This application relates to a core for forming cooling passages in an airfoil, wherein the core is formed of ceramic components and refractory metal components.
Gas turbine engines are known and, typically, include a number of airfoils. The airfoils may be utilized as turbine blades, turbine vanes, compressor blades and vanes, and at other locations.
As known, in a gas turbine engine, temperatures can become quite high and, thus, cooling passages may be required within the airfoils. One method of forming the cooling passages is so-called lost core molding. In lost core molding, a core is formed and placed within a mold for forming the airfoil. Metal is injected into the mold and solidifies around the core. The core is then leached away leaving internal cavities within the airfoil.
One type of material utilized for the core is ceramics. Ceramics are useful in that they can be made to taper. However, it is difficult to make ceramics into relatively thin shapes.
Another type of core component is formed of refractory metals. Such materials can be made to be quite thin, however, they are limited in being able to form tapering passages.
It has been proposed to utilize the combination of ceramics and refractory metals, however, this has only been done with the refractory metals extending in an axial direction from the ceramic core materials.
In a featured embodiment, a lost core assembly includes a ceramic component having a tapered shape in a radial direction. A refractory metal component extends radially from the ceramic core component.
In another embodiment according to the previous embodiment, the ceramic component tapered shape has a first end of a first area and a second end of a second smaller area. Sides of the ceramic component taper between the first and the second ends. The refractory metal component is secured to the second end.
In another embodiment according to any of the previous embodiments, the ceramic component has slots on the second end. The refractory metal component extends into the slots.
In another embodiment according to any of the previous embodiments, a glue is positioned in the slots to secure the refractory metal component to the ceramic component.
In another embodiment according to any of the previous embodiments, there are a plurality of ceramic components secured to the refractory metal components.
In another embodiment according to any of the previous embodiments, there are a plurality of refractory metal components secured to the ceramic component.
In another embodiment according to any of the previous embodiments, the refractory metal component extends for a greater distance in a direction from the first face to the second face of the ceramic core component and is thinner than the ceramic core component in a second direction perpendicular to the first direction.
In another embodiment according to any of the previous embodiments, the refractory metal component extends for a greater distance in a direction from the first face to the second face of the ceramic core component and is thinner than the ceramic core component in a second direction perpendicular to the first direction.
In another embodiment according to any of the previous embodiments, a glue secures the ceramic components to the refractory metal component.
In another embodiment according to any of the previous embodiments, there are a plurality of ceramic components secured to the refractory metal component.
In another embodiment according to any of the previous embodiments, there are a plurality of refractory metal components secured to the ceramic component.
In another embodiment according to any of the previous embodiments, a glue secures the ceramic components to the refractory metal component.
In another featured embodiment, a method of molding a gas turbine engine component includes the step of inserting a core assembly into a mold for a gas turbine engine component. The component has a ceramic component with a tapered shape in a radial direction. A refractory metal component extends radially from the ceramic core component.
In another embodiment according to the previous embodiment, a first end of a first area and a second end of a second smaller area. Sides of the ceramic component taper between the first and the second end
In another embodiment according to any of the previous embodiments, the ceramic component has slots on the second end. The refractory metal component extends into the slots.
In another embodiment according to any of the previous embodiments, a glue is positioned in the slots to secure the refractory metal component to the ceramic component.
In another embodiment according to any of the previous embodiments, the refractory metal component extends for a greater distance in a direction from the first face to the second face of the ceramic core component and is thinner than the ceramic core component in a second direction perpendicular to the first direction.
In another embodiment according to any of the previous embodiments, a glue secures the ceramic components to the refractory metal component.
In another embodiment according to any of the previous embodiments, there are a plurality of ceramic components secured to the refractory metal component.
In another embodiment according to any of the previous embodiments, there are a plurality of refractory metal components secured to the ceramic component.
These and other features may be best understood from the following drawings and specification.
A gas turbine engine component 20 is illustrated in
It is desirable to have the passages 26 and 28 taper, but have the passage at 34 be thin.
Thus, as shown in
As shown in
After manufacture, a component formed in mold 100 may be mounted in a gas turbine engine.
As can be appreciated from the Figures, the refractory metal component 134 extends radially away from the ceramic component 126. As can also be appreciated, the ceramic component 126 tapers or become smaller in the radial direction R as shown by the tapering sides.
Lost core assembly 127 includes a ceramic component 126 having a first end 200 of a first area and a second end 133 of a second smaller area. Sides 168 of the component taper between the first and second ends. A refractory metal component 134 extends from the second end of component 126.
While the radially outer second end 33 is disclosed as having a smaller area, all that is required is there be some taper in the shape in a radial direction. In embodiment, the first end 200 first area and the second end 133 second area could be of equal areas. For that matter, the second area could be larger than the first area.
As shown in
The refractory metal component 134 extends for a greater distance in a direction from the first face end to the second end of the ceramic component 126 and is thinner than the ceramic component 126 in a second direction perpendicular to the first direction.
The ceramic and refractory metal materials may be as known in lost core molding techniques.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
This application is a continuation of U.S. patent application Ser. No. 15/022,745, filed on Mar. 17, 2016, which is a U.S. National Phase Application of PCT Application No. PCT/US2014/057574, filed on Sep. 26, 2014, which claims priority to U.S. Provisional Application No. 61/894,928, filed Oct. 24, 2013.
Number | Name | Date | Kind |
---|---|---|---|
5951256 | Dietrich | Sep 1999 | A |
6913064 | Beals | Jul 2005 | B2 |
6929054 | Beals et al. | Aug 2005 | B2 |
6932571 | Cunha et al. | Aug 2005 | B2 |
8302668 | Bullied et al. | Nov 2012 | B1 |
20060048914 | Wiedemer et al. | Mar 2006 | A1 |
20070068649 | Verner et al. | Mar 2007 | A1 |
20070221359 | Reilly | Sep 2007 | A1 |
20080008599 | Cunha et al. | Jan 2008 | A1 |
20080131285 | Albert et al. | Jun 2008 | A1 |
20080169412 | Snyder et al. | Jul 2008 | A1 |
20080181774 | Cunha | Jul 2008 | A1 |
20110286857 | Gleiner et al. | Nov 2011 | A1 |
20110315336 | Snyder et al. | Dec 2011 | A1 |
20120168108 | Farris et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1611978 | Jan 2006 | EP |
1634665 | Mar 2006 | EP |
1914030 | Apr 2008 | EP |
1923152 | May 2008 | EP |
1952911 | Aug 2008 | EP |
2191911 | Jun 2010 | EP |
2399693 | Dec 2011 | EP |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2014/057574 dated Jan. 7, 2015. |
International Preliminary Report on Patentability for International Application No. PCT/US2014/057574 dated May 6, 2016. |
Singapore Search Report for Singapore Application No. 11201601945Y dated Aug. 18, 2016. |
Supplementary European Search Report for European Application No. 14856477.6 dated Jun. 27, 2017. |
Number | Date | Country | |
---|---|---|---|
20180281051 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
61894928 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15022745 | US | |
Child | 15960857 | US |