This application claims priority to Israel Application No. 225379 filed on 21 Mar. 2013, the entire contents of which are incorporated herein by this reference.
The subject matter of the present application is in the field of ballistic armor, in particular, in the field of slat armor.
Armored vehicle protection systems include means for withstanding the impact of shrapnel, bullets, missiles, or shells, and/or for neutralizing the triggering mechanism of weapons, such as Rocket Propelled Grenades (RPG). These protection systems are implemented in vehicles, such as tanks, Armored Personnel Carriers (APCs), aircraft, and ships, however may also be utilized to protect any stationary structures, such as a guard towers deployed around military bases, and army post, etc.
One example of a common weapon used against vehicles is an RPG, which is typically a shoulder-fired, anti-tank weapon system which fires rockets equipped with an explosive warhead.
Slat armor is a type of armor designed to protect against the above threats. The slat armor includes a rigid grid deployed around the vehicle at a predetermined distance from the vehicle, so as to allow the slat armor to come in contact with the threat before its impact with the vehicle's body. The distance between the grid and the body of the vehicle is known as the standoff.
According to a first aspect of the subject matter of the present application there is provided an armor module configured for providing ballistic protection against an incoming threat and comprising a ballistic armor unit, and a low density arrangement providing the entire armor module with an average density lower than that of water.
In accordance with one design embodiment, the low density arrangement can be constituted by a material having a density lower than that of water (hereinafter ‘low density material’). In this case, the amount of material can be chosen such that it is sufficient for maintaining the entire armor module (including the ballistic armor unit) afloat in water. Examples of materials which can be used for the low density arrangement include, but are not limited to, Nomex™ honeycomb, polycarbonate, aluminum foam (e.g. closed-cell aluminum foam having a density ranging between 0.2-5 gr/cc) and even organic materials such as homogenous or porous wood (e.g. plywood).
It should be understood that the above examples include both a material having, on its own, a low density (e.g. polycarbonate) and/or porous or foam structures (aluminum foam) having a low density but made of materials having, on their own, a density greater than that of water (e.g. aluminum). In particular, while the material itself has a density greater than water, its porous structure allows trapping a sufficient amount of air (or other light material) within the pours so as to provide it with an overall low density.
Under various examples of the above arrangement, any combination of the following can be provided:
According to another design embodiment, the low density arrangement can be constituted by a float module comprising a cavity filled with a fluid (gas or liquid) having a low density. It is understood that a fluid requires a closed container as it cannot be attached to the armor unit in the manner described above with respect to solid structures/materials.
According to a specific example, the float module can be constituted by an empty container having, or constituted by, a sealing cover configured for hermetically sealing the cavity and containing therein, among others, air. Alternatively, it may be filled with any other suitable fluid material capable of maintaining the armor module afloat within water (e.g. oil, various gasses etc.).
It is appreciated that filling the cavity with air may provide for the required functionality without increasing the cost of the armor module.
The float module can be incorporated within the armor module in at least one of the two following ways:
It is appreciated that when the armor module is mounted onto a body protected thereby (e.g. vehicle), the low density characteristics of the armor module can facilitate supporting the weight of the body when the latter is immersed in water. In particular, for vehicles, and specifically amphibious vehicles, this can pose an advantage when crossing through ponds, deep puddles, trenches etc. filled with water.
In addition, such an armor module can be particularly useful when being used to protect marine vessels, by similarly reducing their immersion in the water, which may also yield a reduction in drag forces.
According to various examples, the ballistic armor unit can be constituted any of the following:
In the case that the low density arrangement is a solid structure/material, the arrangement can be used as a substrate for attachment thereto, or placing thereon, of the layers and/or members of the ballistic armor unit.
In addition, if the armor layers of the ballistic armor unit are of a specific shape (e.g. not planar but corrugated, angled, wave-like etc.), the low density arrangement is such that at least one portion thereof can be cut, carved and/or shape to form a surface corresponding in shape and size to that of the armor layer/s.
Furthermore, in the case of separate armor members (e.g. slats) which require a specific mounting/supporting arrangement within the armor module, the low density arrangement can have at least one portion that can be cut, carved and/or shaped so as to form a surface that mounting and/or placing of the armor members thereon meets the specific requirement of the special arrangement.
Cutting, carving and/or shaping can be performed by a variety of operations, for example, laser cutting, water cutting, machine cutting (e.g. milling) and even initially casting or forming the material of the low density arrangement with the desired shape of the mounting surface (e.g. casting).
The armor layer and/or armor member can be securely mounted onto the low density arrangement using a variety of securing mechanism e.g. bolting, adhesion, Velcro etc.
In addition, the low density arrangement can be configured for convenient replacement of armor layers/members to provide a modular configuration, Specifically, the low density arrangement can comprise a first member having a first mounting surface and a second member having a second mounting surface, the arrangement being such that the armor layer and/or armor members are placed on the first mounting surface and then clamped between the first member and the second member.
It is appreciated that the arrangement of armor layer/s and/or armor member/s being clamped between the two members of the low density arrangement provides for a modularity of the armor module allowing quick replacement of the armor layer/s and/or armor members simply by unclamping the low density arrangement.
More specifically, if it is required, for example, to provide the armor module with a higher degree of ballistic protection, all that is required is merely unclamping the members of the low density arrangement, replacing the armor layer/s and/or armor member/s by ones having a higher ballistic protection and re-clamping the members of the low density arrangement.
The first member and the second member can be clamped so as to securely retain therebetween the armor layer/s and/or armor member/s. When fixing elements (e.g. bolts, pins etc.) are used to clamp the members of the low density arrangement, according to one example, such fixing elements can either pass only through the members of the low density arrangement. According to another example, such fixing elements can also pass through the armor layer/s and/or armor members, thereby further securing their position within the armor module.
It is to be understood that the first mounting surface and the second mounting surface can be shaped and sized to correspond to respective first and second surfaces of the armor layer/s and/or armor member/s, so that when the members of the low density arrangement are clamped to one another, the armor layer/s and/or armor member/s are retained within the low density arrangement without unnecessary air gaps/spaces.
In accordance with a particular example in which the armor layer/s and/or armor member/s are of planar shape or in sheet form, the first and second mounting surfaces can be a mirror image of one another (since the respective first and second surfaces of the armor layer/s and/or armor member/s are also a mirror image of one another).
In accordance with one design embodiment, when separate armor members are used (e.g. a slat armor), the first member of the low density arrangement can be constituted by a plurality of consecutive sub-surfaces angled to one another. In particular, the sub-surfaces can be cut to provide the first mounting surface with a saw-like configuration (i.e. having peaks and troughs).
The armor members can be mounted onto the saw-like mounting surface in any of the following configurations:
In accordance with another design embodiment, in the case of armor members (slats), the ballistic armor unit can comprise a plurality of longitudinal slats, being supported by two respective ends thereof by at least two support members.
The slats may be detachably mounted onto the support members so that any individual slat can be removed from the ballistic armor unit for the purpose of maintenance, replacement, storage and transportation, and even simply for reducing the weight of the armor module itself. It is noted that replacement of the slat can be performed, for example, for the purpose of replacing a damaged/worn-out slat by a similar, new slat or for the purpose of replacing with a slat having different ballistic capabilities.
Such an arrangement allows for a modular construction providing the user to modify the armor module according to ballistic requirements, transportation requirements, maintenance etc.
According to one example, the support members can be formed with individual slots extending therealong allowing each of the slat to be slidingly received within the support members. Under this configuration, each of the slats can be slidingly removed, along the longitudinal direction thereof, from the armor module within affecting any of the other slats mounted therein.
In the above example, armor slats can be slidingly inserted in a first mounting direction extending between the support members or alternatively, by slidingly inserted in a direction extending perpendicular to the first mounting direction. In the latter case, the slots formed in the support members can have an open end through which the armor slats are inserted.
In addition, the armor slats can be formed with auxiliary slots configured for being interlaced with the slots of the support members when the armor slats are mounted thereon.
According to another example, the support members can be formed with a longitudinal rail configured for receiving therein the ends of the slat so that the slats are subsequently slidingly mounted onto the support members. In this case, in order to remove a single slat, all the slats located above/below it should first be removed. Upon removal of the desired slat, the other slats can be placed back into the support members in the same manner.
According to a specific design, the armor module can comprise a ballistic armor unit as described in one of the above two examples (i.e. slats spaced from one another and held by support members), wherein the spaces between the slats are filled with the low density arrangement (either by mounting or by injection). Under such an arrangement, in order to remove an individual slat, it is required to remove, together therewith, those portions of the low density arrangement immediately attached thereto.
The mounting of the armor module onto a body to be protected can be performed by manner of suspension, as previously described in
In mounting of the armor module onto a body to be protected (not necessarily by the above mentioned arrangement), the stand-off distance between the armor module and the body to be protected can be modified in accordance with operational requirements.
In particular, the stand-off distance between the armor module and the body to be protected can be modified at least by one of the following arrangements:
In accordance with a particular design of the ballistic armor unit, the slats can be configured for being dynamically received within the armor unit so as to allow modification of the angle thereof with respect to an expected impact direction, in order to allow adjustment of the armor unit to meet ballistic threats of different characteristics.
In addition, the arrangement can be such that, in operation, the slats assume a first angle with respect to the expected impact direction whereas during transportation of the armor module (e.g. shipping), the slats can assume a second, smaller angle facilitating a more compact configuration of the armor module.
In general, since each threat requires a unique level of ballistic protection, the ballistic armor unit can be such that the angle of the slat with respect to the expected impact direction, the distance of the armor module from the body to be protected and the orientation of the module with respect to the body can all be modified in order to meet the unique ballistic requirements of the incoming threat.
The armor slat can be in the form of a generally rectangular element of ballistic material and have a strike edge configure, when mounted onto the body, facing the expected impact direction and a rear edge facing the body to be protected.
The strike edge of the armor slat can be shaped in order to provide better ballistic capability as well as reducing the weight of the armor slat. In particular, the strike edge can be formed with cut-outs providing the strike edge with a saw-like shape.
The slats of the ballistic armor unit can be made of a ballistic material such steel. In particular, the slats of the presently disclosed subject matter can be made of any of the following:
It is appreciated that some of the above materials, though having a high hardness, are also brittle. However, the design of the armor module and the support provided to the slats by the low density material allow the use of such materials for the slats, compensating for their high brittleness.
Additional materials from which the slats may be made can be HHS steels (470-540 Brinell), Aluminum, magnesium, titanium, ceramic (tiles, pellets and monoliths) and any multi-layer combination of the above materials. In addition, when a laminated panel is produced from a combination of the above materials, additional materials can be introduced into the laminate such as plastic, polycarbonate, Perspex etc.
The above described slats of the ballistic armor unit can be provided with multi-hit capabilities by at least the following features:
In accordance with another aspect of the subject matter of the present application there is provided a slat armor module configured for protecting a body against a threat having an anticipated impact direction, comprising a plurality of armor slats extending along a first direction and spaced apart along a second direction perpendicular to the first direction, and a low density arrangement comprising at least a first surface constituted by a plurality of consecutive sub-surfaces angled to one another, wherein each of said slats is attached to one of the sub-surfaces.
In accordance with still another aspect of the subject matter of the present application, there is provided a method for the production of a slat armor module of the previous aspect, said method comprising the steps of:
According to yet another aspect of the subject matter of the present application there is provided a slat armor module configured for protecting a body against a threat having an anticipated impact direction, said slat armor comprising a plurality of slat units, each extending along a first longitudinal direction, the units being spaced apart along a second direction perpendicular to the first direction, the armor module comprising at least one support arrangement wherein the each of the slats is individually detachable from the at least one support arrangement.
According to still another aspect of the subject matter of the present application there is provided a slat armor module configured for protecting a body against a threat having an anticipated impact direction, said slat armor comprising a plurality of slat units, each extending along a first longitudinal direction, the units being spaced apart along a second direction transverse to the first direction, each of a majority of slats being provided with a coating made of a polymeric material.
The polymeric material of the coating can be made of thermoplastic/thermoset polymers such as polyurea, polyurethane, Nomex™ and/or ballistic fabrics such as Aramid, fiberglass, polyethylene, polypropylene.
It is appreciated that the covering of the slats with the above material provide for an increase in the multi-hit capability of the slats, thereby increasing the efficiency of the slat armor.
According to a further aspect of the subject matter of the present application there is provided a slat armor module configured for protecting a body against a threat having an anticipated impact direction, said slat armor comprising a plurality of slat units, each extending along a first longitudinal direction, the units being spaced apart along a second direction transverse to the first direction, said armor module further comprising a ballistic protective layer interposed between the slats and the body to be protected, configured for serving as a spall liner.
In order to better understand the subject matter that is disclosed herein and to exemplify how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Attention is first drawn to
Turning now to
In the armor module 1′ shown in
The arrangement is such that the volume of the low density arrangement 30 is sufficient for providing the entire armor module 1′ with an average density which is lower than that of water. The low density material can be made of a variety of light-weight materials such as Nomex™ honeycomb, polycarbonate, aluminum foam and even organic materials such as homogenous or porous wood (e.g. plywood).
It should be understood that the above examples include both a material having, on its own, a low density (e.g. polycarbonate) and/or porous or foam structures (aluminum foam) having a low density but made of materials having, on their own, a density greater than that of water (e.g. aluminum).
In connection with the above, it is appreciated that since what provides the armor module with the float characteristics is the light-weight material 32, the encapsulation of the supports 20 and slats 10 and the light-weight material 32 is optional, so long as they are attached to one another or at least held together in a certain manner to function as a single body.
With reference being made to
The arrangement is such that the amount of air trapped within the cavity of the sealed container 40′ is sufficient for maintaining the entire armor module 1″ afloat within water. In addition, it is noted that the container 40′ should be hermetically sealed or provided with a sealing external layer, as opposed to the previous example in which the cover 40 is optional.
With additional reference to
Turning now to
However, the low density arrangement is in the form of a plurality of filler members 30 interposed between two neighboring slats 10. The filler members 30 are also made of a light-weight material 32 having a density lower than that of water.
It is appreciated that the filler members 30 can be formed individually and thereafter placed between the slats 10 during or after assembly of the armor module. Alternatively, the slat armor unit 2 can be assembled and thereafter, the filler material can be injected to fill the spaces between the neighboring slats 10.
Attention is now drawn to
It is observed that the casing 120 is formed with two side walls 122 supporting the slats. The side walls 122 are formed with a plurality of slots 124 configured for slidingly receiving therethrough the first slats 112 and the second slats 114.
The arrangement is such that in mounting, the slats 112, 114 can be slid through the slots 124 into the casing 120 so as to be supported between the side walls 122. Furthermore, in the event of damage to one of the slats, maintenance requirements, shipping requirements etc., any one of the slats 112, 114 can be individually and slidingly removed from the casing 120 simply by sliding it out of the casing through the slots 124, along the direction of the slat.
Turning now to
Each support member 220 is in the form of a rectangular panel 222 formed with a plurality of open-ended slots 224 oriented at an angle to the expected incoming direction R and configured for receiving therein a portion of a slat 210. In addition, each of the support members 220 comprises attachment portions 226 configured for attachment of the armor module 202 to the body to be protected (not shown).
The slats 210 are in the form of rectangular panels 212, each being formed with several open-ended slots 214 configured for engaging the support members 220 so as to receive therein a portion of the support members 220. In this manner, when the slats 210 are mounted onto the support members 220, the two become interlaced, the slot of each receiving therein a portion of the other.
As in the previous example, in case it is required to remove any of the slats they can be simply slidingly detached from the support members, in a direction transverse to the vertical direction R and replaced/removed without affecting any of the other slats. In particular, and contrary to the example shown in
With particular reference being drawn to
Each of the edges is formed with cut-outs to provide it with a saw-like surface 218. The saw-like surface provides the slat 210 with increased ballistic capability as well as with reduced weight with respect to a rectangular panel.
It is observed that each of the edges 216 is formed with the saw-like surface 218, wherein, upon damage to one of the edges, the slat 210 can be slidingly removed from the support members 210 and reversed so that the damaged strike edge becomes the rear edge and the intact rear edge now becomes the strike edge.
Turning now to
It is appreciated that any other solid layer, having similar ballistic characteristics as those of the external wall of the body B may be interposed between the armor module 202 and the body B. Examples can be a steel plate, a ceramic armor plate or panel etc.
Turning now to
In particular, the adjustment arrangement 360 is in the form of a parallelogram mechanism comprising a pair of longitudinal rails 362a, 362b arranged parallel to one another and connecting members 364 articulating the longitudinal rails 362a, 362b to one another via respective attachment ports 364a, 364b.
The ports are also used for articulation of the mechanism 360 to the slats 310 such that ports 364a of the first rail 362a are configured for attachment to a rear portion of each of the slats 310 whereas the ports 364b of the first rail 362b are configured for attachment to a front portion of each of the slats 310.
Thus, the slat armor unit 302 can be interposed between a maximally open position shown in
It is observed that in the maximally open position, there extends a maximal gap between the slats 310 so that in view from the expected impact direction a maximal portion of the body to be protected can be seen through the slats, whereas in the closed position (
Turning now to
The distance adjustment mechanism 480 is in the form of a pantograph mechanism having a plurality of scissor-hand pairs 482 & 482, 486 & 488, operating together to allow displacing the mounting plate 470 to and from the external wall of the body to be protected B.
In particular, each hand of such scissor-hand pair is articulated at one end thereof to the body to be protected B and at an opposite end thereof to the mounting plate 470, and comprises a hinge 483, 487 configured for allowing the hands of the scissors to expand and retract.
It is observed that in the open position shown in
It is appreciated that such a distance adjustment mechanism can be extremely useful during transportation of the armor module 402 and also in operation, allowing greater maneuverability for vehicles on which the armor module is mounted (e.g. allowing them to pass in narrow places etc.).
Attention is now drawn to
Such a design of the slat, and specifically when combined with a dynamic angle adjustment system as shown in
Finally, reference is now being made to
The first substrate member 630a is used for attachment thereto of individual slats 610, which are positioned on the first sub-surfaces 634a. The sub-surfaces 634a are cut and shaped so as to meet the requirements of the special arrangement of the slats 610 so that, when positioned thereon, the slats 610 assume their required orientation.
The slats 610 can be affixed to the first substrate member 630 by in various manners including adhesives, securing means, bolts etc. However, in the present example, in addition, the armor module comprises a second substrate member 630b formed with a saw-like surface which is a mirror image of the surface of the first substrate member 630a.
Thus, once the slats 610 are placed on the first sub-surfaces 634a, the second substrate member 630b can be clamped to the first substrate member 630as, thereby securely clamping the slats 610 into place.
Those skilled in the art to which this invention pertains will readily appreciate that numerous changes, variations, and modifications can be made without departing from the scope of the invention, mutatis mutandis.
Number | Date | Country | Kind |
---|---|---|---|
225379 | Mar 2013 | IL | national |