1. Field of the Invention
A heat exchanger assembly, and more specifically, an assembly including louvered fins.
2. Description of the Prior Art
Louvered air performance is critical to compact heat exchangers (such as radiator, heater, condenser, and evaporator) total heat transfer rate for automotive and STAC applications. A typical heat exchanger with a louvered air design includes a plurality of tubes extending parallel to one another and a fin extending back and forth between each pair of adjacent tubes. Typically, each fin defines at least one louvered portion having a plurality of louvers extending parallel to one another. The fin has legs extending between the tubes and a end portion interconnecting two adjacent legs to define an tube space.
Due to the manufacturing limitation, a typical height of the louvered portion is about 75%-85% of the total air center height, or total fin height. This manufacturing limitation has led to “un-louvered regions” in both end of the air center. In these two regions, the airflow is un-disrupted by the louver, airflow velocity is high, and the thermal boundary layers are thick.
US Application 2007/0012430 discloses an upper manifold extending along an upper centerline and a lower manifold extending along a lower centerline. The manifolds are spaced form one another with the centerlines being parallel to each other. The upper manifold defines a plurality of upper tube slots being spaced along the upper centerline. The lower manifold define a plurality of lower tube slots being spaced along the lower centerline and aligned with the upper tube slots.
A plurality of tubes have flat sides and extend between ends thereof in the upper and lower tube slots and are parallel and spaced from one another. A plurality of fins each extend back and forth between and along the flat sides of the adjacent ones of tubes forming a continuous serpentine path. Each of the fms include a plurality of legs that extend between the tubes and a plurality of end portions that extend along the tube sides adjacent ones of the tubes to define the serpentine path. The adjacent legs are connected by one of the end portions along one tube and are open to the opposite adjacent tube to define a tube space between the adjacent legs along the flat sides of the tubes.
Although the current assemblies are sufficient for their intended purposes, there remains a need for a louvered air center heat exchanger that improves heat transfer.
The invention provides for a plurality of spaced projections extending inwardly from the end portions of the fins between the legs for interrupting air flow. The invention disrupts the airflow at both ends of the tube space to the same level as that of the air in the louvered region of the tube space thereby breaking airflow and thermal boundary layers and improving total heat transfer of the heat exchanger.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description and the accompanying drawings that set forth an exemplary embodiment wherein:
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a heat exchanger assembly 20 is generally shown in
An upper manifold 22 extends along an upper centerline 24 and a lower manifold 26 extends along a lower centerline 28. The manifolds 22, 26 are spaced form one another with the centerlines 24, 28 being parallel to each other. The upper manifold 22 defines a plurality of upper tube slots 30 which are equal distantly spaced along the upper centerline 24. The lower manifold 26 defines a plurality of lower tube slots 32 which are equal distantly spaced along the lower centerline 28 and aligned with the upper tube slots 30.
A plurality of tubes 34 having flat sides 36 extend between the ends thereof in the upper and lower tube slots 30, 32 and are parallel and spaced from one another. The tube sides 36 are not limited to being flat. For manufacturing purposes, the tube sides 36 may be extruded. Each of the tubes 34 include a partition 38 that extends between the ends in the slots 30, 32 to define a pair of fluid passages 40 in each of the tubes 34 for conveying refrigerant. A plurality of fins 42, generally indicated in
Each of the legs 46 include at least one set of louvers 52, 54 that extend diagonally outwardly from the legs 46. The Louvers include a set of first louvers 52 that extend between adjacent tubes 34 on one side of the partition 38 and are angled. away from the partition 38. A set of second louvers 54 extend between the adjacent tubes 34 on the other side of the partition 38 and are angled in the opposite direction from the partition 38 for directing air in opposite directions from the.partition 38 of each of the tube 34. The legs may define more than two sets of louvers. Each of the tubes 34 include a plurality of spaced protrusions 56 extending outwardly from the flat sides 36 of the tubes 34 into the tube space 50 between the legs 46 for interrupting air flow through the tube space 50. The protrusions 56 protrude from both sides of each of the tubes 34 for disposition in the tube space 50 between the legs 46.
A plurality of spaced projections 58 extend inwardly from the end portions 48 of the fins 42 between the legs 46 for interrupting air flow. The projections 58 may have a conical shape, as shown in
The velocity of the air through the tube space 50 varies along the center height of the tube space 50.
It is to be understood that “upper” and “lower” as used in the present application are arbitrary, inasmuch as a heat exchanger in accordance with the present invention can be oriented in different directions. Therefore, “upper” and “lower” should be understood to be used with reference to the orientation of the manifolds and tubes as shown in the drawings herein, and is not limiting the orientation of the manifolds or tubes in actual use.
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/019,978 for a LOUVERED AIR CENTER WITH VORTEX GENERATING EXTENSIONS FOR COMPACT HEAT EXCHANGER, filed on Jan. 9, 2008, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61019978 | Jan 2008 | US |