The present invention generally relates to loudspeakers that utilize aligned acoustic power sources (“line arrays”) and to the problem of undesirable grating lobes produced by line arrays. The invention particularly involves a horn structure, and a method for which can be used with multiple aligned drivers to control normally occurring grating lobes produced by the driver alignment.
Line arrays are well known for their directional characteristics and ability to project acoustic power from multiple acoustic power sources over large distances. However, the disadvantage of line arrays is that grating lobes develop when the distance between the acoustic sources of the array is one wavelength or larger. To achieve a highest possible operating frequency and high output power without grating lobes, one needs to use a large number of very small sources. Increasing the number of elements increases the number of parts and connections, which makes manufacturing difficult. It is also difficult to obtain the necessary power out of very small transducers.
Currently, there are many variations on the line array. Most variations focus on changing the signal that goes to each element. Line arrays have been made where the signal magnitude, signal phase, and signal frequency content are altered for each element in the array. More often than not this decreases the maximum on axis power of the array. Also, though gain and phase shading can alter the width of the main lobe and structure of the side lobes, it is not possible to mitigate grating lobes.
The invention can be understood from a mathematical model of the line array. The acoustic pressure in the far field of a line array of N sources, each of which has directionality Hs(θ), is:
where θ is the angle, ri is the distance from the ith source to the point in space [r, θ], t is time, ω is the frequency in radians per second, and k is the wave number where ω=kc and c is the wave propagation speed. The directionality of an omni directional source is 1 everywhere (H0(θ)=1) so one can multiply any term in the equation above by the directionality of an omni and the acoustic pressure remains the same. Also the directionality of an individual source can be factored out of the sum:
In this form it can be seen that the directionality of an array of aligned sources is equal to the directionality of an array of omni directional sources multiplied by the directionality of an individual source. This is called the product theorem.
For an array of omni directional sources in a straight line, each separated by distance d the directionality is:
There are maxima in the absolute value of this function when:
where m is any integer. The term |sin(θ)| has a maximum of 1, so there will be more than one maxima when d>λ. These are called grating lobes.
The present invention provides a horn structure for a line array of acoustic power sources that controls these undesirable grating lobes, as well as a method of designing such a horn. Referring to the product theorem for the directionality of an array of aligned sources, the invention uses horn loading to effectively choose a directionality for an individual source which is zero (or very small) in those directions where one expects grating lobes. Because horns achieve directionality by reflecting sound into a concentrated angle, the effect of this approach is to reflect sound that would otherwise contribute to the grating lobes, into the source's main lobe. The invention increases the highest operating frequency beyond that which the line array would normally be restricted due to the separation between acoustic power sources. It also increases the available on-axis power, and reduces the number of required acoustic power sources needed to obtain a desired power output by increasing the allowable size of each source. It is noted that the approach of the invention may be applied to any transducers of waves in linear media, including microphones, and transmitters and receivers of electromagnetic waves.
Briefly, in one aspect of the invention a horn is provided for horn loading multiple aligned acoustic power sources that are relatively widely spaced apart, that is, spaced apart by a wavelength or more at the highest operating frequency of the line array of sources. The horn includes a mouth end, a throat end and a flared section between the mouth end and throat end. The horn's throat end has a mounting flange to which the acoustic power sources of the line array of sources can be mounted, and which has a coupling port for each of the acoustic power sources. The acoustic power source coupling ports fix the spacing of the line array of power sources and couple the acoustic power generated by the sources to the flared section of the horn through throat openings associated with each acoustic power source. Grating lobe fins positioned in the flared section of the horn between the acoustic power sources extend from the throat opening associated with each power source toward the mouth end of the horn to a sufficient length for mitigating the predicted grating lobes produced by the line array to a desired level. The throat end of the horn is relatively short. It is sized to have dimensions on the order of a wavelength or smaller at the highest operating frequency; it also provides a suitable transition between the geometry of each acoustic power source mounted to the horn's mounting flange and the geometry of the throat opening associated with each these sources.
In another aspect of the invention a loudspeaker is provided comprised of a multiple aligned acoustic power sources mounted to the throat end of a horn made in accordance with the invention.
In still another aspect of the invention a method of designing a horn to suppress the grating lobes produced by multiple aligned acoustic power sources is comprised of choosing a desired acoustic source for a line array of power sources, choosing a desired level of suppression for the predicted grating lobes for the line array, empirically designing the length of grating lobe fins for a single one of acoustic power sources to a achieve directional characteristic for the single source that suppresses off-axis acoustic power in the region of predicted grating lobes for the line array to the desired suppression level for the grating lobes, and providing a horn in accordance with the invention having grating lobe fins of a length designed for the single source, or longer.
The loudspeaker horn shown in the drawings is designed for use with three vertically aligned drivers. The illustrated horn structure provides the desired control for mitigating grating lobes in the vertical direction while acting as a conventional horn in the horizontal direction. It should be noted that the invention is not limited to mitigating grating lobes in one direction only, and can be applied to any number of drivers.
Referring to
The throat end of the horn extends from mounting surface 31 of driver mounting flange 14 to a throat opening 33 that opens into the flared section of the horn. The throat end provides a means for coupling drivers having a circular geometry that are mounted to the mounting flange to the throat opening which has a rectangular geometry. Specifically, the rectangular driver mounting flange has three aligned circular driver coupling ports 35, 37, 39 for receiving three aligned acoustic power sources in the form of drivers 41, 43, 45, which are mounted to the flange utilizing fastener and alignment pin openings 47, 49 in the mounting surface of the flange. It is contemplated that the drivers will be direct radiator type drivers, for example, a dome tweeter as illustrated in the drawings, mounted more than one wavelength apart at the loudspeakers highest operating frequency range. The drivers, which are mounted in alignment on the mounting flange, preferably matched drivers having substantially the same directionality characteristics so as to form a line array of drivers facing the same direction whose predictable grating lobe behavior under the product theorem mentioned above can be controlled in accordance with the invention.
The predicted grating lobes from the aligned drivers mounted to the horn's mounting flange 14 are controlled by grating lobe fins 27, 29. Each grating lobe fin is seen to have a base end 28, 30 that extends to the horn's throat opening 33 to effectively divide an otherwise elongated throat opening 33 into three aligned rectangular throat openings 51, 53, 55. Each throat opening 51, 53, 55 looks back into a circular to rectangular coupling chamber 57, 59, 61 formed by walls that form the throat end of the horn, such as walls 63 shown in
The grating lobe fins 27, 29 should extend from the horn's throat opening 33 a suitable distance into the horn's flared section 17 to control the predicted grating lobes. For maximum control it is contemplated that the fins will extend all the way to the mouth end of the horn as illustrated in the drawings, however, it may be possible to use somewhat shorter fins and still obtain adequate control. The minimum fin length would have to determined empirically for any given horn design. In general, fins of suitable length will intercept and reflect the acoustic power that would otherwise contribute to the grating lobes back toward the horn's main propagation axis A. In addition to mitigating the predicted grating lobes, this has the advantageous effect of increasing the available on-axis power.
The horn illustrated
The following is an exemplary application of the loudspeaker horn of the invention used to horn load a line array of drivers that provide the high frequency of full range speaker system having high and low frequency drivers in a speaker box with crossover circuit:
While the present invention is described in considerable detail in the foregoing specification, it is not intended that the invention be limited to such detail, except as necessitated by the following claims.
This application claims the benefit of provisional application 60/448,911, filed Feb. 21, 2003, and provisional application 60/452,975 filed Mar. 7, 2003.
Number | Name | Date | Kind |
---|---|---|---|
1992268 | Wente | Feb 1935 | A |
2135610 | Wente | Nov 1938 | A |
2537141 | Klipsch | Jan 1951 | A |
4071112 | Keele, Jr. | Jan 1978 | A |
4344504 | Howze | Aug 1982 | A |
4390078 | Howze et al. | Jun 1983 | A |
4685532 | Gunness | Aug 1987 | A |
4845759 | Danley | Jul 1989 | A |
5020630 | Gunness | Jun 1991 | A |
5590214 | Nakamura | Dec 1996 | A |
5925856 | Meyer et al. | Jul 1999 | A |
6016353 | Gunness | Jan 2000 | A |
6112847 | Lehman | Sep 2000 | A |
6393131 | Rexroat | May 2002 | B1 |
6394223 | Lehman | May 2002 | B1 |
6668969 | Meyer et al. | Dec 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20040216948 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60452975 | Mar 2003 | US | |
60448911 | Feb 2003 | US |