The present invention relates to a loudspeaker mounted to various audio apparatuses.
PTL 1 discloses a conventional loudspeaker which includes a frame, a magnetic circuit, and a diaphragm. The magnetic circuit is coupled to the frame.
The diaphragm includes a diaphragm body and an edge. The diaphragm body has a dome-shape. An outer circumference of the diaphragm is connected to the edge. An outer circumference of the edge is connected to the frame. The frame has a connecting surface. An outer circumference of the edge is connected to the connecting surface of the frame.
Another conventional loudspeaker includes a frame, a magnetic circuit, a support strut, a flat diaphragm, a first edge, a second edge, and a loudspeaker unit. The magnetic circuit is coupled to the frame. Threaded portions are formed on an upper end and a lower end of the support strut. The loudspeaker unit is mounted to the support strut and is fixed to the support strut with the threaded portion. The support strut is mounted to a center of the magnetic circuit, and is fixed to the magnetic circuit with the threaded portion.
An inner circumference of the first edge is coupled to an outer circumference of the diaphragm. On the other hand, an outer circumference of the first edge is coupled to the first frame. An outer circumference of the second edge is coupled to an inner circumference of the diaphragm. On the other hand, an inner circumference of the second edge is coupled to the loudspeaker unit.
A conventional loudspeaker similar to this loudspeaker is disclosed in, e.g. PTL 2.
Loudspeaker 501 is a coaxial-type loudspeaker. Loudspeaker 501 includes flat diaphragm 502 for reproducing low sound, high-frequency diaphragm 503 for reproducing sound in a high frequency band, voice coil 504, and voice coil bobbin 5 which transmits vibrations of voice coil 504 to flat diaphragm 502.
Although a position of a sound source can be unified with the use of flat diaphragm 502, flat diaphragm 502 exhibits fragility in mechanical strength because flat diaphragm 502 has a flat plate shape. To decrease fragility, flat diaphragm 502 includes core substrate 502A having high rigidity and skin layers 502B. Skin layers 502B is laminated on both surfaces of core substrate 502A with adhesive. A honeycomb structure shown in
A loudspeaker similar to this loudspeaker is disclosed in, e.g. PTL 3.
Although a position of a sound source can be unified with the use of flat diaphragm 602, flat diaphragm 602 exhibits fragility in mechanical strength because flat diaphragm 602 has a flat plate shape.
To decrease this mechanical fragility, flat diaphragm 602 includes core substrate 603 having a honeycomb structure and skin layers 604 mounted on both surfaces of core substrate 603.
In loudspeaker 601, in general, skin layer 604 made of, e.g. a thin aluminum plate is laminated on each surface of core substrate 603. Individual cells 607 of core substrate 603 are substantially sealed with skin layer 604 described above.
In such a configuration, flat diaphragm 602 is configured to receive vibrations of voice coil 605 via driver cone 606, thus reproducing sound.
A conventional loudspeaker similar to this loudspeaker is disclosed in, e.g. PTL 4. The loudspeaker including the flat diaphragm can stabilizes a distance between a power source and a listening position (ears) to a fixed value more easily than a loudspeaker including a cone diaphragm, hence reproducing sound with small distortion.
The conventional loudspeaker includes a magnetic circuit having a magnetic gap, a voice coil movably disposed in the magnetic gap of the magnetic circuit, a coupling cone fixed to the voice coil, and a flat diaphragm fixed to the coupling cone. One end of the coupling cone is fixed to the voice coil while another end of coupling cone is fixed to the flat diaphragm.
The coupling cone has a conical cylindrical shape such that the coupling cone has a small diameter on the voice coil and a large diameter on the flat diaphragm. A flange bent toward the outside is formed on a portion of the coupling cone toward the diaphragm. An adhesive which fixes the flange to a back-side plate body of the flat diaphragm is applied to the flange. A conventional loudspeaker similar to this loudspeaker is disclosed in PTL 5.
PTL 1: Japanese Patent Laid-Open Publication No. 05-137194
PTL 2: Japanese Utility Model Laid-Open Publication No. 61-195189
PTL 3: Microfilm of Japanese Utility Model Application No. 54-163846
PTL 4: Japanese Patent Publication No. 59-1035
PTL 5: Japanese Utility Model Laid-Open Publication No. 61-166689
A loudspeaker includes a diaphragm body having a dome shape protruding upwardly, a magnetic circuit disposed below the diaphragm body, a voice coil coupled to the diaphragm body, an edge coupled to an outer circumference of the diaphragm body, and a frame coupled to the edge. The edge includes a first coupling portion provided at an outer circumference of the edge, a second coupling portion provided at an inner circumference of the edge and coupled to an outer circumference of the diaphragm body, and a roll portion disposed between the first coupling portion and the second coupling portion. The edge has a surface facing downward. The frame has a connecting surface disposed below the second coupling portion and coupled to the surface of the edge at the first coupling portion of the edge.
This loudspeaker can decrease distortion of sound.
Magnetic circuit 53 is disposed below diaphragm body 56A. Frame 51 is coupled to magnetic circuit 53. End portion 157 of voice coil 57 is inserted into magnetic gap 53D. On the other hand, end portion 257 of voice coil 57 is coupled to diaphragm body 56A.
Diaphragm body 56A has a dome shape protruding upwardly. That is, diaphragm body 56A has a shape obtained by cutting a part of a sphere, hence having a circular shape viewing from above. Edge 56B has an annular shape. An outer circumference of diaphragm 56 is coupled to edge 56B. An outer circumference of edge 56B is connected to frame 51. Frame 51 has an annular shape viewing from above.
In the above configuration, connecting surface 51A is disposed below coupling portion 56E. Coupling portion 56C is coupled to connecting surface 51A. This configuration suppresses reflection of sound output from diaphragm body 56A on roll portion 56D. As a result, Sound output from loudspeaker 21B is prevented from being mixed with sound reflected on roll portion 56D, hence reducing distortion of the sound output from loudspeaker 21B.
In the conventional loudspeaker described above, sound output from the diaphragm is reflected on an edge of the diaphragm, thus generating reflected sound. The reflected sound may be mixed with sound output from the diaphragm, thereby generating distortion in sound output from the loudspeaker.
Loudspeaker 21B shown in
Voice coil 57 may include coil 57A and bobbin 57B. In this case, coil 57A is wound on one end portion (end portion 157) of bobbin 57B. Another end portion (end portion 257) of bobbin 57B is coupled to diaphragm body 56A.
Magnetic circuit 53 is an inner magnet type magnetic circuit. Magnetic circuit 53 is not limited to an inner magnet type magnetic circuit, and may be an outer magnet type magnetic circuit. Inner magnet type magnetic circuit 53 includes yoke 53A, magnet 53B, and upper plate 53C. Magnet 53B and upper plate 53C have circular columnar shapes. Yoke 53A has a cylindrical shape with a bottom. Yoke 53A and upper plate 53C are made of magnetic metal material.
Magnet 53B is disposed at a center of yoke 53A and is coupled to yoke 53A. Upper plate 53C is mounted on an upper surface of magnet 53B opposite to yoke 53A, and is magnetically coupled to magnet 53B. Upper plate 53C and magnet 53B are mechanically coupled to each other with, e.g. adhesive. Yoke 53A and upper plate 53C are disposed such that an inner circumferential surface of yoke 53A faces an outer circumferential side surface of upper plate 53C. This configuration produces magnetic gap 53D between the inner circumference surface of yoke 53A and the outer circumference surface of upper plate 53C.
Canceling magnet 53E may be disposed on upper plate 53C. In this case, a magnetic flux generated from canceling magnet 53E repels against a magnetic flux generated from magnet 53B. This configuration increases a magnetic flux density in magnetic gap 53D.
Magnetic circuit 53 may include cap 62. Cap 62 may preferably be made of non-magnetic material having high electrical conductivity. Cap 62 may be made of, e.g. copper. Cap 62 is a so-called short ring. Cap 62 includes upper plate portion 62A, side plate portion 62B extending downward from upper plate portion 62A, and extension portion 62C extending downward from side plate portion 62B. Upper plate portion 62A covers an outer circumference of an upper surface of upper plate 53C. Side plate portion 62B extends along an outer circumference surface of upper plate 53C. Extension portion 62C extends downward from a distal end of side plate portion 62B. In this configuration extension portion 62C prevents an adhesive which couples upper plate 53C to magnet 53B from protruding toward magnetic gap 53D, hence narrowing magnetic gap 53D and reducing a distance between magnet 53B and extension portion 62C. That is, magnet 53B having a large diameter can be used so that a magnet having a large magnetic force can be used as magnet 53B. The reason is as follows. In assembling magnet 53B and upper plate 53C, magnet 53B protrudes toward magnetic gap 53D due to the adhesion displacement between magnet 53B and upper plate 53C, which often occurs when a magnet having a large diameter is used. However, a guiding effect of extension portion 62C can prevent magnet 53B from projecting toward magnetic gap 53D. As a result, a magnetic flux density in magnetic gap 53D can be increased.
On the other hand, gap 162P (see
Extension portion 56F is bent in a direction away from roll portion 56D. This configuration prevents extension portion 56F from contacting roll portion 56D, hence suppressing a hitting noise caused by the contact between extension portion 56F and roll portion 56D. This configuration can prevent roll portion 56D from being coupled to extension portion 56F, hence avoiding the suppressing of a deformation of roll portion 56D.
Extension portion 56F may preferably have a shape along an outer circumference of bobbin 57B. In this case, extension portion 56F may adhere to bobbin 57B preferably with adhesive 61. This configuration increases a coupling strength between voice coil 57 and diaphragm 56, and enhances a response characteristic of diaphragm 56. Flange 56G may preferably be provided at the outer circumferential end of diaphragm 56. Flange 56G is provided at a distal end of extension portion 56F. Flange 56G may preferably be bent toward an outer side of diaphragm 56. In this case, burrs 56H are formed on a distal end of flange 56G. Burrs 56H preferably project in a direction away from roll portion 56D. This configuration prevents burrs 56H from rubbing against edge 56B, and suppresses damage on edge 56B accordingly.
Flange 56G may not necessarily be formed at the distal end portion of extension portion 56F. Flange 56G may be formed at an end of diaphragm body 56A. In this case, flange 56G may preferably be bent toward an inner side of diaphragm 56.
Edge 56B will be detailed below with reference to
Peak 56P of roll portion 56D is preferably located below straight line L56 extending from the outside of diaphragm body 56A perpendicularly onto a surface of diaphragm body 56A. Peak 56P of roll portion 56D can further prevents sound output from diaphragm body 56A from being reflected on roll portion 56D. As a result, of sound output from loudspeaker 21B shown in
Edge 56B preferably includes connecting portion 56M and connecting portion 56N. Connecting portion 56M connects roll portion 56D to coupling portion 56C. Connecting portion 56N connects roll portion 56D to coupling portion 56E. Connecting portion 56M and connecting portion 56N have cross sections having arcuate shapes. The arcuate shape of connecting portion 56M has a first radius while the arcuate shape of connecting portion 56N has a second radius. The second radius is larger than the first radius. This configuration can locate peak 56P of roll portion 56D away from diaphragm body 56A. Roll portion 56D and diaphragm body 56A can be disposed such that a distance between diaphragm body 56A and a surface of roll portion 56D which faces diaphragm body 56A is increased. This configuration can further suppress a reflection of sound output from diaphragm body 56A on roll portion 56D. As a result, sound output from loudspeaker 21B shown in
Loudspeaker 21B may include ring body 60. Ring body 60 may constitute, e.g. a portion of an equalizer. Alternatively, ring body 60 may be a protector. Ring body 60 may be a gasket or a cushion. Ring body 60 has upper surface 60A and lower surface 60B opposite to upper surface 60A. As shown in
Upper surface 60A of ring body 60 preferably include angled surface 60K. Angled surface 60K is angled such that a distance between upper surface 60A and lower surface 60B gradually decreases from a circumference of ring body 60 to an inner circumference of ring body 60. Peak 56P of roll portion 56D may preferably be located below a plane expanded straight from angled surface 60K. In this case, angled surface 60K is preferably located below straight line L56 extending from the outside of diaphragm body 56A perpendicularly onto the surface of diaphragm body 56A. This configuration can suppress a reflection of sound output from diaphragm body 56A on ring body 60. As a result, sound output from loudspeaker 21B shown in
Peak 56P of roll portion 56D is preferably located above a plane expanding straight from angled surface 60K in a direction toward roll portion 56D. Peak 56P of roll portion 56D can further suppress a reflection of sound output from diaphragm body 56A on ring body 60.
In accordance with Embodiment 1, loudspeaker 21A is a full-range loudspeaker. Loudspeaker 21A may not necessarily be a full-range loudspeaker, and may be a woofer or a subwoofer. On the other hand, loudspeaker 21B is, e.g. a dome-type tweeter. Loudspeaker 21B is disposed at the center of loudspeaker 21A viewing from above. That is, the center of loudspeaker 21A and the center of loudspeaker 21B are coaxially arranged. That is, loudspeaker 21 is a coaxial-type loudspeaker. This configuration stabilizes a position of a sound image generated from loudspeaker 21.
Loudspeaker 21A and loudspeaker 21B preferably have circular outer shapes viewing from above. This configuration can decrease distortion of sound output from loudspeaker 21.
Loudspeaker 21A will be described with reference to drawings. As shown in
End portion 227C of coupling cone 27C is coupled to a lower surface of diaphragm body 26A with adhesive 27D. End portion 227C of coupling cone 27C includes adhering portion 27F and angled portion 27E. Adhering portion 27F is parallel to the lower surface of diaphragm body 26A. On the other hand, angled portion 27E is angled with respect to the lower surface of diaphragm body 26A. This configuration allows adhesive 27D to fill between diaphragm body 26A and angled portion 27E. Accordingly, in coupling cone 27C, diaphragm body 26A adheres to adhering portion 27F with adhesive 27D, and diaphragm body 26A adheres to angled portion 27E with adhesive 27D, thereby increasing coupling strength between coupling cone 27C and flat diaphragm 26. As a result, a speed of sound of flat diaphragm 26 is increased, and distortion of sound output from flat diaphragm 26 can be decreased.
Angled portion 27E may preferably be bent in a direction to approach flat diaphragm 26. This configuration can increase a region where adhesive 27D is attached to angled portion 27E, and prevent adhesive 27D from flowing down along angled portion 27E, accordingly increasing a coupling strength between coupling cone 27C and flat diaphragm 26.
Terminals 29 shown in
Loudspeaker 21A may include damper 28D.
Loudspeaker 21A may further include damper 28E.
As shown in
In outer magnet type magnetic circuit 23, an upper surface of center pole 23D constitutes upper surface 23A, and a lower surface of center pole 23D constitutes lower surface 23B. Through-hole 23K is formed in center pole 23D. Through-hole 23K penetrates center pole 23D from lower surface 23B to upper surface 23A. A center axis of through-hole 23K is aligned with a center axis of center pole 23D.
Magnetic circuit 23 may further include canceling magnet 23G. Canceling magnet 23G is coupled to a lower surface of lower plate 23C. Canceling magnet 23G preferably has an annular shape. Canceling magnet 23G generates a magnetic field repelling against a magnetic flux generated from magnet 23E. That is, a surface of magnet 23E and a surface of canceling magnet 23G which face each other have the same magnetic polarity. This configuration increases a magnetic flux density in magnetic gap 23Q. Insertion hole 23H is formed in upper surface 23A of center pole 23D.
Magnetic circuit 23 may not necessarily an outer magnet type magnetic circuit, and may be an inner magnet type magnetic circuit. Alternatively, magnetic circuit 23 may be configured by combining an outer magnet type magnetic circuit and an inner magnet type magnetic circuit.
Frame 25 is preferably unified with support strut 24. This configuration positions frame 25 accurately with respect to support strut 24, hence preventing flat diaphragm 26 from being angled and preventing flat diaphragm 26 from deviating from the center of the support strut 24. Further, it is unnecessary to form frame 25 and support strut 24 separately, and hence, productivity of frame 25 is enhanced. In forming frame 25 and support strut 24 as a unified body, frame 25 and support strut 24 may be formed by die-casting aluminum as material. This configuration prevents vibrations generated by loudspeaker 21A shown in
Support strut 24 is coupled to upper surface 23A such that support strut 24 extends upward from upper surface 23A of magnetic circuit 23. Support strut 24 is disposed at the center of upper surface 23A. Support strut 24 includes upper end portion 24A and lower end portion 24B. Upper end portion 24A of support strut 24 is opposite to lower end portion 24B. Lower end portion 24B of support strut 24 faces upper surface 23A. Protrusion 24C is provided on lower end portion 24B of support strut 24. Protrusion 24C is fitted in insertion hole 23H shown in
Support strut 24 has through-hole 24D which penetrates support strut 24 from lower end portion 24B to upper end portion 24A. A center axis of through-hole 24D is aligned with the center axis of through-hole 23K shown in
Through-hole 24D at lower end portion 24B has a first diameter while through-hole 24D in upper end portion 24A has a second diameter. As shown in
Support strut 24 is preferably made of metal. Support strut 24 made of metal has more stable size and shape against an external force for a change in temperature environment than support strut 24 made of resin. Accordingly, a change in distortion characteristics of loudspeaker 21 shown in
Support strut 24, yoke 53A, and center pole 23D will be detailed below.
Support strut 24 is preferably made of a softer material softer than yoke 53A. That is, yoke 53A is more rigid than support strut 24. Support strut 24 is preferably made of a softer material than center pole 23D. That is, center pole 23D is preferably harder than support strut 24. Support strut 24 is held such that support strut 24 is provided between yoke 53A and center pole 23D which are harder than support strut 24.
With this configuration, yoke 53A presses down an upper surface of support strut 24. Further, a lower surface of support strut 24 is pressed onto upper surface 23A of center pole 23D. Support strut 24 is less hard than yoke 53A, hence allowing a portion of the upper surface of support strut 24 to deform. Further, support strut 24 is less hard than center pole 23D, hence allowing a portion of the lower surface of support strut 24 to deform. This reliably maintains perpendicularity of support strut 24 with respect to upper surface 23A of magnetic circuit 23.
Yoke 53A may preferably be softer than fixing element 41. That is, fixing element 41 may harder than yoke 53A. In accordance Embodiment 1, fixing element 41 is made of stainless steel. This configuration suppresses deformation of threaded portion 41A which is generated when threaded portion 41A is inserted and fasten into threaded hole 31A. That is, some threads formed on threaded hole 31A can deform to have a shape which conforms to the shape of threaded portion 41A. Therefore, even when fixing element 41 is inserted into yoke 53A while a center axis of threaded hole 31A is angled with respect to a center axis of fixing element 41, the angle of the center axis of threaded hole 31A with respect to the center axis of fixing element 41 can be decreased. As a result, it is possible to reliably maintain perpendicularity of the center axis of support strut 24 with respect to a surface of yoke 53A pressed to support strut 24.
As described above, fixing element 41 is harder than yoke 53A and, yoke 53A and center pole 23D shown in
Accordingly, a stepped portion is prevented from being formed between a surface of frame 22 coupled to outer circumferential and 26B of flat diaphragm 26 and a surface of frame 22 coupled to inner circumferential end 26C. As a result, loudspeaker 21B is mounted not while being angled. Flat diaphragm 26 is disposed not while being angled. That is, a surface of flat diaphragm 26 can be perpendicular to the center axis of magnetic circuit 23 reliably, accordingly preventing flat diaphragm 26 from being rolled, and reducing distortion of sound output from loudspeaker 21. Voice coil 27A is prevented from contacting magnetic circuit 23 when flat diaphragm 26 vibrates with high amplitude. Further, magnetic gap 23Q shown in
Further, the center axis of flat diaphragm 26 is prevented from deviating from the center axis of magnetic circuit 23, and hence prevents rolling of flat diaphragm 26, hence reducing distortion of sound output from loudspeaker 21. Magnetic gap 23Q shown in
Support strut 24 may preferably be made of non-magnetic material. This configuration can prevent a magnetic flux generated from magnetic circuit 53 and a magnetic flux generated by magnetic circuit 23 from flowing in support strut 24. Accordingly, a magnetic flux density in magnetic gap 53D and a magnetic flux density in magnetic gap 23Q can be increased. Support strut 24 may be formed preferably by die-casting aluminum as a material.
As shown in
As shown in
As shown in
Shaft 41C preferably has fitting portion 41D. Fitting portion 41D is fitted into through-hole 23K shown in
Fitting portion 41D is preferably fitted in through-hole 24D at lower end portion 24B of support strut 24, as shown in
Fitting portion 41D is preferably fitted in both through-hole 24D at lower end portion 24B shown in
Fixing element 41 is preferably made of non-magnetic metal. This configuration can prevent a magnetic flux generated through from magnetic circuit 23 and a magnetic flux generated through magnetic circuit 53 shown in
As shown in
As shown in
Frame 25 includes connecting surface 51A and connecting surface 51B. Connecting surface 51A is coupled to edge 56B while connecting surface 51B is coupled to inner edge 26C. Connecting surface 51B is located a side below connecting surface 51A. This configuration allows peak 26P of inner edge 26C to be disposed below straight line L56 extending from the outside of diaphragm body 56A perpendicularly onto the surface of diaphragm body 56A.
Inner edge 26C is preferably coupled to a lower surface of flat diaphragm 26. This configuration can suppress a reflection of sound output from diaphragm body 56A on inner edge 26C. Inner edge 26C is coupled to the lower surface of flat diaphragm 26 while outer edge 26B is preferably coupled to a lower surface of diaphragm body 26A. This configuration reduces distortion of flat diaphragm 26.
As shown in
Loudspeaker 21 includes frame 22, magnetic circuit 23, support strut 24, frame 25, flat diaphragm 26, driver body 27, pressing element 31, and metal-made fixing element 41.
Magnetic circuit 23 is mechanically coupled to frame 22. Magnetic circuit 23 has upper surface 23A and lower surface 23B opposite to upper surface 23A.
Support strut 24 is coupled to upper surface 23A such that support strut 24 stands upwardly on upper surface 23A. Support strut 24 is disposed at the center of upper surface 23A. Support strut 24 includes upper end portion 24A and lower end portion 24B opposite to upper end portion 24A. Lower end portion 24B of support strut 24 faces upper surface 23A.
Frame 25 is coupled to upper end portion 24A. Flat diaphragm 26 has an annular shape. An inner circumference of flat diaphragm 26 is connected to frame 25 while an outer circumference of flat diaphragm 26 is connected to frame 22.
Pressing element 31 is pressed onto upper end portion 24A. That is, pressing element 31 presses lower end portion 24B onto upper surface 23A. Fixing element 41 passes through support strut 24 from lower surface 23B. Support strut 24 is held such that support strut 24 is provided between pressing element 31 and upper surface 23A.
The support strut of the above-mentioned conventional loudspeaker is fixed to the magnetic circuit and the loudspeaker unit with the threaded portion. Hence, the support strut or the loudspeaker unit may be angled with respect to an upper surface of the magnetic circuit. As a result, the diaphragm may be mounted while being angled, or the diaphragm may deviate from the center of the support strut. Hence, distortion characteristic of sound output from the diaphragm is deteriorated.
In loudspeaker 21 according to Embodiment 2, fixing element 41 fastens support strut 24, pressing element 31 and magnetic circuit 23 to each other while pressing element 31 is pressed onto upper end portion 24A. That is, support strut 24 is held such that support strut 24 is provided between pressing element 31 and upper surface 23A. Accordingly, support strut 24 is prevented from being angled with respect to upper surface 23A. Further, frame 25 can be disposed accurately at the center of magnetic circuit 23. Further, the connecting surface of frame 25 is reliably parallel with flat diaphragm 26 and upper surface 23A. Accordingly, flat diaphragm 26 is prevented from being angled with respect to upper surface 23A, and flat diaphragm 26 is prevented from deviating from the center of magnetic circuit 23. As a result, distortion of sound output from loudspeaker 21 can be decreased.
Fixing element 41 is made of metal, and thus, is hard, hence allowing fixing element 41 to increase the fastening strength among pressing element 31, support strut 24, and magnetic circuit 23.
Loudspeaker 21 according to Embodiment 2 will be detailed below. As shown in
Loudspeaker 21A is, e.g. a full-range loudspeaker. Loudspeaker 21A may not necessarily be a full-range loudspeaker, and may be a woofer or a subwoofer. On the other hand, loudspeaker 21B is, e.g. a dome-type tweeter. Loudspeaker 21B may not necessarily be a dome-type tweeter, and may be a cone-type tweeter. Loudspeaker 21B may not necessarily be a tweeter, and may be a squawker or a full-range loudspeaker. Further, loudspeaker 21B may be an equalizer having a spherical shape. Alternatively, loudspeaker 21 may include a device having a function, such as a light emitting unit for decorating loudspeaker 21 by illumination, other than a function of a loudspeaker in place of loudspeaker 21B.
Loudspeaker 21B is disposed at the center of loudspeaker 21A. That is, the center of loudspeaker 21A and the center of loudspeaker 21B are coaxially disposed. That is, loudspeaker 21 is a coaxial-type loudspeaker. This configuration stabilizes a position of a sound image generated from loudspeaker 21.
Loudspeaker 21A and loudspeaker 21B preferably have circular outer profiles viewing from above loudspeaker 21. This configuration can decrease distortion of sound output from loudspeaker 21.
Loudspeaker 21B will be described with reference to drawings. FIG. 20 is a cross-sectional view of loudspeaker 21B. Loudspeaker 21B is accommodated in frame 25. Frame 25 is disposed at the center of loudspeaker 21A shown in
Frame 51 is accommodated in frame 25. An outer circumference of diaphragm 56 is connected to frame 51. Diaphragm 56 preferably includes an edge. In this case, an outer circumference of the edge is coupled to frame 51.
Magnetic circuit 53 includes yoke 53A, magnet 53B, and upper plate 53C. Magnet 53B and upper plate 53C have a circular columnar shape. Yoke 53A includes pressing element 31 and tubular portion 31C. Tubular portion 31C rises from an outer circumferential end of pressing element 31. Pressing element 31 has a circular shape viewing from above. Tubular portion 31C has a cylindrical shape. That is, yoke 53A has a cylindrical shape with a bottom. This configuration allows pressing element 31 to constitute a portion of the magnetic circuit, hence decreasing the number of parts of the loudspeaker. Accordingly, the number of man-hours for assembling loudspeaker 21 shown in
Pressing element 31 and tubular portion 31C are formed unitarily. In this case, tubular portion 31C is bent from pressing element 31. That is, yoke 53A has a cylindrical shape with a bottom. This configuration can enhance productivity of yoke 53A.
Yoke 53A and upper plate 53C are made of magnetic metal material. Accordingly, pressing element 31 is made of magnetic metal material. Yoke 53A and upper plate 53C are preferably made of iron. In the case that yoke 53A is made of iron, pressing element 31 is also made of iron.
The loudspeaker according to Embodiment 2 may not necessarily have the configuration in which pressing element 31 and tubular portion 31C are formed unitarily. Pressing element 31 and tubular portion 31C may be formed as members separate from each other. Tubular portion 31C may not necessarily have a cylindrical shape, and may have a cylindrical shape with bottom. That is, pressing element 31 and tubular portion 31C are disposed such that pressing element 31 overlaps the bottom of tubular portion 31C. In this case, pressing element 31 is preferably be made of magnetic material. In magnetic circuit 53, a region located below an outer circumferential portion of magnet 53B has a largest magnetic resistance. A bottom portion of yoke 53A overlaps pressing element 31 below the outer circumferential portion of magnet 53B, hence decreasing a magnetic resistance in the region located below the outer circumferential portion of magnet 53B, accordingly increasing a magnetic flux density in magnetic gap 53D.
Magnet 53B is coupled to pressing element 31. Magnet 53B is disposed at the center of pressing element 31. Yoke 53A is magnetically coupled to magnet 53B. Upper plate 53C is mounted on an upper surface of magnet 53B opposite to pressing element 31. Upper plate 53C is magnetically coupled to magnet 53B. Yoke 53A and upper plate 53C are disposed such that an inner circumferential surface of yoke 53A faces an outer circumferential surface of upper plate 53C. This configuration provides magnetic gap 53D between the inner circumferential surface of yoke 53A and the outer circumferential surface of upper plate 53C.
Canceling magnet 53E may be disposed on upper plate 53C. In this case, canceling magnet 53E is disposed such that a magnetic flux generated by canceling magnet 53E repels against a magnetic flux generated by magnet 53B.
Voice coil 57 has end portion 157 and end portion 257 opposite to end portion 157. End portion 157 of voice coil 57 is inserted into magnetic gap 53D while end portion 257 of voice coil 57 is coupled to diaphragm 56. Terminal 59 shown in
Loudspeaker 21A will be described below. As shown in
Flat diaphragm 26 includes diaphragm body 26A, outer edge 26B, and inner edge 26C. Outer edge 26B connects an outer circumference of flat diaphragm 26 to frame 22. On the other hand, inner edge 26C connects an inner circumference of flat diaphragm 26 to frame 25. Outer edge 26B and inner edge 26C are coupled to a lower surface of diaphragm body 26A.
End portion 227C of coupling cone 27C is coupled to the lower surface of diaphragm body 26A with adhesive 27D. End portion 227C of coupling cone 27C includes adhering portion 27F and angled portion 27E. Adhering portion 27F is parallel to the lower surface of diaphragm body 26A. Angled portion 27E is angled with respect to the lower surface of diaphragm body 26A. This configuration allows adhesive 27D to fill between diaphragm body 26A and angled portion 27E. Thus, in coupling cone 27C, diaphragm body 26A adheres to adhering portion 27F while diaphragm body 26A adheres to angled portion 27E. This configuration increases a coupling strength between coupling cone 27C and flat diaphragm 26. As a result, a speed of sound of flat diaphragm 26 is increased. Further, distortion of sound output from flat diaphragm 26 can be decreased.
Terminals 29 shown in
Bent portion 28B which is bent upward or downward from body portion 28A is preferably provided at the outer circumferential portion of damper 28D. This configuration can suppress plastic deformation of damper 28D when an external force is applied to damper 28D. flange 28C which is further bent from bent portion 28B is preferably provided at a distal end of bent portion 28B. This configuration can further suppress plastic deformation of damper 28D.
Loudspeaker 21A may further include damper 28E. Damper 28E includes body portion 28F, an inner circumferential portion, and an outer circumferential portion. Body portion 28F is disposed between the inner circumferential portion and the outer circumferential portion. Body portion 28F has a cross section having a wave shape. The inner circumferential portion of damper 28E is coupled to bobbin 27B while the outer circumferential portion of damper 28E is coupled to frame 22. In this case, the shape of body portion 28A of damper 28D is preferably symmetrical to the shape of body portion 28F of damper 28E with respect to a plane perpendicular to a center axis of voice coil 27A. This configuration can decrease distortion of voice coil 27A in upward and downward directions, accordingly reducing distortion of sound output from loudspeaker 21. In this case, flange 28C is preferably provided at the outer circumferential portion of either damper 28D or damper 28E. This configuration prevents damper 28D and damper 28E from being incorrectly coupled to bobbin 27B and frame 22 due to opposite arrangement of the damper 28D and the damper 28E.
Center pole 23D is a portion protruding at the center of lower plate 23C. Magnet 23E is coupled to an upper surface of lower plate 23C. Magnet 23E has an annular shape having a hole formed at the center thereof. Upper plate 23F is coupled to an upper surface of magnet 23E. Upper plate 23F also has an annular shape having a hole formed at the center thereof. This configuration allows lower plate 23C, center pole 23D, magnet 23E, and upper plate 23F to be magnetically coupled to each other. Center pole 23D passes through the hole formed in magnet 23E and the hole formed in upper plate 23F. Center pole 23D and upper plate 23F are disposed such that an outer side surface of center pole 23D faces an inner side surface of upper plate 23F. This configuration provides magnetic gap 23Q between the outer side surface of center pole 23D and the inner side surface of upper plate 23F.
In outer magnet type magnetic circuit 23, an upper surface of center pole 23D constitutes upper surface 23A while a lower surface of center pole 23D constitutes lower surface 23B. Through-hole 23K is formed in center pole 23D. Through-hole 23K passes through center pole 23D from lower surface 23B to upper surface 23A. A center axis of through-hole 23K is aligned with a center axis of center pole 23D viewing from above.
Magnetic circuit 23 may further include canceling magnet 23G. Canceling magnet 23G is coupled to a lower surface of lower plate 23C. Canceling magnet 23G preferably has an annular shape. In this case, canceling magnet 23G generates a magnetic field in a direction that the magnetic field repels against a magnetic flux generated from magnet 23E. That is, a surface of magnet 23E and a surface of canceling magnet 23G which face each other have the same magnetic polarity. This configuration increases a magnetic flux density in magnetic gap 23Q. Insertion hole 23H is formed in upper surface 23A of center pole 23D.
Magnetic circuit 23 may not necessarily be the outer magnet type magnetic circuit, and may be an inner magnet type magnetic circuit. Alternatively, magnetic circuit 23 may be configured by combining an outer magnet type magnetic circuit and an inner magnet type magnetic circuit.
Support strut 24 has through-hole 24D which passes through support strut 24 from lower end portion 24B to upper end portion 24A. A center axis of through-hole 24D is aligned with the center axis of through-hole 23K shown in
Through-hole 24D provided in lower end portion 24B has a first diameter while through-hole 24D provided in upper end portion 24A has a second diameter. The second diameter is preferably larger than the first diameter. That is, an inner circumferential surface of through-hole 24D is angled such that a diameter of through-hole 24D gradually increases toward upper end portion 24A from lower end portion 24B. With this configuration, even if through-hole 24D is angled with respect to a center axis of support strut 24, fixing element 41 shown in
Support strut 24 is preferably made of metal. Support strut 24 made of metal can have more stable size and shape against, e.g. an external force and a change in temperature environment than support strut 24 made of resin. Accordingly, a change in distortion characteristics of loudspeaker 21 shown in
Support strut 24, pressing element 31, and center pole 23D will be detailed with reference to
This configuration allows pressing element 31 to press an upper surface of support strut 24, and allows upper surface 23A of center pole 23D to press a lower surface of support strut 24. Support strut 24 is less hard than pressing element 31, hence causing a portion of the upper surface of support strut 24 to deform. Further, Support strut 24 is less hard than center pole 23D, hence causing a portion of the lower surface of support strut 24 to deform. Accordingly, support strut 24 can be disposed perpendicularly to upper surface 23A of magnetic circuit 23 reliably.
Support strut 24 is preferably made of non-magnetic material. This configuration can prevent a magnetic flux generated by magnetic circuit 23 from flowing into support strut 24, hence increasing a magnetic flux density in magnetic gap 23Q accordingly. Support strut 24 is preferably formed by die-casting aluminum as a material.
As shown in
As shown in
As shown in
In order to form frame 25 and support strut 24 unitarily, frame 25 and support strut 24 are preferably by die-casting aluminum as a material. This configuration can prevent vibrations generated by loudspeaker 21A shown in
Shaft 41C preferably includes fitting portion 41D. Fitting portion 41D is fitted into through-hole-23K shown in
Fitting portion 41D is preferably fitted into through-hole 24D in lower end portion 24B of support strut 24 shown in
Fitting portion 41D is preferably fitted in both through-hole 24D in lower end portion 24B shown in
In
Pressing element 31 is preferably softer than fixing element 41. That is, fixing element 41 is harder than pressing element 31. In view of the above, fixing element 41 is made of stainless steel. This configuration can suppress the deformation of threaded portion 41A shown in
As described above, fixing element 41 is harder than pressing element 31. Further, pressing element 31 and center pole 23D shown in
Accordingly, a step is not formed between a coupling surface of frame 22 with outer edge 26B and a coupling surface of the frame with inner edge 26C. As a result, flat diaphragm 26 is prevented from being angled. That is, the center axis of magnetic circuit 23 can be perpendicular to a surface of flat diaphragm 26 reliably. Accordingly, flat diaphragm 26 can be prevented from rolling, and as a result, reduce distortion of sound output from loudspeaker 21. Further, magnetic gap 23Q shown in
Further, a center axis of flat diaphragm 26 is prevented from deviating from a center axis of magnetic circuit 23, and accordingly, suppresses rolling of flat diaphragm 26, hence reducing distortion of sound output from loudspeaker 21. Magnetic gap 23Q shown in
As shown in
Cells 507 are arranged symmetrically with respect to center axis 506A of the annular shape of core substrate 508. Cells 507 positioned at an outermost circumference of core substrate 508 open in the direction toward an outside of the annular shape of core substrate 508.
This configuration increases fixing strength between an outer circumference of core substrate 508 and skin layers 510, and, as a result, stabilizes a fixed state between core substrate 508 and skin layers 510 over a whole surface of flat diaphragm 506. Accordingly, vibration characteristics of flat diaphragm 506 become stable over the whole surface of flat diaphragm 506, hence suppressing distortion generated when the loudspeaker reproduced sound.
In accordance with this embodiment, each of cells 507 shown in
Configurations of flat diaphragm 506 and the loudspeaker which uses flat diaphragm 506 will detailed below.
Driver cone 514 coupled to voice coil 513 is coupled to flat diaphragm 506. Flat diaphragm 506 is driven by voice coil 513 via driver cone 514. Diaphragm 512 is driven by voice coil 515.
Voice coils 513 and 515 are movably disposed in respective magnetic gaps formed in magnetic circuits.
As described above, flat diaphragm 506 includes core substrate 508 having a honeycomb structure, and skin layers 510 formed on both surfaces of core substrate 508 via adhesive layers 509.
Core substrate 508 is composed of cells 507. Each cell 507 has a rhombic shape or a hexagonal shape.
All cells 507 are disposed such that lines 507D each passing through diagonal vertexes of each cell 507 is positioned on a straight line extending in radial direction 506R away from center axis 506A. That is, cells 507 are arranged symmetrical with respect to center axis 506A of the annular shape of core substrate 508.
Respective flattenings of cells 507 gradually change according to a distance from center axis 506A. That is, cells 507 arranged on a straight line extending in radial direction 506R between an inner circumferential end of core substrate 508 and an outer circumferential end of core substrate 508 have flattennigs different from each other. Widths 507W of cells 507 in circumferential direction 506S perpendicular to radial direction 506R about center axis 506A gradually decrease as distances from center axis 506A to the widths decrease. Respective flattenings of cells 507 gradually increase toward the inner circumferential side of core substrate 508 from the outer circumferential side of core substrate 508.
Cells 507 arranged on one circumference C501 about center axis 506A have the same flattenings. That is, cells 507 arranged in circumferential direction 506S have the same width 507W.
The number of cells 507 arranged in circumferential direction 506S is constant regardless of the positions of cells 507 in radial direction 506R over core substrate 508 including the outer circumferential side and the inner circumferential side. Further, although individual cells 507 having different flattenings have different areas, the length of sides 507A of cells 507 surrounds individual cells 507 are equal for all cells 507.
As described above, cells 507 arranged on one straight line extending in radial direction 506R have flattenings different from each other between the inner circumferential side of core substrate 508 and the outer circumferential side of core substrate 508. Further, respective flattenings of cells 507 gradually increase toward the inner circumferential side of core substrate 508 from the outer circumferential side of core substrate 508.
This configuration allows the number of cells 507 per unit area of flat diaphragm 506 gradually increases toward the inner circumferential side of flat diaphragm 506 from the outer circumferential side of flat diaphragm 506. That is, the closer to center axis 506A cells 507 are, the greater the number of cells 507 per unit area of flat diaphragm 506 becomes. That is, the arrangement density of cells 507 gradually increases toward the inner circumferential side of flat diaphragm 506 from the outer circumferential side of flat diaphragm 506. That is, the closer to center axis 506A cells 507 are, the larger the arrangement density of cells 507 is.
Thus, the number of cells 507 per unit area of flat diaphragm 506 closer to the outer circumferential side of flat diaphragm 506 is smaller than the number of cells 507 per unit area of flat diaphragm 506 closer to the inner circumferential side of flat diaphragm 506. This arrangement may cause adhesive strength between core substrate 508 having the honeycomb structure and each of skin layers 510 disposed on both surfaces of core substrate 508 with adhesive layers 509 to become weak on the outer circumferential side of flat diaphragm 506.
In flat diaphragm 502 of the conventional loudspeaker shown in
As a result, vibration characteristics of flat diaphragm 502 determined based on a fixed state between core substrate 502A and skin layer 502B are different between the inner circumferential side and the outer circumferential side of flat diaphragm 502, and facilitating distortion generated in original sound reproduced by loudspeaker 501.
In contrary, in flat diaphragm 506 in accordance with Embodiment 3 shown in
Outer circumferential end 510A of skin layer 510 is positioned on an end surface of flat diaphragm 506, hence causing skin layer 510 to tend to be fixed to core substrate 508 unstably.
In flat diaphragm 506 according to Embodiment 3, in order to suppress the unstable fixed state between skin layer 510 and core substrate 508, each cell 507 positioned at the outermost circumference of core substrate 508 is incomplete cell 507 which opens to the outside. That is, each cell 507 positioned at the outermost circumference of core substrate 508 is not completely surrounded by sides 507A of cell 507. In this configuration, sides 507A of cell 507 project outwardly.
Further, ends of sides 507A are fixed to outer circumferential end 510A of skin layer 510 with adhesive layer 509, or are fixed to skin layer 510 with adhesive layer 509 while ends of sides 507A are adjacent to an inner side of outer circumferential end 510A of skin layer 510.
In flat diaphragm 506 according to Embodiment 3, opening cells 507 provided at outer circumferential end 510A of skin layer 510 where a fixed state between skin layer 510 and core substrate 508 tends to become unstable provide the above advantageous effects. Similarly, cells 507 which open to the inside may be disposed at inner circumferential end 510B of skin layer 510 (see
In flat diaphragm 506 according to Embodiment 3, all cells 507 positioned on an outermost circumference of core substrate 508 may open to the outside in radial direction 506R while all cells 507 positioned on an innermost circumference of core substrate 508 may open to the inside in a direction opposite to radial direction 506R. As shown in
Incomplete cells 507 each having an open end may be formed at both outer circumferential end 510A of skin layer 510 and inner circumferential end 510B of skin layer 510. Alternatively, incomplete cells 507 each having an open end may be provided at either outer circumferential end 510A or inner circumferential end 510B of skin layer 510.
As shown in
In flat diaphragm 506 according to Embodiment 3, vibration characteristics become stable over the entire surface of flat diaphragm 506, hence providing an advantageous effect that loudspeaker 511 including flat diaphragm 506 can reproduce sound close to original sound. Accordingly, loudspeaker 511 is effectively applicable to various kinds of electronic apparatuses.
As shown in
As shown in
Skin layer 613 is formed on lower surface 612B of core substrate 612 toward coupling cone 611.
Skin layer 614 is formed on upper surface 612A of core substrate 612.
Skin layer 613 and skin layer 614 are opposite to each other with respect to core substrate 612.
Skin layer 614 preferably has air permeability. Further, skin layer 614 has larger tensile strength than skin layer 613.
This configuration air from the inside and the outside of cells 616 in flat diaphragm 615 flows into and out from flat diaphragm 615 mainly through skin layer 614 having air permeability even when flat diaphragm 615 vibrates at large amplitude. Thus, air is prevented from flowing into and out from the inside and the outside of cell 616 through a side surface of flat diaphragm 615. This suppresses noise due to the air flowing into and out from flat diaphragm 615 through the side surface of flat diaphragm 615, and accordingly, suppresses the noise mixed in original sound reproduced by loudspeaker 608.
A configuration of flat diaphragm 615 will be detailed below.
Flat diaphragm 615 includes core substrate 612, skin layer 613, and skin layer 614. Core substrate 612 has a flat plate shape having upper surface 612A, lower surface 612B, and side surface 612C connected to upper surface 612A and lower surface 612B. Skin layer 613 is stuck onto lower surface 612B of core substrate 612 such that skin layer 613 is connected to coupling cone 611 of flat diaphragm 615.
Skin layer 614 is stuck to upper surface 612A of core substrate 612 opposite to skin layer 613 of flat diaphragm 615. Skin layer 614 is disposed outside enclosure 608B, that is, skin layer 614 is disposed at a side to a listener.
Core substrate 612 has a honeycomb structure. Skin layer 613 and skin layer 614 are disposed on lower surface 612B and upper surface 612A, i.e., both surfaces of core substrate 612, respectively, thereby increasing mechanical strength of flat diaphragm 615.
Since skin layer 613 and skin layer 614 are stuck to respective surfaces of core substrate 612, cells 616 which are spaces independent from each other and non-communicable with each other are disposed in core substrate 612, thus forming the honeycomb structure. Skin layer 614 has air permeability. Cells 616 are communicated with the outside of flat diaphragm 615 through ventilation apertures 617 provided in skin layer 614. Cells 616 are communicated with the outside of the flat diaphragm 615 not through skin layer 613. That is, cells 616 are not completely closed, and open to skin layer 614. That is, cells 616 open to outside enclosure 608B
Skin layer 613 is preferably made of, e.g. an aluminum foil or an aluminum plate. Skin layer 614 is preferably made of, e.g. aramid fiber woven fabric, a titanium foil, or a titanium plate. Skin layer 614 has higher tensile strength than skin layer 613.
In the case that skin layer 614 is made of an aramid fiber woven fabric, positions of ventilation apertures 617 are not particularly restricted since the woven fabric has a lot of ventilation apertures 617.
In the case that skin layer 614 is made of a titanium foil or a titanium plate, single ventilation aperture 617 or plural ventilation apertures 617 communicated with individual cells 616 may be formed in skin layer 614. Alternatively, in the case that skin layer 614 is made of a titanium foil or a titanium plate, a lot of ventilation apertures 617 may be formed in skin layer 614.
When amplitude 615A of vibrations of flat diaphragm 615 is large, skin layer 613 may warp to change volumes of cells 616. Alternatively, the increase of a temperature of flat diaphragm 615 may increase a pressure in cells 616. In flat diaphragm 615 according to Embodiment 4, a gap may be formed between core substrate 612 and skin layer 613 or between core substrate 612 and skin layer 614 due to an insufficient fixed state so that volumes of cells 616 may change or a pressure in cells 616 increase. Even in this case, little air in cells 616 flows into and out from flat diaphragm 615 through side surface 612C of core substrate 612.
That is, even when the volume of each cell 616 or a pressure in each cell 616 change, air in cells 616 flows into and out from flat diaphragm 615 through a lot of ventilation apertures 617 formed in skin layer 614. This can suppress noise due to air flowing into and out from flat diaphragm 615 through the side surface of flat diaphragm 615. As a result, the noise is prevented from being mixed in original sound reproduced by loudspeaker 608.
Skin layer 614 positioned outside enclosure 608B is made of a material having a large tensile strength.
That is, in loudspeaker 608, the generation of noise is suppressed by air permeability of flat diaphragm 615. Further, since skin layer 614 is made of a material having a large tensile strength, characteristics of loudspeaker 608 in a high frequency band can be easily enhanced, and it is possible to obtain flat frequency characteristics having no irregularities in undesired characteristics.
In conventional loudspeaker 601 shown in
As described above, a lot of ventilation apertures 617 are formed in skin layer 614, and may decrease the fixing strength between skin layer 614 and core substrate 612 with adhesive accordingly.
In view of the above, in flat diaphragm 695 shown in
That is, the fixing strength between upper surface 612A of core substrate 612 and skin layer 614 is enhanced by fixing strength of side surface 612C of core substrate 612. Accordingly, the fixing strength between skin layer 614 having ventilation apertures 617 therein and core substrate 612 is enhanced, hence stabilizing vibration characteristics of flat diaphragm 615.
A region where side surface portion 614A of skin layer 614 is fixed to side surface 612C of core substrate 612 extends in a thickness direction of core substrate 612. In a cross-sectional view shown in
As described above, the fixing strength between skin layer 614 having ventilation apertures 617 and core substrate 612 is enhanced to stabilize vibration characteristics of flat diaphragm 615. Accordingly, loudspeaker 688 suppresses noise mixed in the reproduced original sound, and reproduces the original sound with high fidelity.
Edge 618 holds flat diaphragm 615 by contacting skin layer 613. In flat diaphragm 695 shown in
Edge 618 holds flat diaphragm 615 by contacting skin layer 613 via fixing layer 618A. Skin layer 613 is made of an aluminum foil or an aluminum plate having substantially a flat surface over the entire thereof. This configuration can stabilize the fixing between edge 618 and skin layer 613.
Loudspeakers 608 and 688 according to Embodiment 4 can reduce air flowing into and from flat diaphragm 615 and 695 through the side surface of flat diaphragm 615 and 695. This configuration provides an advantageous effect that noise mixed to original sound reproduced by loudspeakers 608 and 688 can be suppressed. Accordingly, loudspeakers 608 and 688 are effectively applicable to various kinds of electronic apparatuses.
Magnetic gap 702 is formed between yoke 704 and yoke 705.
Magnet 706 having a ring shape is disposed on yoke 705 opposite to magnet 703.
According to Embodiment 5, lower surface 703B of magnet 703 toward yoke 705 functions as an N-pole while upper surface 703A of magnet 703 toward yoke 704 functions as an S-pole. Upper surface 706A of magnet 706 toward yoke 705 functions as an N-pole while lower surface 706B of magnet 706 opposite to yoke 705 functions as an S-pole. This configuration allows a magnetic flux generated from the N-pole of magnet 703 to pass through yoke 705 and magnetic gap 702 in this order, and returns to the S-pole of magnet 703.
Further, a portion of a magnetic flux generated from the N-pole of magnet 706 also passes through yoke 705 and magnetic gap 702 in this order, and returns to the S-pole of magnet 703. While an extremely small portion of a magnetic flux generated from the N-pole of magnet 706 directly returns to the S-pole of magnet 706, most of the magnetic flux generated from the N-pole of magnet 706 is directed to magnetic gap 702 via yoke 705. As a result, the magnetic fluxes generated from magnet 703 and magnet 706 pass through magnetic gap 702, providing a large electromagnetic force in magnetic gap 702 accordingly. A coil portion of voice coil 707 having a cylindrical shape is movably disposed in magnetic gap 702.
One end of coupling cone 708 is fixed to an upper portion of voice coil 707 with adhesive. Flat diaphragm 709 is fixed to the other end of coupling cone 708.
As shown in
According to Embodiment 5, tube core body 711 is made of an aluminum thin plate, and has a honeycomb structure composed of tubular bodies 710 which are continuously connected to each other.
The diameter of tubular body 710 out of tubular bodies 710 which is disposed on an outer circumference of the ring shape of tube core body 711 is larger than the diameter of tubular body 710 which is disposed on an inner circumference of tube core body 711 and closer to center axis 790C than tubular body 710 disposed on the outer circumference of tube core body 711.
As shown in
According to Embodiment 5, as shown in
As shown in
Respective tubular wall surfaces 716 of tubular bodies 710 of tube core body 711 forming flat diaphragm 709 are disposed on a portion of flat diaphragm 709 fixed to inner circumferential fixing portion 708A of coupling cone 708 with adhesive 714. Tubular wall surface 716 is a wall surface of partition wall 710A which separates tubular bodies 710 from one another.
In tube core body 711 in accordance with Embodiment 5, the diameters of tubular bodies 710 gradually increase toward the outer circumference of the ring shape of tube core body 711 from the inner circumferential end of tube core body 711. That is, diameters of tube core bodies 711 gradually increase as the increase of distances to the tubular bodies from center axis 790C. This configuration, with respect to the plurality of tubular bodies 710 forming tube core body 711, the diameter of tubular body 710 out of tubular bodies 710 which is disposed on the outer circumference of tube core body 711 is larger than the diameter of tubular body 710 disposed on the inner circumference of tube core body 711. That is, the diameter of tubular body 710 disposed on the outer circumference is large. As shown in
This configuration in loudspeaker 790 according to Embodiment 5 can suppress distortion generated in reproduced sound. The reason will be detailed below.
In loudspeaker 790 according to Embodiment 5, flat diaphragm 709 includes tube core body 711 and plate bodies 712 disposed on upper and lower surfaces of tube core body 711. Tube core body 711 is composed of tube core bodies 711 continuously arranged in the surface direction. This configuration prevents flat diaphragm 709 per se from warping, accordingly suppressing distortion in sound reproduced by loudspeaker 790.
Next, coupling cone 708 includes inner circumferential fixing portion 708A positioned at an end thereof toward flat diaphragm 709. A portion of adhesive 714 which fixes flange portion 713 to plate body 712 disposed on the lower surface of flat diaphragm 709 flows into gap 715 having an acute angle and formed between plate body 712 disposed on the lower surface of flat diaphragm 709 and inner circumferential fixing portion 708A. Inner circumferential fixing portion 708A is fixed to plate body 712 disposed on the lower surface of flat diaphragm 709 with the portion of adhesive 714 flown into the gap. In a portion of flat diaphragm 709 fixed to inner circumferential fixing portion 708A of coupling cone 708, tubular wall surfaces 716 of tubular bodies 710 of tube core body 711 forming flat diaphragm 709 are disposed in a portion of flat diaphragm 709 fixed to inner circumferential fixing portion 708A of coupling cone 708. This configuration allows vibrations from coupling cone 708 to transmit to tubular wall surfaces 716 of tubular bodies 710 of tube core body 711, and hence, flat diaphragm 709 per se warps very little, accordingly suppressing distortion in sound reproduced by loudspeaker 790.
Further, vibrations from voice coil 707 smoothly transmit to coupling cone 708 having the conical frustum shape in which the portion of coupling cone 708 toward voice coil 707 has a smaller diameter while the portion of coupling cone 708 toward flat diaphragm 709 has a larger diameter. The vibrations smoothly transmitting to coupling cone 708 directly transmit to flat diaphragm 709 via flange portion 713 and inner circumferential fixing portion 708A fixed to flat diaphragm 709, hence generating little distortion in vibrations. Loudspeaker 790 according to Embodiment 5 exhibits the above-mentioned actions in comprehensive and combinations so that distortion in reproduced sound can be suppressed.
In the conventional loudspeaker disclosed in PTL 5, vibrations generated from the voice coil in the magnetic gap transmit to the flat diaphragm via the flange portion of the coupling cone while sound is output due to the vibrations of the flat diaphragm. The vibrations output from the voice coil transmit to the flat diaphragm via the flange portion of the coupling cone. Accordingly, large vibrations transmit to the flat diaphragm which corresponds to the flange portion. As a result, the flat diaphragm warps and generates large distortion in reproduced sound.
In loudspeaker 790 according to Embodiment 5, as shown in
An outer circumferential end of the ring shape of flat diaphragm 709 is mounted onto outer frame 720 via damper 719 such that flat diaphragm 709 can vibrate.
As shown in
In loudspeaker 790 according to Embodiment 5, diaphragm 721 for high frequency band sound is disposed in cylindrical container 717. Tube core body 711 of flat diaphragm 709 is not used for forming diaphragm 721. Flat diaphragm 709 which reproduces low frequency band sound and middle frequency band sound reproduces sound in almost all frequency bands at the time of reproducing actual voice or music. On the other hand, diaphragm 721 for high frequency band sound reproduces only extremely high-frequency sound. In the case that tube core body 711 is used for forming diaphragm 721 for high frequency band sound, tube core body 711 can hardly reproduce high frequency band sound due to its large weight. Accordingly, as described above, tube core body 711 used for forming flat diaphragm 709 is not used for forming diaphragm 721.
In Embodiment 1 to 5, terms, such as “above”, “below”, “upper surface”, “lower surface”, “upper portion”, and “lower portion”, indicating directions indicate relative directions determined based only on a relative positional relationship of constitutional elements of a loudspeaker, and do not indicate absolute directions, such as a vertical direction.
A loudspeaker according to the present invention reduces distortion, and hence, is applicable to various audio apparatuses.
Number | Date | Country | Kind |
---|---|---|---|
2014-176833 | Sep 2014 | JP | national |
2014-177638 | Sep 2014 | JP | national |
2014-177639 | Sep 2014 | JP | national |
2014-177640 | Sep 2014 | JP | national |
2014-177641 | Sep 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/004073 | 8/17/2015 | WO | 00 |