The present disclosure relates to audio loudspeakers and more particularly to a to an air pump system for providing circulation and cooling within a loudspeaker.
Acoustic loudspeakers, such as those used in home audio and theater systems and in audio applications, typically include a driver and other electrical components disposed within a housing. These various elements produce heat during usage. Excess heat can negatively effect audio performance and prematurely degrade audio, electrical, and structural components.
Known attempts at dissipating heat build-up in audio equipment involve active systems, such as powered fans, or ineffective systems, such as underperforming vents. Other known arrangements utilize complex heat sink structures involving, for example, fins formed of specialized material. These known systems have failed to provide adequate cooling, have attenuated or otherwise degraded audio performance, and have added cost and complexity to the respective audio arrangements.
A loudspeaker is needed which includes an effective, simple, and economical arrangement for dissipating heat generated by the electrical components of the loudspeaker.
A loudspeaker is provided herein including a first housing which delimits a acoustic chamber, an acoustic driver disposed within the acoustic chamber, a second housing which delimits a second chamber disposed adjacent to the acoustic chamber, a heat source disposed within the second chamber, a passive radiator disposed in communication with the acoustic chamber and the second chamber, a vent disposed in communication with the second chamber and with an exterior of the loudspeaker, wherein the passive radiator is configured to move in response to a movement of the driver, where the passive radiator is further configured to direct an airflow proximate to the heat source during the movement of the passive radiator and to direct the airflow through the vent to the exterior of the loudspeaker.
Also provided herein is a heat dissipation assembly for a loudspeaker including a driver disposed in an acoustic chamber and a heat source disposed outside of the acoustic chamber. The assembly, as disclosed, includes a non-powered passive radiator disposed in communication with the acoustic chamber and with the heat source, where the passive radiator is configured to undergo a movement in response to a movement of the driver and where the passive radiator is configured to direct an airflow to the heat source and to an exterior of the loudspeaker during the movement.
Additionally, a method of dissipating heat from a loudspeaker is provided herein, the method including delimiting an air-tight acoustic chamber, disposing a moveable driver in the acoustic chamber, disposing a passive non-powered passive radiator in communication with the acoustic chamber and with a heat source disposed outside of the acoustic chamber, moving the driver to result in a corresponding movement of the passive radiator, where the movement of the passive radiator directs airflow toward a heat source and to an exterior of the loudspeaker.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
A driver 24 is disposed within the acoustic chamber 14 at the first side 16 of the first housing 12. The driver 24 is an electrically powered component configured to produce sound and to direct such sound to the exterior of the loudspeaker 10. A passive radiator 26 is disposed in the rear side 18 of the first housing 10. The passive radiator 26 is a non-powered, passive element which is configured to move in response to movements of the driver 24. For example, in one embodiment, the passive radiator 26 comprises a diaphragm with a surround extending around the diaphragm which permits an oscillating movement of the diaphragm, in this example, in a direction perpendicular to the rear side 18 of the first housing 12. As illustrated, the passive radiator 26 is generally oval in shape. However, this shape is merely exemplary. The passive radiator 26 may assume any desired shape sufficient for facilitating the desired movement thereof.
The loudspeaker 10 further includes a second housing 28 attached to and/or integral with the first housing 12 and essentially extending contiguously therewith. The rear side 18 of the first housing 12 forms a front side of the second housing 28. That is, in this embodiment, the rear side 18 of the first housing 12 extends internally within the loudspeaker 10 and is shared by the first and second housings 12, 28. The second housing 28 further includes a rear side 30, top and bottom sides 32, 34 and first and second opposing ends. These various sides and ends comprise panels which are connected to form, in this exemplary embodiment, an elongated parallelepiped shape. The panels are integrally connected together or they are affixed by any suitable conventional method, for example, by welding, bonding etc.
The second housing 28 delimits a second chamber, such as a printed circuit board chamber 36 (hereinafter, “PCB chamber 36”). A printed circuit board assembly 38 (hereinafter, “PCBA 38”) is disposed within the PCB chamber 36. The second housing 28 further includes a vent 40 which permits air within the PCB chamber 36 to move to the exterior of the loudspeaker 10 and which further permits air at the exterior to move into the PCB chamber 36. The vent 40 can take any form or structure sufficient to permit the desired airflow. For example, in one embodiment the vent 40 comprises a plurality of openings formed in one or more sides of the second housing 28. These openings create fluidic pathways from the PCB chamber 36 through the panels forming the various sides of the second housing 28, and to the exterior of the loudspeaker 10.
Electrical components disposed in the PCB chamber 36 of the loudspeaker 10, such as the main PCBA 38, tend to emit heat when the loudspeaker 10 is in use. Left untreated, this accumulating heat could affect audio performance of the loudspeaker 10 or even damage the various electrical and magnetic elements of the loudspeaker 10. The loudspeaker dissipates this heat by creating airflow near the main PCBA and creating airflow through the vents 40 into and out of the PCB chamber 36. The driver 24 includes sound generating elements which move during use of the loudspeaker 10. Because the acoustic chamber 14 is an airtight sealed volume of air, the movements of the driver 24 propagate through the acoustic chamber 14 and are imparted upon the passive radiator 26 which is moved in correspondence with the movements of the driver 24. That is, the movement of the driver 24 creates a disturbance in the air foil of the acoustic chamber which imparts a force upon the passive radiator 26. Due to the structure of the radiator 26 which, in the current embodiment, includes a flexible surround extending about a diaphragm, the force directed upon the radiator 26 results in oscillation of the diaphragm. Force applied on the passive radiator 26 would move the diaphragm outward into the PCB chamber 36. However, this movement would be restrained by the flexible surround which would respond with a reactive force to return the diaphragm to a neutral position or to a negative position within the acoustic chamber. In this way, an oscillation of the passive radiator 26 would result. The movement of the passive radiator 26, in this example, is perpendicular to the rear side 18 of the first housing 12.
As the passive radiator 26 is forced into the PCB chamber 36, it correspondingly exerts a force on a volume of air. The passive radiator 26 is configured to direct the result airflow toward and around the main PCBA and in a direction toward the vents 40 so as to evacuate a certain volume of air form the PCB chamber 36. This movement of air within the PCT chamber dissipates heat from the main PCBA and directs the heat to the exterior of the loudspeaker 10.
As the passive radiator 26 reacts from its outward movement and is drawn back into the acoustic chamber 14, the volume of the PCB chamber is essentially increased, thus reducing air pressure within the chamber 36 and hence drawing air from the exterior through the vents 40 into the chamber 36. This ambient air which is brought into the PCB chamber 36 by the return movement of the passive radiator further serves to flush the chamber 36 and to dissipate heat from the main PCBA 38.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.