Claims
- 1. In a loudspeaker horn for coupling sound pressure waves generated by an acoustical driver into free space over an operating bandwidth of frequencies, including a high range of operating frequencies having known wavelengths, and for producing a characteristic polar pattern about a radiating axis, and wherein said loudspeaker horn includes an unobstructed throat area having a defined throat opening, a mouth end that is relatively large compared to the throat opening, a flared section extending between the throat opening and the mouth end to provide a transition therebetween, and a pre-load chamber before the throat opening of the horn for coupling acoustical sound waves generated by an acoustical driver to the flared section of the horn, the improvement comprising
- a pre-load chamber having a length, measured from the acoustical driver to the throat opening of the horn, that is relatively short in relation to multiples of the wavelength of the highest operating frequency of the horn, and having sidewalls formed to correct the phase relationship of the sound pressure waves generated by the acoustical driver across the long dimension of said throat opening to achieve desired directivity in the long dimension plane of the horn's polar pattern.
- 2. The loudspeaker horn of claim 1 wherein the length of said pre-load chamber is less than approximately five inches.
- 3. The loudspeaker horn of claim 1 wherein the length of said pre-load chamber is between approximately two inches and five inches.
- 4. A loudspeaker horn for coupling sound pressure waves generated by an acoustical driver into free space over an operating bandwidth of frequencies including a high range of operating frequencies having known wavelengths and wherein said horn produces a characteristic polar pattern about a radiating axis, said loudspeaker horn comprising
- an unobstructed throat area having a defined rectangular throat opening characterized by a long dimension relative to the wavelengths of the high range of operating frequencies of the horn and a short dimension relative to the wavelengths of said high range of frequencies, said long dimension being measured between long dimension defining edges of said throat opening and defining a long dimension plane within the polar pattern of the loudspeaker horn, and said short dimension being measured between short dimension defining edges of said throat opening and defining a short dimension plane within said polar pattern,
- a pre-load chamber for coupling an acoustical driver to the rectangular throat opening of the loudspeaker horn, said pre-load chamber having a length, measured from the acoustical driver to the throat opening of the horn, that is relatively short in relation to multiples of the wavelength of the highest operating frequency of the horn, and being formed to correct the phase relationship of the sound pressure waves generated by the acoustical driver across the long dimension of the rectangular opening of said throat opening to achieve desired directivity in the long dimension plane of the horn's polar pattern,
- a mouth end having relatively large dimensions as compared to the throat opening of the loudspeaker horn, and
- a flared section extending between the throat opening and the mouth end of the horn, said flared section having a pair of opposed long dimension side walls extending from the long dimension defining edges of the throat opening of the horn, said long dimension side walls having a characteristic curve which in conjunction with the form of the pre-load chamber is selected to achieve desired directivity of the horn's polar pattern in the long dimension plane, and a pair of opposed short dimension side walls extending from the short dimension defining edges of said throat opening, said short dimension side walls having a characteristic curve selected to achieve desired directivity of the horn's polar pattern in the short dimension plane.
- 5. The loudspeaker horn of claim 4 wherein the length of said pre-load chamber is less than approximately five inches.
- 6. The loudspeaker horn of claim 4 wherein the length of said pre-load chamber is between approximately two inches and five inches.
- 7. The loudspeaker horn of claim 4 wherein said pre-load chamber has long dimension chamber side walls extending to and associated with the long dimension defining edges of said throat opening and short dimension sidewalls extending to and associated with the short dimension defining edges of said throat opening, said long dimension chamber sidewalls having a curvature selected to correct the phase relationship of the sound pressure waves generated by the acoustical driver across the long dimension of said throat opening to achieve desired directivity in the long dimension plane of the horn's polar pattern.
- 8. The loudspeaker horn of claim 7 wherein the curve of the long dimension sidewalls of the flared section of the horn has an exponential flare rate and the curve of the short dimension sidewalls has a conical flare rate.
- 9. A loudspeaker horn for coupling sound pressure waves generated by an acoustical driver into free space over an operating bandwidth of frequencies including a high range of operating frequencies having known wavelengths and wherein said horn produces a characteristic polar pattern about a radiating axis, said loudspeaker horn comprising
- an unobstructed throat area having a defined rectangular throat opening characterized by a long dimension relative to the wavelengths of the high range of operating frequencies of the horn and a short dimension relative to the wavelengths of said high range of frequencies, said long dimension being measured between long dimension defining edges of said throat opening and defining a long dimension plane within the polar pattern of the loudspeaker horn, and said short dimension being measured between short dimension defining edges of said throat opening and defining a short dimension plane within said polar pattern,
- a pre-load chamber for coupling an acoustical driver to the rectangular throat opening of the loudspeaker horn, said pre-load chamber having a length, measured from the acoustical driver to the throat opening of the horn, that is less than approximately five inches, and being formed to correct the phase relationship of the sound pressure waves generated by the acoustical driver across the long dimension of the rectangular opening of said throat opening to achieve desired directivity in the long dimension plane of the horn's polar pattern,
- a mouth end having relatively large dimensions as compared to the throat opening of the loudspeaker horn, and
- a flared section extending between the throat opening and the mouth end of the horn, said flared section having a pair of opposed long dimension side walls extending from the long dimension defining edges of the throat opening of the horn, said long dimension side walls having a characteristic curve providing an exponential flare rate which in conjunction with the form of the pre-load chamber is selected to achieve desired directivity in the horn's polar pattern in the long dimension plane, and a pair of opposed short dimension side walls extending from the short dimension defining edges of said throat opening, said short dimension side walls having a characteristic curve providing a conical flare rate selected to achieve desired directivity of the horn's polar pattern in the short dimension plane.
- 10. In a loudspeaker horn having a flared section for coupling sound pressure waves generated by an acoustical driver into free space over an operating bandwidth of frequencies including a high range of operating frequencies having known wavelengths and wherein said horn produces a characteristic polar pattern about a radiating axis, a method for controlling the directivity of the polar pattern of said horn over its operating frequency bandwidth comprising
- providing said horn with an unobstructed throat area having a defined rectangular throat opening characterized by at least one long dimension relative to the wavelengths of the high range of operating frequencies of the horn, said long dimension being measured between long dimension defining edges of said throat opening and defining a long dimension plane within the polar pattern of the loudspeaker horn,
- passing the sound pressure waves generated by said acoustical driver to the throat opening of said horn through a pre-load chamber having a length, measured from the acoustical driver to the throat opening of the horn, that is relatively short in relation to multiples of the wavelength of the highest operating frequency of the horn, and wherein said pre-load chamber is formed to correct the phase relationship of the sound pressure waves generated by the acoustical driver across the long dimension of said throat opening to achieve desired directivity in the long dimension plane of the horn's polar pattern.
- 11. The method of claim 10 wherein the sound pressure waves are passed through a pre-load chamber having a length of less than approximately five inches.
- 12. The method of claim 10 wherein the throat opening of said horn is further provided with a short dimension relative to the wavelengths of the high range of frequencies of the horn's frequency bandwidth wherein the short dimension of said throat opening behaves like a diffraction slot whereby the directivity of the polar pattern of the horn in the plane perpendicular to said long dimension plane is substantially governed by the flare rate of the flared section of the horn while the directivity of the polar pattern of the horn in the long dimension plane is substantially governed by the pre-conditioning of the sound pressure waves in the pre-load chamber and the flare rate of the flared section of the horn.
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional application Ser. No. 60/019,866, filed Jun. 17, 1996.
US Referenced Citations (8)