U.S. Pat. No. 7,248,172). The second would be a hardwired personal area network (as described in U.S. Pat. No. 6,834,436).
The basic purpose of these devices is to (a) monitor kinematic output signals from a subject (as described in U.S. Pat. No. 7,095,331) (b) use the signal data to study the movements of a subject or determine a fall event (as described in U.S. Pat. No. 7,141,026), and (c) notify emergency response personnel of a potentially harmful event (as described in U.S. Pat. No. 6,433,690).
These systems use various sensor modules to monitor and study kinematic output signals. Most devices include an accelerometer to make these measurements (as described in U.S. Pat. No. 6,997,882). Others combine accelerometers with gyroscopes (as described in U.S. Pat. No. 7,141,026). A third type of device uses insole foot sensors only to determine patient movement (as described in U.S. Pat. No. 6,183,425).
As is apparent from above, there is no device that (a) provides the detailed data to allow the study of system inputs so that a fail can be predicted and potential preventative measures can be taken, (b) uses a wireless personal area network to eliminate all wires from the system, and (c) combines accelerometer, gyroscope, and foot force data.
Combining these features into multiple small low profile modules that are comfortable to wear will be state-of-the-art in monitoring and studying the stability of elderly patients. Therefore prior units were not built with highly detailed data collection combined with the comfort that a truly wireless system provides.
This invention is directed to a loss-of-balance detection system and method. It is designed to create a monitoring/assessment tool to determine if assisted living is necessary for an elderly person based on loss of balance when performing everyday activities. In the preferred embodiment the system is wireless and includes a base station, 3-kinematics measurement sensors, and 2-foot force sensors. The base station is connected to a computer where it initializes the wireless network and uploads the system data at the conclusion of the test. The 3-kinematics measurement sensors are attached to the chest and both thighs. The 2-foot force sensors are worn in the insole of the shoes. All these modules are designed to sample data at high rates and store the data on a module memory card.
The invention can also be used as wireless fall event detection system. If the system is going to be used to prevent and detect falls in real time the wireless feature may be utilized with a lower sampling rate to allow for processing. The sensor modules wirelessly transmit the data to a base station where processing of the data is preformed. If a fall event is detected then the base station will alert emergency personnel.
The system is designed to be non-invasive to increase the validity of the data. A wireless personnel area network is used so that there are no wires in the wearable portion of the system. This is to remove the restrictive nature of wires hanging on the body and in return create more mobility for the subject under examination.
The combination of sensors is unique because they combine acceleration, angular velocity, and foot force data all in one system. Previous systems have used at least one form of this data, but never has all three forms been combined in one system. To provide this data each kinematic measurement sensor module includes a 3-axis accelerometer for acceleration and a 3-axis gyroscope for angular velocity. The foot force sensors use two piezoresistive transducers each to produce foot floor pressure data.
There are many applications that need methods and equipment to study and evaluate human movement. A few examples would include the running position of a track and field athlete, the proper lifting pattern of a mover, or to determine if someone's stability is potentially detrimental to their health. This invention is focused around the third application, but can be used for any of the mentioned or similar scenarios.
To support these applications, the disclosed system has the following features;
1. 2 foot force sensors
2. 3 kinematic measurement sensors
3. A base station
4. Portable system that can be worn anywhere
5. The ability to collect data at a high rate for extended periods of time
6. Raw data access
7. Removes the constricted feeling of a wire system
8. Small sensor packaging to increase the comfort of the system
The foot force sensor (FFS) measures the ground reaction between the foot and the floor. The force-sensing transducers are preferably located in the insole under the heel and the second metatarsal head of each foot in order to monitor ground reaction force magnitude. They are connected to amplifiers that condition the signal and then send it to a microprocessor where it is stored in memory or wirelessly transmitted to the base station depending on the application. All the components except the transducers are housed in a module that is strapped around the ankle. The module features a transceiver and printed circuit board (PCB) antenna for synchronization with the rest of the system or data upload with the base station. A block diagram of the system is shown in
The kinematics measurement system (KMS) measures the angular rate, acceleration, and angle of the area of interest about 3 orthogonal axes. In the preferred embodiment each KMS uses a 3-axis accelerometer and 3-axis gyroscope to determine these measurements. These components are connected to a microprocessor, transceiver, external memory, and a printed circuit board (PCB) antenna to complete the circuitry. The KMS modules are preferably worn on the chest and both thighs though more or fewer may be used, each with one or both of the accelerometers and gyroscopes, depending upon the patient and the activity to be monitored. A block diagram of the system can be viewed in
A kinematics measurement system (KMS) module is strapped to the chest of the subject using a harness. With this module on the chest, determine activities like falling, bending, twisting, and turning are possible.
To improve the input data for determining loss of balance, one kinematics measurement system (KMS) module is placed on each thigh of a subject using a harness. The modules assist in understanding the position and the activity of the person wearing the unit. The information is invaluable to understanding of what causes a loss of balance. The modules are used to differentiate sitting from standing and to provide information on pedal activities like waddling in place that can't be determined with a chest module only.
The purpose of the base station (BS) module is to initialize the network, provide an accurate time stamp, and read the data from the external memory cards or receive the data wirelessly depending on the application. The module connects to a computer to get an accurate time stamp and to transfer the data from the memory card or wireless network to the computer. The timestamp is broadcast to the modules during initialization of the network and attempts to update periodically if the system is within range until the test is complete. A block diagram of the system is depicted in
An important aspect of the system architecture is the portability of the system. The system does not need to be in range of the base station to function. The system only needs to be started in the presence of the base station that also functions as a coordinator of the wireless network. After the base station has started the network, it will synchronize the sensors. Once the synchronization has occurred the base station is no longer necessary until the studies have finished.
The system has been designed to collect data at a high sampling rate for studying purposes. To accommodate a high sampling rate, the upload of data through a wireless network has to be eliminated. The data has to be stored directly on the sensor module. To provide this functionality each sensor module is equipped with a micro SD removable memory card. The memory card is sized to provide 24 hours of data collection.
The system provides access to the raw data that has been collected from the system. This allows the collector access to the true data and can filter, average, or sample the data per the desires of the study.
The system removes the constricted feeling of wires that previous systems have been unable to avoid. It uses a wireless personal area network to keep the individual modules in synchronization and each device has its own battery source to power the module.
Small non-invasive packaging is used for the sensor modules. This is possible because each sensor module uses a PCB antenna for communication, which eliminates an awkward external antenna. The kinematic measurement system utilizes state of the art packaging for the 3-axis accelerometer and 3-axis gyroscope that combines all three axes in one surface mount component.
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/939,687, filed May 23, 2007, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60939687 | May 2007 | US |