The present disclosure relates to audio applications, and more specifically, to a to a speaker assembly having a configuration for optimizing audio output.
Many common electronic devices require smaller loudspeaker assemblies. Yet consumers increasingly demand high quality and consistent audio output from such loudspeakers at a reduced cost.
What is needed is speaker assembly which is reduced in size but yet provides sufficient audio output quality at a lesser expense.
According to an exemplary embodiment, a speaker waveguide includes a first orifice arranged about a rotational axis of the waveguide, a waveguide region that extends radially outwardly from the first orifice, and a bracket region defining a second orifice and a third orifice.
According to another exemplary embodiment, a speaker assembly includes a first speaker and a speaker waveguide arranged on the first speaker. The speaker waveguide includes a first orifice arranged about a rotational axis of the waveguide, a waveguide region that extends radially outwardly from the first orifice, and a bracket region defining a second orifice and a third orifice.
For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts:
It is desirable to provide a compact speaker configuration that provides both low frequency output from a first speaker such as the woofer assembly 102 and from a second speaker such as from a higher frequency transducer outputting tweeter type speaker.
In this regard, the assembly 100 includes a waveguide assembly (waveguide) 118 that is connected to the assembly 100 using, for example, fasteners that pass through the attachment regions 120. The waveguide assembly 118 secures a tweeter assembly (second speaker) 122 substantially coaxially with the woofer assembly (first speaker) 102. The waveguide 118 has cutout regions (described below) that allow for the waveguide 118 to be substantially acoustically transparent to the low-frequency sound produced by the woofer assembly 102.
The waveguide 118 includes a waveguide portion 304 that is arranged inside the circle 303. The circle 303 is shown at the highest point of the waveguide assembly 118. The waveguide portion 304 has a parabolically shaped or curved, substantially smooth surface 301 without openings or abrupt geometries. The waveguide portion 304 is operative to help to guide high-frequency sound waves generated by the tweeter assembly 122. This improves the efficiency of the radiation of the sound waves and limits direct acoustic artifacts as a result of interaction between the radiations of the tweeter assembly 122 and the woofer assembly 102.
The waveguide portion 304 has a conical geometry raising the profile of the waveguide following a parabolic function from the speaker opening region 302 towards the top of the waveguide 118.
Experimental studies show that the diameter of this concentric and continuous waveguide portion 304 is between 35% to 45% of the waveguide 118 diameter. This corresponds to the following ratio (WD/BROD) between the Waveguide Diameter (WD) and the Bracket Region Outer Diameter (BROD): ranging from 2.8 to 3.2. For example, in a 3.5 inch waveguide with a diameter of 80 mm, the waveguide portion 304 region is defined from the outer diameter edge of the speaker opening region 302 to a concentric circle with a diameter between 28-36 mm. This region acts as a waveguide. In the illustrated exemplary embodiment the outer diameter of the waveguide 118 corresponds to the outer diameter of the woofer assembly 102.
The waveguide 118 includes a bracket region 306. The bracket region 306 is operative to provide structural support for the tweeter assembly 122 (of
The dimensions or relationship between the dimensions of the diameter of the waveguide portion 304 (r′) and the height (h) may be expressed as a ratio of the r′ divided by the h. Where the ratio is between 5 and 7. For example, for a 3.5 inch woofer with an outer diameter of 80 mm, a waveguide of similar size is used, 80 mm. Therefore, waveguide 118 h dimension falls between 11 mm (80×0.14) and 16 mm (80×0.2). In other words, this waveguide design would increase the total profile height of the woofer less than 20% of the outer diameter of the woofer.
There are an even number of orifices 308 and 310, and the orifices 308 and 310 are different sizes and shapes respectively where the orifice 308 has a smaller opening area than the orifice 310. The orifices 308 and 310 are arranged in an alternating pattern about the center of the waveguide 118. The orifices 310 (the larger orifices) extend radially inward through the circle 303 (highest point of the waveguide 118), thus the circle 303 may not be continuous. The width of the orifices 310 becomes wider as the orifices 310 approach the outer diameter of the waveguide 118.
The smaller orifices 308 begin at the point 303 (moving radially outward from the center of the waveguide 118) and become wider as the orifices 308 approach the outer diameter of the waveguide 118. The width of the orifices 308 at the outer diameter of the waveguide 118 may be greater than the corresponding widths of the orifices 310 at the outer diameter of the waveguide 118.
The areas of the orifices 308 and 310 may be expressed as a ratio of the area of a large orifice (orifice 310) divided by the area of a small orifice (orifice 308). The ratio is between 1.3 to 1.9. For example, if a 3.5 inch waveguide of 80 mm diameter is designed with each orifice 308 having an area of 300 mm2, the area of each orifice 310 would range from 390 mm2 to 570 mm2.
The combined areas of the orifices 308 and 310 and the total area of the waveguide 118 may be expressed as a ratio of the total wave guide area divided by the sum of the areas of the orifices 308 and 310. The ration is between 1.9 to 2.5. For example, a 3.5 inch waveguide with a diameter of 80 mm has an area of approximately 5000 mm2. Using the above ration, the sum of the areas of the orifices 308 and 310 range from approximately 2010 mm2 to 2645 mm2.
While the preferred embodiments to the invention have been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.
This application claims priority to provisional application No. 62/399,299, filed Sep. 23, 2016; the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62399299 | Sep 2016 | US |