The disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other items directed to media playback or some aspect thereof.
A loudspeaker in the context of the present application is an electroacoustic transducer that produces sound in response to an electrical audio signal input. Originally, non-electrical loudspeakers were developed as accessories to telephone systems. Today, electronic amplification for applications such as audible communication and enjoyment of music has made loudspeakers ubiquitous.
A common form of loudspeaker uses a diaphragm (such as, for example, a paper cone) supporting a voice coil electromagnet acting on a permanent magnet. Based on the application of the loudspeaker, different parameters may be selected for the design of the loudspeaker. For instance, the frequency response of sound produced by a loudspeaker may depend on the shape, size, and rigidity of the diaphragm, and efficiency of the voice coil electromagnet, among other factors. Accordingly, the diaphragm and voice coil electromagnet may be selected based on a desired frequency response of the loudspeaker. In some cases, for improved reproduction of sound covering a wide frequency range, multiple loudspeakers may be used collectively, each configured to optimally reproduce different frequency sub-ranges within the wide frequency range.
As applications of loudspeakers continue to broaden, different loudspeakers designed for particular applications continue to be developed.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings where:
Embodiments described herein involve loudspeaker configurations that allow for a loudspeaker to have reduced height. The reduced height of the loudspeaker may allow the loudspeaker to be installed in shallow compartments where conventional non-shallow speakers may not otherwise fit.
In one example, a configuration of a loudspeaker may involve a continuous diaphragm extending across a frame of the loudspeaker and covering a voice coil of an electromagnet transducer of the loudspeaker. In other words, the voice coil is covered by the diaphragm, rather than by a dust cap, as may be the case in conventional loudspeaker configurations. Dust caps for covering voice coils in a loudspeaker may add height to the loudspeaker transducer, thereby adding height to the loudspeaker.
As such, the loudspeaker in this example configuration may have a reduced height because the voice coil is covered by the continuous diaphragm rather than a dust cap. Further, conventional loudspeakers configured with dust caps may require additional component costs and manufacturing time to install the dust cap. As such, a loudspeaker with a continuous diaphragm covering the voice coil may further involve reduced costs and manufacturing time.
In another example, a configuration of the loudspeaker may involve a suspension element, sometimes referred to as a “spider,” attached circumferentially between a diaphragm of the loudspeaker and a frame of the loudspeaker. In this example, the spider is attached between the frame and the diaphragm rather than between the frame and a voice coil of an electromagnet transducer of the loudspeaker, as may be the case in conventional speaker configurations. In the case of conventional speaker configurations in which the spider is attached to a voice coil, the voice coil may have a required height to provide sufficient clearance for movement of the spider attached to the voice coil during operation of the loudspeaker.
As indicated above and further discussed below, the present application involves a loudspeaker configuration. The loudspeaker includes a frame, a magnetic structure having a magnetic gap, a voice coil suspended at least partially within the magnetic gap, and a first suspension element having an inner rim and an outer rim. The first suspension element is attached to the frame along the outer rim of the first suspension element. The loudspeaker configuration also includes a diaphragm having a continuous central portion and an outer portion. The diaphragm is attached to the voice coil via a first coupler to a lower surface of the continuous central portion. The diaphragm is attached to the inner rim of the first suspension element along an outer edge of the outer portion such that the diaphragm suspends from the frame. The loudspeaker configuration further includes a second suspension element having an inner rim and an outer rim. The second suspension element is attached to the frame along the outer rim of the second suspension element. The inner rim of second suspension element is attached to the diaphragm via a second coupler along a circumferential middle section of the diaphragm between the continuous central portion and outer portion of the diaphragm.
In another aspect, a diaphragm structure for a loudspeaker is provided. The diaphragm structure includes a continuous central portion having a lower surface. The lower surface of the continuous central portion is attached to a voice coil of the loudspeaker via a first coupler. The diaphragm structure also includes an outer portion having an outer edge. The outer edge of the outer portion is attached to an inner rim of a first suspension element attached to a frame of the loudspeaker such that the diaphragm suspends from the frame of the loudspeaker. The diaphragm structure further involves a circumferential middle section between the continuous central portion and outer portion of the diaphragm. The circumferential middle section is coupled via a second coupler to an inner rim of a second suspension element. The second suspension element is attached to the frame of the loudspeaker along an outer rim of the second suspension element.
Other embodiments, as those discussed in the following and others as can be appreciated by one having ordinary skill in the art are also possible.
As suggested above, the present application provides loudspeaker configurations that allow for a loudspeaker to have reduced height.
As shown, the loudspeaker 200 includes a frame 202, a magnetic structure 210, a voice coil 214, a first suspension element 208, a diaphragm having a continuous central portion 204a and an outer portion 204b, and a second suspension element 220. The loudspeaker 200 further includes a first coupler 224 and a second coupler 216.
The frame 202 or “basket” of the loudspeaker 200 may be designed to maintain alignment of other components in the loudspeaker. The frame may be, for example, cast from aluminum alloy, stamped from steel sheets, or molded from plastic.
The magnetic structure 210 and the voice coil 214 may be components of an electromagnetic transducer of the loudspeaker 200. As shown, the magnetic structure may have a magnetic gap, and the voice coil 214 may be suspended at least partially within the magnetic gap. The electromagnetic transducer of the loudspeaker 200 may be configured to vibrate longitudinally in response to an electric current run through the voice coil 214.
The diaphragm, which may be attached to the voice coil 214 via the first coupler 224, vibrates in response to the vibration of the voice coil 214, thereby producing sound. The diaphragm may be made of, for example, paper, plastic, metal, or composite materials such as cellulose paper, carbon fiber, and Kevlar, etc. Other materials may also be possible. The sound output level and frequency response of the loudspeaker 200 may be dependent on the material and dimensions of the diaphragm. As shown in
The first suspension element 208 and the second suspension element 220 may make up a suspension system of the loudspeaker 200 configured to keep the voice coil 214 centered in the magnetic gap of the magnetic structure 210 and provide a restoring force to return the diaphragm to a neutral position after movement of the diaphragm responsive to vibrations of the voice coil 214.
The first suspension element 208 or “surround” of the loudspeaker may have an inner rim and an outer rim. As shown in
The second suspension element 220 or “spider” of the loudspeaker 200 may have an inner rim and an outer rim. As shown in
The sound output level and frequency response of the loudspeaker 200 may further be dependent on an orientation of the second suspension element 220. In one case, the second suspension element 220 may be oriented such that the suspension element 220 is substantially horizontal or parallel to an orientation of the diaphragm.
As shown, the second suspension element 220 may be attached to the diaphragm along a circumferential middle section of the diaphragm between the continuous central portion 204a and outer portion of the diaphragm 204b. In one example, the second coupler 216 may be a circumferential coupler concentric with the continuous central portion 204a and outer portion 204b of the diaphragm. In this case, the circumferential middle section of the diaphragm may be defined by the circumferential second coupler 216.
As shown in
In one case, the continuous dome-shaped diaphragm may be coupled to the cone-shaped diaphragm along the circumferential middle section of the diaphragm. As such, the continuous dome-shaped diaphragm may be coupled to the cone-shaped diaphragm via the second coupler 216, which also attaches the second suspension element 220 to the diaphragm along the circumferential middle section of the diaphragm. For instance, the second suspension element 220 may be attached to the edge of the lower circumferential opening of the cone-shaped diaphragm along the circumferential middle section of the diaphragm. In some instances, the circumferential middle section of the diaphragm may be defined by where the continuous dome-shaped diaphragm and the cone-shaped diaphragm are coupled.
As one having ordinary skill in the art may appreciate, the sound output level and frequency response of the loudspeaker 200 may be dependent on the sizes and depths of the continuous dome-shaped diaphragm and cone-shaped diaphragm.
As shown, the loudspeaker 300 includes a frame 302 similar to that of the frame 202, a magnetic structure 310 similar to that of the magnet structure 210, a voice coil 314 similar to that of the voice coil 214, a first suspension element 308 similar to that of the first suspension element 208, and a second suspension element 320 similar to that of the second suspension element 220. As with the loudspeaker 200, the loudspeaker 300 also includes a first coupler 324 similar to that of the first coupler 224 and a second coupler 316 similar to that of the second coupler 216.
The loudspeaker 300 also includes a diaphragm 304, which like the diaphragm of loudspeaker 200, may be made of, for example, paper, plastic, metal, or composite materials such as cellulose paper, carbon fiber, and Kevlar, etc., and may be configured to produce sound responsive to vibrations of the voice coil 314 attached to the diaphragm 304 via the first coupler 324.
Different from the diaphragm of loudspeaker 200, the diaphragm 304 may have a continuous central portion that may be structurally indistinguishable from an outer portion of the diaphragm 304. In other words, the diaphragm 304 may be of a single composition of material, rather than a combination of a continuous dome-shaped diaphragm and a cone-shaped diaphragm as is the case of loudspeaker 200. As such, a circumferential middle section of the diaphragm 304 may simply be defined by where the second coupler 316 attaches the diaphragm 304 to the second suspension element 320.
Nevertheless, a concentric position of the circumferential middle section where the second coupler 316 attaches the diaphragm 304 to the second suspension element 320 is not arbitrary. As one having ordinary skill in the art may appreciate, the sound output level and frequency response of the loudspeaker 300 may be dependent on the concentric position of the second coupler 316.
Other example configurations and embodiments may also be possible.
As indicated above, the present application involves a loudspeaker configuration. The loudspeaker includes a frame, a magnetic structure having a magnetic gap, a voice coil suspended at least partially within the magnetic gap, and a first suspension element having an inner rim and an outer rim. The first suspension element is attached to the frame along the outer rim of the first suspension element. The loudspeaker configuration also includes a diaphragm having a continuous central portion and an outer portion. The diaphragm is attached to the voice coil via a first coupler to a lower surface of the continuous central portion. The diaphragm is attached to the inner rim of the first suspension element along an outer edge of the outer portion such that the diaphragm suspends from the frame. The loudspeaker configuration further includes a second suspension element having an inner rim and an outer rim. The second suspension element is attached to the frame along the outer rim of the second suspension element. The inner rim of second suspension element is attached to the diaphragm via a second coupler along a circumferential middle section of the diaphragm between the continuous central portion and outer portion of the diaphragm.
In another aspect, a diaphragm structure for a loudspeaker is provided. The diaphragm structure includes a continuous central portion having a lower surface. The lower surface of the continuous central portion is attached to a voice coil of the loudspeaker via a first coupler. The diaphragm structure also includes an outer portion having an outer edge. The outer edge of the outer portion is attached to an inner rim of a first suspension element attached to a frame of the loudspeaker such that the diaphragm suspends from the frame of the loudspeaker. The diaphragm structure further involves a circumferential middle section between the continuous central portion and outer portion of the diaphragm. The circumferential middle section is coupled via a second coupler to an inner rim of a second suspension element. The second suspension element is attached to the frame of the loudspeaker along an outer rim of the second suspension element.
The descriptions above disclose various example systems, apparatus, and articles of manufacture. Such examples are merely illustrative and should not be considered as limiting. Accordingly, while the above describes example systems, apparatus, and/or articles of manufacture, the examples provided are not the only way(s) to implement such systems, apparatus, and/or articles of manufacture.
Additionally, references herein to an “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of the invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the forgoing description of embodiments.
This application claims priority under 35 U.S.C. §120 to, and is a continuation of, U.S. patent application Ser. No. 14/021,813, filed on Sep. 9, 2013, entitled “Loudspeaker Configuration,” which is incorporated herein by reference in its entirety. This application is also related to U.S. patent application Ser. No. 14/021,831, filed on Sep. 9, 2013, entitled “Loudspeaker Assembly Configuration”, the contents of which are fully incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3496307 | Sotome | Feb 1970 | A |
3925626 | Stallings, Jr. | Dec 1975 | A |
3955055 | Kawakami | May 1976 | A |
4190746 | Harwood | Feb 1980 | A |
4590332 | Delbuck | May 1986 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
6032202 | Lea et al. | Feb 2000 | A |
6236733 | Kato et al. | May 2001 | B1 |
6343136 | Tokusho | Jan 2002 | B2 |
6469633 | Wachter | Oct 2002 | B1 |
6570995 | Ohashi | May 2003 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7035424 | Brandt | Apr 2006 | B1 |
7236607 | D'Hoogh et al. | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7570780 | Baeten et al. | Aug 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7599511 | Corynew et al. | Oct 2009 | B2 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7970162 | Sumitani | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8031896 | Chick et al. | Oct 2011 | B2 |
8031897 | Bastyr et al. | Oct 2011 | B2 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8189841 | Litovsky et al. | May 2012 | B2 |
8234395 | Millington | Jul 2012 | B2 |
8345892 | Jung et al. | Jan 2013 | B2 |
8422724 | Corynen | Apr 2013 | B2 |
8483853 | Lambourne | Jul 2013 | B1 |
8638968 | Gladwin | Jan 2014 | B2 |
8675899 | Jung | Mar 2014 | B2 |
8811648 | Pance et al. | Aug 2014 | B2 |
8934657 | Wilk | Jan 2015 | B2 |
20020064294 | Tokusho | May 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20060104473 | Polfreman | May 2006 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20090016562 | Hsiao | Jan 2009 | A1 |
20090026007 | Corynen | Jan 2009 | A1 |
20100177925 | Furuto | Jul 2010 | A1 |
20110164774 | Gladwin | Jul 2011 | A1 |
20120121092 | Starobin | May 2012 | A1 |
20130202149 | Yoon | Aug 2013 | A1 |
20130315429 | Parker et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1389853 | Feb 2004 | EP |
03093950 | Nov 2003 | WO |
2012113281 | Aug 2012 | WO |
Entry |
---|
Non-Final Office Action mailed on May 20, 2015, issued in connection with U.S. Appl. No. 14/021,813, filed Sep. 9, 2013, 14 pages. |
Notice of Allowance mailed on Aug. 27, 2015, issued in connection with U.S. Appl. No. 14/021,813, filed Sep. 9, 2013, 8 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
United States Patent and Trademark Office, U.S. Appl. No. 60/490,768 filed on Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
United States Patent and Trademark Office, U.S. Appl. No. 60/825,407 filed on Sep. 12, 2003, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
Number | Date | Country | |
---|---|---|---|
20160044418 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14021813 | Sep 2013 | US |
Child | 14885668 | US |