The present invention relates to loudspeaker driver surrounds.
A common type of loudspeaker transducer (or driver) has an electromagnetic coil suspended in a strong magnetic field, normally a coil of wire suspended in a gap between the poles of a permanent magnet. When an alternating current electrical audio signal is applied to the voice coil, the coil is forced to move rapidly back and forth due to Faraday's law of induction, which causes a diaphragm or cone attached to the coil to move back and forth, pushing on the air to create sound waves. The electromagnet and the diaphragm vibrate in a direction usually referred to as the driver axis, or the loudspeaker axis. The electromagnet (or voice coil) is housed in a voice coil assembly so that it is free to move reciprocally a pre-determined displacement along the driver axis. Commonly, the voice coil and the diaphragm are circular (in the plane transverse to the driver axis) and there is at least one driver surround (or suspension) which is also circular/annular and disposed generally in the same transverse plane; the driver surround is usually formed of a resiliently flexible material, such as plastic, rubber or felt, and it functions (sometimes together with a spider) to support the electromagnet and the voice coil in position, centering them both on and along the axis, to ensure that the vibrating driver is constrained to move only along the driver axis, and to urge the driver towards a pre-determined point along that axis (the ‘restoring force’). In many cases the surround protrudes along the driver axis in the direction in which the diaphragm propagates sound in a curved “roll”; in other cases the surround protrudes in the opposite direction, in a “reverse roll”. The shape of these rolls is important in determining the audio and mechanical characteristics of the surround; in this application the term ‘roll surface’ is used to define the shape of this surface, in particular it is the shape of a radial cross-section of the surround (i.e. taken in the plane of the driver axis) between the edge of the surround which is fixed to the enclosure and the edge which is fixed to the diaphragm (and/or driver).
As is known, suspension stiffness plays a significant part in determining the resonant frequency of the loudspeaker. The softer the suspension, the lower the resonant frequency, and the more efficiently the loudspeaker can reproduce low frequencies, so the loudspeaker designer chooses a surround material of appropriate stiffness to complement the shape of the surround to optimise performance. The loudspeaker transducer is normally housed in a speaker enclosure or cabinet, with the driver surround also serving to seal the gap between the outer circumference of the voice coil and the enclosure; this is important because it significantly affects the quality of the sound the loudspeaker generates. The materials and shape and size of the enclosure are also important factors affecting the quality of the sound generated.
A vibrating driver diaphragm creates sound in the axial direction away from the loudspeaker, and it also creates sound waves within the enclosure; these internal sound waves have to be catered for also in the design of the loudspeaker to ensure high fidelity, and a common design intended to address this is the well-known port reflex speaker. Another characteristic of such vibrating driver diaphragm loudspeakers is that the movement of the vibrating driver diaphragm out of and into the enclosure changes the volume of the enclosure. As the diaphragm reciprocates it moves into and out of the enclosure, and, where the enclosure is relatively small in relation to the volume swept by the diaphragm (for example an enclosure volume of 4 litres and a diaphragm diameter of 120 mm, giving a volume change of about 2%), this change in volume has significant effects: it gives rise to a change in the back pressure within the enclosure and, where this back pressure acts on the flexible surround it causes the surround to deform. This is shown in the cross-sectional drawings of
One approach to try and address the deformation caused by back pressure is to increase the thickness of the surround, on the basis that a thicker surround is better able to resist the back pressure, as in WO 1998/007294. However, this increases the mass of the surround, producing a surround having a very nonlinear restoring force, and also gives the driver a very poor frequency response, lowering bass output, breakup frequency and sensitivity. This is illustrated in
There is a further deformation problem which arises with traditional surrounds, which is their tendency to ‘buckle’ when they deform. Such buckling is a result of the geometry of the surrounds (“geometric buckling”) and occurs whether or not the surround is subject to back pressure. In the simple example of a surround having a cylindrical roll surface, in order for the diaphragm to move through a significant axial distance the roll surface must change in shape from a semicircle to a more linear shape; for this to take place, parts of the surround must compress and/or stretch; the surround material is generally not capable of accommodating all the deformation and therefore the surround tends to fold and buckle. Such buckling causes undesirable noise by displacing air and also due to the restoring force changing suddenly when buckling occurs. The pressure deformation of a traditional surround can also lead to geometric buckling occurring much earlier than in free air, as the outer wall of the surround is rapidly forced to a smaller diameter. The buckling causes the restoring force of the surround to change suddenly, increasing distortion.
There is a need for a surround which can be utilised with a small enclosure but which is resistant to geometric buckling and to uncontrolled deformation caused by back pressure as the diaphragm vibrates, but which is also light.
The present invention is predicated on a realisation that providing the surround with a means to deform in a controlled manner can avoid previously uncontrolled geometric buckling whilst deforming (“unfolding”) in a controlled manner and resisting back pressure, and that an appropriately shaped and configured surround can also help minimise the mass of the surround.
The present invention therefore provides a loudspeaker driver surround comprising a generally annular element of flexible and suitably resilient material and having a central axis along which in use a diaphragm is driven, a first circumferential edge for fitment to an enclosure and a second circumferential edge for fitment to a diaphragm and/or a voice coil, with a roll surface extending between the edges which projects in the direction of the axis, the roll surface being provided with a plurality of smoothly rounded corrugations or folds extending generally radially with respect to the annular element between the outer and inner edges thereof, the corrugations being shaped and configured such that the roll surface is non-axisymmetric about the axis, and the arrangement being such that cross-sections of the roll surface which extend radially with respect to the annular element between the first and second edges thereof have a substantially constant length at all circumferential positions around the annular element and so that the shape of the said cross-section varies continuously between successive circumferential positions around the annular element, the corrugations giving the projecting roll surface an order of rotational symmetry of at least 30.
The term “corrugations” is used herein to denote a rounded surface having a series of ridges and furrows which are smoothly contoured, with no sharp-edged grooves, folds, pleats or sharp discontinuities in surface shape; such smooth corrugations are able to unfold predictably, like sharply pleated corrugations, but they unfold over a more extensive area and are more resistant to back pressure. Another advantage is that at high excursions the sharp edges of a pleated surround will open more readily as the angle of the fold increases, resulting in a reduction of the restoring force. In contrast, with smooth corrugations this reduction in the restoring force would not happen, as the unfolding takes place over the whole surface of a smooth corrugation (rather than just at the sharp edges of a pleated surround).
We have found that driver surrounds with a smoothly corrugated roll surface which is non-axisymmetric but which has a high order of rotational symmetry (of at least 30, 40 or 50, but up to any number such as 100 or 200, provided suitably accurate tooling can be produced to manufacture the surrounds) can avoid buckling under back pressure yet deform controllably in the region of the corrugations when the diaphragm is driven without adversely affecting audio performance. Having corrugations on essentially all parts of the roll surface (i.e. all the parts of the surround which move in use) avoids axisymmetry. “Axisymmetry” means symmetric about the axis at any angle around that axis; an object has rotational symmetry if there is a centre point around which the object is turned (rotated) a certain number of degrees and the object looks the same. The number of positions in which the object looks exactly the same is called the order of symmetry; the order of symmetry is the same as the number of corrugations. Additionally, such an arrangement allows the roll surface to be of substantially constant thickness, which minimises the mass of the surround in the sense that the corrugations add no material which does not contribute to the ability of the surround to flex and the diaphragm to reciprocate along the drive axis (corrugated surrounds per se are not new, see for example U.S. Pat. No. 8,340,340 which has corrugations which “bulge” at the top of the surround, but which do not add to the surround's ability to extend axially). Suitably, the first circumferential edge is the outer edge and the second edge is the inner edge.
When the annular element is viewed axially, points on some of the corrugations, which points are most axially distant from the circumferential edges, form generally linear creases at a first angle to the radial direction between the first and second circumferential edges (this means that the first angle is not at 0° and not at 90° to the radius). Accordingly each corrugation is neither wholly radial nor wholly non-radial; and, when we refer to the surround being viewed it is intended that the resiliently flexible surround is viewed in its relaxed state. When the annular element is viewed axially, points on others of the corrugations, which points are most axially distant from the circumferential edges, form generally linear creases at a second angle to the radial direction between the circumferential edges (this also means that the second angle is neither 0° nor 90°). The first and second angles are preferably equal and opposite, and the linear creases may be joined at their ends. This provides a “zigzag” shaped corrugation when seen axially, and the equal angles allows the zigzag pattern to be symmetrical about the circular centre line; such symmetry is advantageous because it means that the corrugations can deform without imparting any twisting motion to the inner edge, so that the diaphragm reciprocates axially only, with no tangential movement.
In radial cross section the roll surface preferably comprises a succession of curves alternating to the left and right hand side of a centre line, said curves blending into a uniform roll surface between each curve. The left and right hand side curves may be mirror images, similar but reversed, and are preferably aligned relative to the uniform roll section that there is no single common point of intersection of the three profiles; they may have a saw tooth profile, having steep and gentle slopes in alternating directions. Such an arrangement allows the roll surface to have a large effective thickness, whilst avoiding the geometric buckling which would be encouraged were there a common intersection point between all three profiles. The exact shape can be determined empirically, and is dependent on the process used to manufacture the surround.
Preferably the shape and configuration of the corrugations on the roll surface are such that if one circumferential edge of the annular element were extended axially away from the other circumferential edge to the maximum extent, the roll surface would adopt a substantially smooth frusto-conical shape. This is a design constraint which helps minimise the amount of material in the surround whilst still allowing it to deform controllably and without adverse effects on the sound quality. Another feature which affects the weight of the surround is its thickness; the present design is such that the thickness is able to be substantially constant, and this is preferred.
There may be sidewalls extending substantially axially adjacent one or both circumferential edges, and the corrugations may extend along these and blend smoothly to disappear at the circular junctures between the sidewalls and the outer and inner edges. Preferably the corrugations blend into each other smoothly and with no sudden discontinuities.
The invention also encompasses a loudspeaker having a driver surround as defined above.
The invention will now be described by way of example and with reference to the accompanying figures, in which;
The surround 2 is very generally in the form of a part of a torus, in that it protrudes in the direction of axis 8 away from the general plane of the inner and outer edges 4, 6; however, the protruding portion of the surround (the ‘roll surface’) is formed with a plurality of corrugations 10 which give it a complex, non-axisymmetric shape, particularly when viewed along the direction of the axis 8. The roll surface has inner and outer sidewalls 18, 20 (shown in
The important features of the shape of the corrugated surface of the surround 2 between the outer and inner edges 4, 6 are, firstly, that it is not axisymmetric about axis 8 (meaning that if successive radial cross-sections are taken at different positions around axis 8, the shape of those cross-sections does not remain constant (it will be noted from
The overall shape of the roll surface permits the roll surface to “unfold” without buckling as the surround vibrates in use, to the extent that, were the inner edge 6 to be displaced along the axis 8 relative to the outer edge 4 to the maximum extent possible, the roll surface would unroll completely to form a substantially smooth, frusto-conical shape, but without any buckling and without any rotation of the inner edge 6 relative to the outer edge 4; this minimises the mass of the surround for the maximum excursion of the central diaphragm, and allows the restoring force of the surround (the resilience of the material from which it is formed which moves the surround from a driven opposition towards the relaxed position) to be substantially linearised.
The effective thickness ratio is the effective thickness divided by the material thickness of the surround. For a surround 0.7 mm thick, this would give an effective thickness ratio of 1.709 for the parabolic profile, and 3.809 for the saw tooth profile.
It is important to ensure that there is no rotational symmetry at any point on the surround other than the edges.
It will of course be understood that many variations may be made to the above-described embodiment without departing from the scope of the present invention. For example, the invention has been described with reference to a circular driver surround, but it should be understood that the invention applies equally to non-circular diaphragms, such as elliptical or race track shaped diaphragms, or any shape being symmetrical in two orthogonal directions lying in the general plane of the diaphragm and having a central hole (such as a square or rectangle, with rounded corners). Accordingly, unless clearly indicated otherwise, any use in this description or in the claims of the terms “annular”, “circumference”, “circumferential”, “circumferentially” or “around” should not be construed as being restricted to a circular shape, nor as necessarily being centred on a single axis but instead construed broadly as any substantially two-dimensional shape bounded by a closed loop. The invention has been described above in terms of the outer edge of the annular suspension being fixed and the inner edge moving relative thereto, as this is the arrangement in the majority of loudspeakers; however, it will be appreciated that the reverse arrangement (inner edge fixed, outer edge moving) could work equally as well, and so falls within the ambit of this invention. The roll surface can be directed in either axial direction from the outer edges (i.e. a roll or a reverse roll). The corrugations have been described as having a zigzag pattern, of equal and opposite angles which alternate in direction; the zigzag pattern could alternatively be sinusoidal, or in any other repeating waveform. Where different variations or alternative arrangements are described above, it should be understood that embodiments of the invention may incorporate such variations and/or alternatives in any suitable combination.
Number | Date | Country | Kind |
---|---|---|---|
1702849.9 | Feb 2017 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
1829355 | Houghton | Oct 1931 | A |
2442791 | Wente | Jun 1948 | A |
3563337 | Kawamura | Feb 1971 | A |
6697496 | Frasl | Feb 2004 | B2 |
7054459 | Kuze | May 2006 | B2 |
7397927 | Pircaro | Jul 2008 | B2 |
8139812 | Basnet | Mar 2012 | B2 |
8340340 | Bogdanov | Dec 2012 | B2 |
9253576 | Tripp | Feb 2016 | B2 |
9271082 | Oclee-Brown | Feb 2016 | B2 |
9961448 | Huang | May 2018 | B2 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20080212822 | Basnet | Sep 2008 | A1 |
20110164782 | Bogdanov et al. | Jul 2011 | A1 |
20170289689 | Guo | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
1659823 | May 2006 | EP |
368926 | Mar 1932 | GB |
1247434 | Sep 1971 | GB |
2035008 | Jun 1980 | GB |
2471924 | Jan 2011 | GB |
S58127499 | Jul 1983 | JP |
1998007294 | Feb 1998 | WO |
Entry |
---|
Search Report issued for GB1702849.9 dated Apr. 19, 2017. |
Number | Date | Country | |
---|---|---|---|
20180242086 A1 | Aug 2018 | US |