The present invention generally relates to loudspeakers used for sound reinforcement, and more particularly relates to loudspeakers capable of focusing a large amount of acoustic energy into a relatively narrow beam of intelligible sound that can be propagated over long distances.
Long throw acoustical transmitting systems have been devised using parabolic dishes to focus the acoustic energy produced by a driving transducer positioned at the focal point of the parabolic dish. One such loudspeaker system is described in U.S. Pat. No. 5,821,470. This patent describes a system in which a parabolic dish reflects acoustic power produced by a high frequency horn loaded driver, and in which a low frequency driver is embedded in the center of the dish for extending the low end of the system's frequency range. Parabolic dish systems such as disclosed in U.S. Pat. No. 5,821,470 are capable of producing a relatively narrow beam of high acoustic power for long throw applications. However, they have a number of disadvantages.
First, the parabolic dishes and the mechanical structures required to support a driver at the dishes focal point create a relatively large and bulky apparatus. Consequently, this type of system is not well suited to applications where space is limited. Also, the dish's beam width, at any single frequency or range of frequencies, is essentially a function of the physical geometry (shape and size of parabolic reflector, and distance and shape of horn and transducer suspended in front of reflector, which generates the sound). Therefore once the geometry is selected for a given design it is not possible to alter the beam width. Not only is the beam width fixed with a parabolic reflector design, the axis of the beam remains perpendicular to the center of the parabolic reflector so redirecting the beam can only be accomplished by physically moving the parabolic dish.
Parabolic dish systems have yet other drawbacks. Obtaining a constant beam width over a wide range of frequencies with a parabolic dish is usually not possible. Lower frequencies will have wider beam widths than higher frequencies. Still further, the transducer and horn assembly suspended in front of the parabolic dish presents some interference with the sound reflected off the dish, both as an object in the path of sound and as a reflective surface back to the dish potentially causing echoes, so the transducer and horn must be kept relatively small, limiting the amount of power that can be generated by the transducer. Finally, if very high sound pressure level is desired from the dish, the compression and rarefaction becomes so great in the throat of the horn that distortion results as a vacuum is produced (194 dB SPL will normally produce a vacuum).
Other design approaches to achieve a narrow beam of acoustic energy over a wide range of frequencies for long throw applications, such as large horns or waveguides or multiple horns and transducers, also suffer from most of the limitations noted above and are similarly large and impractical to alter or redirect once set up.
The present invention overcomes the drawbacks and limitations of existing acoustic long throw systems (parabolic dish, and other horn and transducer cabinet arrangements) by providing an improved loudspeaker system that is relatively compact and that is capable of producing a high power beam of acoustic energy without the constraints imposed by conventional acoustic focusing structures such as parabolic dishes and horns, and that can be designed for fixed beam systems or systems that produce beams that can be electronically steered or altered without physically moving the loudspeaker or changing its physical features. The long throw loudspeaker system of the invention also is capable of producing a beam of acoustic energy where the beam width is relatively constant over the operating frequency range of the system.
The present invention is directed to a loudspeaker system having a plurality of contiguous transducer elements configured in a closely spaced transducer array such that their acoustic outputs combine to produce a focused beam of sound in front of the array that is substantially uniform about its axis of radiation, that contains high acoustic power, and that maintains its beam form over the operating frequency range the loudspeaker system. The transducer array lies in a plane and has a perimeter that approximates a circle. The transducers of the array will substantially fill a circle that is tangent to the outmost transducers of the array. It is contemplated that, to achieve a desired beam form the fill-factor for the circle circumscribing the array should be at least approximately 70%. The size of the transducer array is scalable by increasing the number of transducers in the array. Enlarging the array will extend the lower minimum operating frequency of the loudspeaker system while maintaining control over beam width.
The transducer elements of the closely packed, approximately circular transducer array are powered by one or more amplifiers, which receive an audio signal from one or more audio signal processors. The signal processors can be designed to create a controlled uniform beam width over an operating frequency range of the loudspeaker system, and can be implemented through either digital or analog circuitry. (The signal processor(s) can preferably also be used protect the transducers from damage due to over-excursion or over-heating.) One or more audio inputs can be provided to the signal processors to accommodate different uses.
The loudspeaker system and method of the invention can provide a substantially uniform and focused beam of sound having a fixed polar pattern or a polar pattern that can be adjusted electronically by means of electronic signal processing. In the version with an adjustable polar pattern, the beam direction and/or beam shape can be electronically altered without the need to physically move loudspeaker or alter the loudspeaker's transducer elements or array. In the fixed beam version of the loudspeaker system only one signal processor is required to achieve a narrow beam width over a wide range of frequencies. Also, only one amplifier channel is required to power all the transducer elements, although several amplifiers can be used operating in a parallel to distribute the load of the transducer elements. Where electronic adjustability of the sound beam is desired, more than one, and most suitably several, signal processors and amplifiers are provided for separately powering the transducer elements or groups of transducer element in the transducer array. Such multi-channel signal processing would provide the capability of electronically altering the sound field in front of the transducer array, but would have the disadvantage of increasing the complexity of the system.
In either configuration of the invention (fixed or alterable sound field) side lobes of sound can be substantially attenuated or eliminated. This is a particular advantage in high power applications where people may be located close to the side of the loudspeaker. At very high sound pressure levels (SPL), side lobes could interfere with the operators of the loudspeaker.
As indicated above, the loudspeaker system of the invention can be made to accommodate multiple audio inputs. Any number of inputs can be configured to allow users to adjust the sound field through external audio sources. One particular mode of this multi-input configuration is where an audio input is available for each transducer. This can be used to recreate three dimensional sound images recorded in one location and space, using a microphone array dimensioned the same as the transducer array, and then played back in another space. Three dimensional sounds can also be synthesized with the invention by means of individual signal processing for each transducer and fewer audio inputs.
In a preferred embodiment the loudspeaker system of the invention, the approximately circular array of closely spaced, relatively small transducers are mounted onto a surface such as a heat conductive base plate. Typically the surface is flat for ease of design and manufacture, but does not need to be flat to implement the invention. Non-flat surfaces, for example a curved plane, will produce different beam widths than a flat surface, which could be used to an advantage provided sufficient experimentation or modeling is used to predict and optimize the shape. A flat surface simplifies the design and required measurement, experimentation, and modeling to achieving a desired beam width at different frequencies and also allows the transducer element array to be scaled in size.
In a further and alternative aspect of the invention, the transducer element array of the loudspeaker system is constructed in relatively small transducer array modules that can be readily and operatively fitted together to produce larger arrays having a circular fill factor greater than approximately 70%. Use of smaller modules also advantageously allows the transducers to be grouped within the larger array and power to readily be provided to the different groups of transducers.
In still a further and alternative aspect of the invention, the transducer elements of the transducer array are mounted to a rigid, heat conducting base plate structure which provides a heat sink for dissipating the heat generated by the transducer elements through the back of the transducer array.
The maximum level of sound pressure that can be generated from a transducer element array in accordance with the invention exceeds that of conventional loudspeaker systems of similar size and operating frequency range. High sound pressure levels can be accomplished using simple one to two inch dome tweeters, whereas conventional loudspeaker systems would require more specialized transducers to generate a similar SPL. A loudspeaker system with a transducer element array as described herein is capable of generating over 160 dB SPL peak at a one meter distance.
In the loudspeaker and loudspeaker system of the present invention, a desired substantially uniform beam form can be produced over a relatively wide operating frequency range from a plurality of transducer elements set in a transducer array configured, sized and powered as described herein. The beam form, whether fixed or adjustable, can be achieved substantially entirely through signal processing, with different beam forms being achievable for different applications.
As used herein, “beam form” refers to the shape of the sound beam produced by a loudspeaker at any given frequency. (The term “polar pattern” is also used in the field of loudspeaker acoustics to describe a beam form.) The shape is the magnitude of the sound pressure measured spherically around the loudspeaker, and is typically plotted as a linear or log ratio to the main axis or strongest axis of sound beam. The total angle at which the sound pressure is either 3 dB or 6 dB weaker than the main axis is referred to as the “beam width.” Usually an ideal beam form exhibits rapid reduction of sound pressure at angles larger than the beam width. This is exemplified by a “V” shape in the beam form. As described herein, certain, relatively complex implementations of the invention provide the ability to dynamically create various shapes in the beam form, and to therefore render the beam form adjustable, with the beam form either being kept constant over the operating frequency range or, if desired, being varied at different frequencies. In another described and simpler implementation, a beam form can be created that, while it remains fixed (non-adjustable), is relatively ideal in shape (sharp drop-off outside the beam width and well attenuated side lobes) over the operating frequency range.
Before describing the illustrated embodiment of the transducer array of the invention, the following desired attributes for the transducer element array are noted:
First, the transducer elements of the transducer array are relatively small so that the upper end of the operating frequency range of the transducer element array will be high enough for audio reinforcement applications. Also, the center-to-center spacing between transducer elements is preferably kept as small as possible horizontally, vertically, and diagonally. The center-to-center space between transducers determines the frequency at which grating lobes begin to appear, with closer spacing corresponding to higher frequency. Therefore, the inter-element spacing determines the upper limit to the operating frequency range of the array over which a controlled beam without grating lobes can be created. It is contemplated transducer sizes in the range of two and one-half and three inches with a nominal center-to-center spacing of slightly greater that two and one-half to three inches would constitute the upper limit of a usable system in accordance with the invention.
Second, the array of transducers is a two dimensional array having a continuous series of transducers as you traverse across the array at different angles. The dimension (number of transducers) across the transducer array vertically, horizontally, or on any diagonal needs to be adequate to allow sufficient beam forming to be achieved down to the desired low frequency end of the loudspeaker's operating frequency range. A dimension of about 36 inches allows control and beam forming down to 400 Hz, which would cover most audio applications. It is again noted that the beam form produced by the transducer array or the invention is substantially uniform in all directions about its radiation axis, i.e., at a given distance from the transducer array along the radiation axis, it maintains substantially the same width at a given frequency in any direction about the radiation axis. To achieve this, the array is approximately circular, with the fill factor in relation to a circle circumscribing the array of at least approximately 70%.
Third, the center-to-center spacing between transducer elements are preferably kept as uniform as possible. It is believed that in the most suitable implementations of the invention the center-to-center spacing between adjacent transducer elements will vary less than 10% throughout the array; however, transducer element arrays having larger center-to-center variations are possible and considered within the scope of the invention. As variations in the center-to-center spacing increase, additional signal processing may become necessary to compensate.
Fourth, while the transducer elements themselves are relatively small, the transducer design is preferably selected to maximize the diaphragm size relative to the outer dimension of the transducer. A maximized diaphragm size (for example, a one inch diaphragm for a nominal one inch transducer) is found to provide a number of advantages: it allows the operating frequency range of the transducer element array to be extended to lower frequencies; it increases the efficiency of the individual transducer elements allowing them to produce higher acoustic power; and it enhances the ability of the transducer array to avoid grating lobes at high frequencies. In regards to the formation of grating lobes at high frequencies, it is well known that the beam width of any given acoustic radiator is relatively wide at frequencies whose wavelengths are much larger than the diameter of the radiator, and relatively narrow at frequencies whose wavelengths are much smaller than the diameter of the radiator. Therefore, a larger diaphragm will result in a beam which begins narrowing at a lower frequency. Grating lobes arise when off-axis acoustic energy (i.e. energy projected at angles other than the direction of the transducer's travel) from separate transducers sums in phase (due to the difference in path length between two or more transducers and a common destination being an integer multiple of a wavelength). A transducer array according to the invention, whose elements all individually project narrow high frequency beams with little off-axis energy, will collectively exhibit attenuated grating lobes compared to an array comprised of elements which project a wide high-frequency beam. As a result, transducers with a narrow high-frequency beam width extend the high-frequency limit to the operating band of the array for a given acceptable side-lobe level.
Referring now to the drawings,
As shown in
The transducer element array 10 shown in
The mounting plate 27 to which transducer elements 19 are attached is shown in greater detail in
As shown in
The shape of the mounting plate as defined by its perimeter edges is chosen to allow the transducer array module to be fitted together with other like modules in a larger array of transducer elements as hereinafter described. Specifically, the illustrated mounting plate has generally rectangular shape with a first pair of parallel perimeter edges 274 and a second pair of complimentary irregular perimeter edges 275 at ninety degrees to the parallel edges. The transducers are arrayed on the mounting plate such that the array terminates in parallel perimeter rows 276 along the parallel perimeter edges of the mounting plate and in irregular perimeter rows 277 along the irregular perimeter edges of the mounting plate. It is seen that the transducer elements of the parallel perimeter rows 276 slightly overhang the parallel perimeter edges of the module's mounting plate. On the other hand, two of the transducer elements 277a of each irregular perimeter row exhibit such an overhang, while the other two transducer elements 277b are recessed from the perimeter edge. This overhang arrangement is provided to allow the transducer elements of the perimeter rows to interleave with each other when array modules can be fitted together. Such interleaving of the perimeter transducer elements will act to minimize the variation in the center-to-center spacing of the transducers at the boundaries of the modules.
The fitting together of transducer element array modules is illustrated in
To further conserve space for the close packing of the transducer elements, the long wire harness conventionally provided with commercially available tweeters for remote connections is eliminated in the illustrated embodiment of the transducer element. Instead, a short tear drop wire connector 196 is provided on a flattened edge 197 of the tweeter support frame. This tear drop connection allows for the dressing of the transducer wires 198 in a relatively small space. Also, mounting the transducer element to the mounting plate 27 shown in
It will be understood that the expanded array shown in
The transducer array modules shown in
A loudspeaker system in accordance with the invention having an upper frequency limit of 8 KHz can be achieved with 1.5 inch diameter dome tweeters as above-described having a nominal center-to-center spacing less than 1.6 inches. A system comprised of 448 high-power matched dome tweeters of this dimension packed on a one meter base plate with substantially uniform density, that is, with substantially uniform spacing between transducers of less than 1.6 inches, would be capable of producing focused narrow beam of acoustic power at relatively high sound pressure levels. A higher upper frequency could be attained using smaller transducers with a smaller center-to-center spacing. For Example, a 12 KHz bandwidth could be achieved using nominally one inch diameter transducer elements having a center-to-center spacing of slightly greater than one inch. However, the smaller transducer elements of such a system would have smaller diaphragms and voice coils, and thus less power handling capability.
It is contemplated that the upper frequency end of the loudspeaker system of the invention could be extended for a given size of the transducers through signal processing, and particularly through the use notch filters, to prevent side lobes and grating lobes in the higher frequency ranges. It is also contemplated that upper frequency limit could be extended adding a waveguide structure in front of transducer elements of the array.
The small transducer elements 190 of the
A loudspeaker system having a transducer element array with a concentric ring distribution as shown in
In another concentric ring configuration as shown in
It shall be understood that the transducer elements in the foregoing described embodiments are not intended to be limited to circular transducers. It would be possible to create an array of transducer elements having other physical shapes, such as a transducer having a square diaphragm assembly frame, which meet the size, spacing and fill factor requirements of a transducer element array in accordance with the invention.
Referring to
The output from the preamplifier is fed to a main signal processor 14, which provides the functions described above. The signal processor output is, in turn, applied to an audio power amplifier 17 to amplify the voltage and deliver suitable current to the transducers 19. Additional identical amplifiers 18 may be used to distribute the load of the transducers among more amplifiers. The transducers 19 are connected to the amplifier(s) outputs in either series or parallel combinations, or both, such that each transducer receives the same signal.
The wattage of the amplifier(s) and connection configuration to the transducers is preferably selected to produce approximately 10 to 20 Vpk to each transducer at its maximum for the invention function in its intended form. There are 448 transducers used in the embodiment illustrated in
To provide a more conventional load impedance for the amplifiers, the transducers are connected in a series-parallel combination.
The voltage gain for each amplifier 17 is preferably set to 20 dB, and is matched between amplifiers. This allows the main signal processor 14 to operate from a supply voltage of approximately +/15 VDC, suitable for op-amp analog signal processing. Similarly the preamplifier 12 operates from the same power supply voltage and receives an audio input signal 11 in the range of 1 Vpk to 10 vpk maximum. Additional voltage gain can be applied in either the preamplifier 12 or main signal processor 14 to allow the system to reach maximum voltage at the amplifier outputs as needed for different types of audio input signal levels.
Alternatively, the same result can be obtained by using a fewer or greater number of amplifiers and any combination of load connections, provided the peak voltage available to each transducer is at least +/−10 Vpk and they all receive the same signal (all must be connected with the same polarity as well). The power and voltage requirements of each amplifier must be adjusted accordingly. As the number of amplifier channels increases, the maximum being one for every transducer (448 amplifiers), a further variation of the invention can be applied allowing a flexible or more tailored beam width at each frequency. This is accomplished by grouping the transducers into each of several amplifiers where each amplifier produces a different signal to the group of transducers. In this case multiple signal processors, one for each amplifier, are required to obtain the benefit of a flexible or more tailored beam width. The greatest degree of flexibility is achieved when there is a separate amplifier and signal processor for each transducer. The signal processors must produce a different complex frequency response from each other for each transducer. The unique complex frequency response of each signal processor to achieve a particular beam form at each frequency must be solved using the Kirchhoff-Helmholtz integral theorem and associated mathematical framework, taking into account the placement of the transducer elements and boundary conditions.
In the embodiment shown in
It attenuates frequencies above and below the operating frequency range prescribed by the array dimensions to prevent those frequencies from widening the beam or producing undesirable side lobes.
It shapes the overall frequency response so the loudspeaker system is flat or compensated for air loss for long throw applications.
It provides rms voltage limiting, consequently limiting the average power applied to each transducer to protect them from damage or failure due to over-heating.
It provides peak voltage limiting at frequencies below the resonance of the transducer to protect them from over excursion damage and excess distortion.
It provides notch filters or band eliminating filters at high frequencies where grating lobes begin to occur.
The exact parameters of each of the signal processing functions depend on the particular transducer selected for the array. The method for optimizing the parameters is based on iterative measurements of frequency response at many angles and distances around the front of the array, and experimenting with settings of limiters to determine a safe level of power and excursion for the transducer.
The next block is the first order high-pass filter 61 and is set to a 290 Hz. The high-pass filter may be in the range of 200 to 800 Hz depending on the transducer used in the array. A higher order roll off may be necessary as determined by acoustic measurement of the array and reliability tests of the transducer, since low frequencies (below the transducer's resonant frequency) will produce large and potentially damaging excursions on the relatively small transducer diaphragm.
The equalization filter block 62 is comprised of any number of filters to produce the desired overall acoustic frequency response of the entire loudspeaker system. This is generally accomplished by acoustic measurement of the entire loudspeaker system. An iterative measurement and adjustment methodology can be used to achieve the desired overall response.
Next, the notch and band elimination filters 63 are tuned at frequencies where unwanted grading lobes or side lobes occur in the beam form produced by the transducer array. The setting of these filters is based on acoustic measurements of the entire transducer array by identifying and attenuating frequencies that project energy towards the side of the surface of the transducer array.
In practice, the functions contained in blocks 60, 61, 62, 63 are combined together and implemented in several op-amp analog circuits since they all operate as linear filters. The combined electrical response of these functions is shown in
An rms compressor limiter 64 is introduced to protect the transducers from over temperature damage. The settings of this limiter are obtained from thermal experiments on the transducers. A low frequency limiter 65 is applied to protect the transducer from over excursion damage. The settings of this limiter are obtained from reliability experiments on the transducers.
Referring now to
Further shown in
Any of the above signal processing system and audio input can be implemented as analog or digital with A/D and D/A converters applied between sections. As the number of signal processing channels increase, the signal processing is more practical to implement digitally.
While variations of the invention have been described in the foregoing specification in considerable detail, it shall understood that it is not intended that the invention be limited to such detail or the described variations. It will be appreciated that variations of the invention other than described would be possible and within the scope of the invention.
This application claims the benefit of U.S. provisional patent application No. 61/062,945, filed Jan. 29, 2008, and is a continuation-in-part of U.S. patent application Ser. No. 11/641,549 filed Dec. 18, 2006, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
4524372 | De Cock et al. | Jun 1985 | A |
4550229 | Hwang | Oct 1985 | A |
5309518 | Ickler et al. | May 1994 | A |
5781645 | Beale | Jul 1998 | A |
5821470 | Meyer et al. | Oct 1998 | A |
6262946 | Khuri-Yakub et al. | Jul 2001 | B1 |
6628796 | Adamson | Sep 2003 | B2 |
6959096 | Boone et al. | Oct 2005 | B2 |
7206427 | Simidian, II et al. | Apr 2007 | B2 |
7299893 | Meyer et al. | Nov 2007 | B2 |
7336793 | Horbach et al. | Feb 2008 | B2 |
20020131608 | Lobb et al. | Sep 2002 | A1 |
20050057284 | Wodnicki | Mar 2005 | A1 |
20050180577 | Horbach | Aug 2005 | A1 |
20050201583 | Colich | Sep 2005 | A1 |
20060098830 | Roeder et al. | May 2006 | A1 |
20060159286 | Stiles et al. | Jul 2006 | A1 |
20060204022 | Hooley et al. | Sep 2006 | A1 |
20070201711 | Meyer et al. | Aug 2007 | A1 |
20080290757 | Gao et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
06038289 | Feb 1994 | JP |
WO 2004075601 | Sep 2004 | WO |
WO2009097462 | Aug 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090238383 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61062945 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11641549 | Dec 2006 | US |
Child | 12361517 | US |