The present disclosure is directed to systems and methods for detecting when a product container is empty or nearly empty.
Product dispensers may be used to dispense a wide variety of products. In one example, cleaning chemicals, in the form of solutions, powders, solids or pastes are dispensed out of product containers to be used for cleaning a wide variety of objects, such as laundry or dishes. In many industrial or commercial applications, product dispensers are housed in locations away from employees, making monitoring the amount of chemical remaining in the product dispenser difficult. Previous systems have been designed to detect the amount of chemical remaining in a dispenser by means such as inductance sensing, float switches, flow meters, optical refraction systems and conductivity probes.
In general, the invention is directed to a method for detecting when a product is exhausted or nearly exhausted, and providing a notification of the product status to a user. In one embodiment the invention is directed to a system comprising a load cell having a fixed end and a free end, wherein the free end of the load cell deflects at a first rate of distance per unit load when a load less than a critical load is positioned to be weighed by the load cell, and a load cell bracket positioned such that the free end of the load cell contacts the load cell bracket when a load substantially equal to or greater than the critical load is positioned to be weighed by the load cell, wherein the load cell deflects at a second rate of distance per unit load when the load cell is in contact with the load cell bracket, the second rate of distance per unit load being less than the first rate of distance per unit load. The load cell may generate product weight information associated with an amount of a product remaining in a product container. The system may also include a controller that determines an amount of the product dispensed from the product container during a dispensing cycle based on the product weight information received from the load cell. The controller may also generate an out-of-product notification when the determined amount of product dispensed is substantially equal to zero. The controller may also determine the amount of product remaining in the product container after a dispensing cycle based on the product weight information received from the load cell. The controller may also generate a low product notification when the determined amount of the product remaining is less than a threshold weight.
As another example, the invention is directed to a method comprising dispensing a product from a product container during at least one dispensing cycle, determining whether a product weight remaining in the product container after the at least one dispensing cycle is less than a critical weight, entering an out-of-product mode when the product weight is less than the critical weight and entering a proof of delivery mode when the product weight is not less than a critical weight. The method may also include generating a notification based on a determined amount of product dispensed during the dispensing cycle. The method may also include generating a low product notification when the determined amount of product dispensed is less than a low product threshold amount. The method may also include generating an out-of-product notification when the determined amount of product dispensed is substantially zero. The method may also include generating a proof of delivery notification when the amount of product dispensed during the at least one dispensing cycle satisfies a proof of delivery threshold.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features and advantages of the invention will be apparent from the description and drawings, and from the claims.
The system of the present invention detects when a product container from which a product is dispensed is empty or nearly empty, and provides a notification of the product status. The system of the present invention includes a load cell and a load cell bracket that enables weight measurements of product containers over a wide weight range using a single load cell. The system allows loads greater than the critical load to be positioned to be weighed by the load cell without damage to the load beam or the strain gauge. The load cell deflects at a first rate of distance per unit load when a load less than a critical load is positioned to be weighed by the load cell. The load cell bracket is positioned such that the free end of the load cell contacts the load cell bracket when a load substantially equal to or greater than a critical load is positioned to be weighed by the load cell. The load cell bracket may prevent the load cell from further deflection, or it may permit deflection of the load cell at a second rate of distance per unit load when the load cell is in contact with the load cell bracket. The system may further generate an out-of-product notification when the amount of product dispensed is substantially equal to zero, a low product notification when the amount of the product remaining is less than a threshold weight or a proof-of-delivery notification.
Load cells have a measurement precision that is limited by their maximum load capacity. For example, a load cell with a large maximum rated load may have low precision for, and thus be unable to accurately weigh, very small loads. For low and out-of-product alarms systems, it is desired to have highly precise measurements of the remaining product as the product container approaches empty. If the weight of the full product container is large, a load cell with a large capacity, and thus low precision, is needed to prevent possible damage to the load cell. For example, many product containers in institutional cleaning facilities contain multiple gallons, and thus multiple kilograms, of liquid when full, whereas the desired measurement precision as the product container nears exhaustion is on the gram scale. Therefore, a direct measurement system utilizing a load cell(s) must be able to support a large load when the product container is full and provide sufficient measurement precision as the product container nears exhaustion to ensure accuracy of low or out-of-product detection.
Additionally, in many industrial, institutional and commercial applications the product dispensers are located in difficult-to-access locations. The cleaning product is then transferred through pipes or tubes to the location of its use, for example by a washing machine, dish machine or chemical product dispenser. In certain applications, for example commercial dish machines, regulatory requirements may call for proof-of-delivery of a sanitizing solution for health and safety reasons.
A load cell 12 determines the amount (e.g., the weight) of the product remaining in the product container 15. Multiple load cells may also be used. A product holder 14 supports product container 15 which in turn is supported by a free end 121 of load cell 12. Load cell 12 includes a beam (indicated generally by reference numeral 12) that deforms when a load is applied. Free end 121 of the beam deflects at a rated distance per unit load. An electronic strain gauge (not shown) is typically bonded onto the load beam. The strain gauge detects deformation of the load beam and generates corresponding electrical signals which may then be used to determine the weight of the load.
Product holder 14 may be any suitable shape or size depending upon the product container 15 to be supported. Product holder 14 is positioned to be supported by the free end 121 of load cell 12, so that the weight of product holder 14 and any object, such as a product container 15, supported by product holder 14 may be measured. In the embodiment shown in
Load cell 12 measures the combined weight of the product holder 14, product container 15 and product inside the container 15. System 10 may be calibrated to take into account the weight of the product holder 14 and empty product container 15 when determining the amount (weight) of product remaining in the product container 15 or dispensed during a dispensing cycle. Thus, for purposes of the present application, although for ease of discussion the present application will refer to measuring the weight of the product remaining in product container or the amount of product dispensed during a dispensing cycle, it shall be understood that the system may be calibrated in various ways to either zero out the weight of the product holder 14 and empty product container 15 or to take these into account during processing when determining the weight of the remaining product.
Referring again to
When no load is applied to the load cell 12, a gap 13 separates the load cell 12 and the load cell bracket 11 at free end 121. A magnified view of gap 13, load cell 12 and load cell bracket 11 is shown and described herein with respect to
The size of gap 13 may be chosen such that when a load substantially equal to a predetermined critical load is placed on load cell 12, the free end 121 of load cell 12 contacts load cell bracket 11. The critical load may be chosen to be substantially equal to the maximum rated load of load cell 12. However, the critical load may be chosen to be either less than or more than the maximum rated load of load cell 12, and gap 13 sized accordingly, as described below.
Load cell bracket 11 is designed to prevent damage to load cell 12 from excessive deflection when load cell 12 is subjected to loads greater than its maximum rated load. For example, load cell bracket 11 may serve as a physical stop which prevents load cell 12 from deflecting past the point at which damage could occur. In this way, a single load cell 12 and load cell bracket 11 are able to measure a wide range of product sizes. For example, if load cell 12 is rated for 5 kg, load cell bracket 11 prevents load cell 12 from deflecting beyond its maximum rated deflection when the combined weight of the product, product container 15 and product holder 14 is above 5 kg. Thus, a 10 kg, 25 kg, 50 kg or other product container 15 greater than 5 kg may be placed on load cell 12 without damaging load cell 12. In this example, any time the remaining product is above 5 kg, load cell 12 will measure the weight to be 5 kg due to the physical stop and resulting limited deflection provided by load cell bracket 11. Once the remaining weight of the product drops below 5 kg, load cell 12 lifts off load cell bracket 11 and begins to accurately measure the weight of the remaining product. In this way, system 10 will obtain accurate weight measurements when the amount of product in product container falls below 5 kg and is therefore able to determine whether product container 15 is running low on product or is out of product.
In another example, contact between load cell 12 and load cell bracket 11 may function as a switch. For example, contact between load cell 12 and load cell bracket 11 may close the switch. This may occur when a product container 15 containing sufficient product such that the weight of the product, product container 15 and product holder 14 is greater than the critical load is placed on product holder 14. The switch would then open when the weight of the product, product container 15 and product holder 14 is less than a critical load, at which point load cell 12 ceases to contact load cell bracket 11. The opening of the switch may initiate a weight measurement algorithm.
In another example, load cell bracket 11 may permit further deflection of the load cell 12 when a load greater than the critical load is placed on load cell 12. In other words, the combined load cell 12/bracket 11 that results when load cell 12 comes into contact with load cell bracket 11 may further deflect. Depending on its rating, a load cell 12 may deflect from 150% to up to 300% of its rated deflection without damaging the load cell strain gauge. The maximum distance the load cell 12 is able to deflect without damage is defined as its maximum deflection.
When bracket 11 allows for combined deflection of the load cell 12 and bracket 11, the output of load cell 12 may not accurately reflect the weight of the product when load cell 12 is in contact with load cell bracket 11. Because the rate of deflection per unit load may be less than when load cell 12 is supported by load cell bracket 11, the deflection distance will no longer represent the same weight as when load cell 12 is not in contact with load cell bracket 11. For example, a load cell 12 with a rated load of 5000 g may have a rated deflection of 0.040 inches, thus having a rate of deflection of 0.0000080 inches/gram. When a load of 5000 g is placed on load cell 12, it will deflect 0.040 inches. When a load of 2500 g is placed on load cell 12, load cell 12 will deflect 0.020 inches. However, when a load of 7500 g is placed on load cell 12, load cell 12 will contact load cell bracket 11, and the rate of deflection of the combined load cell and load cell bracket will be less than the rate of load cell 12 alone, and the total deflected distance of load cell 12 contacting load cell bracket 11 will be less than if load cell 12 alone received a load of 7500 g. Thus, the load measured by load cell 12 may be less than the true load of 7500 g.
Alternatively or in addition, a threshold 24 may be set below which the system generates a low product notification. Threshold 24 may be any suitable threshold weight below which it is desired to generate a low product notification. Additionally, any suitable method of providing the low product notification may be used, such as audible notifications, visual notifications, text messages, pages, e-mails and the like, as described below in reference to
To obtain the actual amount of product dispensed during the contact region, the reduced rate of deflection experienced by load cell/bracket combination may be calibrated. For example, the reduced rate of deflection experienced by load cell/bracket combination may be determined by calibrating load cell 12 and load cell bracket 11 using a range of loads that are less than would cause load cell 12 and load cell bracket 11 to deflect a distance that would damage load cell 12. The reduced reading of load cell 12 when contacting load cell bracket 11 may then be corrected for and an accurate measurement of the load may be obtained throughout the operable range of load cell 12 and load cell bracket 11. However, it shall be understood that this may not be necessary in all embodiments and that the invention is not limited in this respect.
In certain applications, accurate weight measurement may only be necessary when the amount of product remaining in product container 15 is relatively small, i.e., when product container 15 is approaching empty. Thus, any inaccuracy of the load cell 12 measurement when load cell 12 is contacting load cell bracket 11 may not be of concern. In these applications, the output of load cell 12 when it is contacting load cell bracket 11 may be used to provide proof-of-delivery. That is, if load cell 12 measures any change in the combined weight of the product, product container 15 and product holder 14 after a dispense request, the change may be used as proof that some amount of product was dispensed from the product container.
Regardless of whether load cell bracket 11 prevents further deflection of load cell 12, or reduces the rate of deflection of the load cell, the maximum load that may be placed on load cell 12 without potential damage is increased. Additionally, in both described cases, load cell 12 lifts off load cell bracket 11 when the load is less than a critical load. Thus, load cell 12 maintains its accuracy and precision at loads less than or equal to the critical load.
The load cell apparatus shown in
System 70 may also include one or more visible indicators 83 that display status information for system 70. Visible indicators 83 may be any suitable illumination source. One preferred illumination source is an LED. Visible indicators 83 may be configured to indicate the status of one or more of several different parameters. As one example, a flashing green LED may indicate the system is active, i.e. a product container is staged on product holder 74. The green LED may further indicate that the product container is filled with ample product such that the combined weight of the product, product container and product holder 74 is causing load cell 12 to deflect and contact load cell bracket 51.
In another example, another notification (such as a slowly flashing amber LED or other notification, for example) may indicate system 70 is in a mode in which product is staged and ready for a dispense request. The slowly flashing amber LED may further indicate that the combined weight of the product, product container and product holder 74 is such that load cell 12 is not in contact with load cell bracket 51. In this example, the slowly flashing amber LED indicates that load cell 12 is operating in its specified range.
In yet another example, a continuous amber light may indicate that the product container is nearly empty. The continuous amber light may be initiated once the combined weight of the product, product container and product holder 74 drops below a threshold value. This threshold value may be the critical load, i.e., when load cell 12 lifts off of the load cell bracket 51. Alternatively, the threshold value may be another value entered by a user, or a preset value above the zeroed weight of the product holder and a substantially empty product container.
In yet another example, a flashing red LED may indicate that product failed to dispense during a dispense request, and that the product is exhausted.
System 70 also includes a cord 86 and plug 87 for connecting to a power source, such as a wall outlet. Additionally, system 70 may include an outlet 85, which allows more than one system 70 to be connected in series. When more than one system 70 is connected in series, only one auditory notification may be generated if any of the product containers are out-of-product. Visible indicators 83 may then be used to display which individual system 70 is out-of-product.
System 70 may also include a switch 84, which may be used to toggle system 70 between providing low product notifications and out-of-product notifications, or both.
Controller 141 determines any of several parameters based on the weight information received from the load cell 12. For example, controller 141 may determine the amount or weight of the product remaining in the product container, the amount of product dispensed during a dispensing cycle, whether the amount of product remaining in the product container is above or below a predetermined threshold value, whether the amount of product remaining in the product container satisfies a low product condition, and/or whether the amount of product remaining in the product container satisfies an out-of-product condition. Controller 141 may also determine if load cell 12 is in contact with load cell bracket 11. Controller 141 may also initiate notifications to be displayed on display 144, such as the visible indicators described above in reference to
Initially, the system may optionally be zeroed (not shown). The zeroing may be accomplished by weighing an empty product container and setting the controller to use the weight of the empty product container and/or product holder as its reference point. The zeroing may take place at the factory or after installation of the system at the site where it will be used. In yet another alternative, the controller may self-calibrate. In this alternative embodiment, after a product container is substantially empty of product and the controller senses no weight change, the weight of the substantially empty product container and/or product holder is used as the reference weight.
A product container containing product is loaded onto the product holder (91). The load cell deflects an amount corresponding to the weight of the product container at this time; any subsequent dispensing event will remove product from the product container and lighten the load on the load cell. Controller 141 receives the current product weight information from the load cell and compares it to the critical weight (92). If the product weight is not less than the critical weight (92), the load cell will deflect a sufficient distance to contact the load cell bracket. The system enters proof of delivery mode (93). The system enters standby (94) and waits for a dispense request (96).
Upon receipt of a dispense request (96), the system executes a dispense cycle (98). After completion of the dispense cycle, controller 141 determines either (1) that some amount of product was dispensed during the dispensing cycle based on the product weight information received from the load cell; or (2) the actual amount of product dispensed during the dispensing cycle (99). In the first example, the system is able to confirm that product was dispensed but is not able to accurately determine the actual amount of product dispensed. In the second example, the system may be calibrated to map the reduced rate of deflection that occurs when the load cell is in contact with the load beam with the actual weight of the remaining product.
To determine the amount of product dispensed (99), controller 141 receives the current product weight information from the load cell after completion of the dispense cycle and subtracts the corresponding current product weight from the previous product weight. Although as described above these may not correspond to the actual weight of product dispensed or to the current weight of the product remaining, any measured weight loss will constitute proof of delivery in that weight lost from the product container is evidence that product was dispensed. Controller 141 may then generate a proof of delivery message (100). Controller 141 then compares the current product weight with the critical weight (92). If the current weight is still greater than the critical weight, controller 141 remains in proof of delivery mode as just described.
If, on the other hand, the current product weight is less than the critical weight (92), the system enters low/out-of-product mode (101). As with proof of delivery mode, in low/out-of-product mode, controller 141 enters standby (102) and waits for a dispense request (104). Upon receipt of a dispense request (104), the controller initiates a measurement program to determine the amount of product dispensed during the dispensing cycle and the weight of the remaining product. The measurement program may optionally be preceded by a programmable delay. The delay may range from 1 to 300 seconds. The length of the delay may depend on the amount of product to be dispensed, the rate the product is dispensed and the like. This delay may also be implemented in proof of delivery mode. After the optional programmable delay, the measurement program commences and determines if any product was dispensed during the dispense cycle (106).
If no weight was lost during the dispense cycle, the controller determines that no product was dispensed and generates an out-of-product notification (112). The out-of-product notification may be any suitable visual and/or auditory notification, alert or alarm. The out-of-product notification may also be a text message displayed on an LCD or other display on user interface 142 (shown in
If the controller is configured to automatically re-zero itself, the re-zeroing may occur upon the generation of the out-of-product notification before a new product container is loaded into the product holder.
If the controller determines that the weight has changed during the product dispense cycle and that product has therefore been dispensed (106), the controller proceeds to determine if the weight of the remaining product satisfies a low product condition (108). The low product condition may be a threshold weight manually input by a user or service technician via the user interface or it may be a preprogrammed value. If the weight of the remaining product satisfies the low product condition, the controller generates a low product notification (110). The low product notification may be any suitable visual and/or auditory notification, alert or alarm. The low product notification may also be a text message displayed on an LCD or other display on user interface 142 (shown in
If the controller determines that the remaining weight of the product does not satisfy the low product condition (108), the controller determines that there is sufficient product remaining in the product container and the system returns to standby (102) and awaits another dispense request (104).
In the case of visual or auditory notifications, the out-of-product notification (112) and the low product notification (110) may be distinct signals between which a user may easily discriminate. For example, the low product notification may be one color LED while the out of product notification may be a different color LED.
Initially, the system may optionally be zeroed (not shown). The zeroing may be accomplished by weighing an empty product container and setting the controller to use the weight of the empty product container and/or product holder as its reference point. The zeroing may take place at the factory or after installation of the system at the site where it will be used. In yet another alternative, the controller may self-calibrate. In this alternative embodiment, after a product container is substantially empty of product and the controller senses no weight change, the weight of the substantially empty product container and/or product holder is used as the reference weight.
A product container containing product is loaded onto the product holder (91). The load cell deflects an amount corresponding to the weight of the product container at this time; any subsequent dispensing event will remove product from the product container and lighten the load on the load cell. Controller 141 receives the current product weight information from the load cell and compares it to the critical weight (92). If the product weight is not less than the critical weight (92), the load cell will deflect a sufficient distance to contact the load cell bracket. The system enters contact mode (122). In contact mode, the product weight information obtained by the load cell is not indicative of the actual weight of remaining product. This is because the load cell bracket prevents further deflection of the load cell. While in contact mode, the system does not process any product weight information received from the load cell. The system essentially waits until the product weight is less than the critical weight to enter the low/out-of-product mode (101). The system enters standby (94) and waits for a dispense request (96).
Upon receipt of a dispense request (96), the system executes a dispense cycle (98). After completion of the dispense cycle, controller 141 compares the current product weight information and subtracts the corresponding current product weight from the previous product weight. If the current weight is still greater than the critical weight, controller 141 remains in contact mode (122) as just described.
If, on the other hand, the current product weight is less than the critical weight (92), the system enters low/out-of-product mode (101). As with contact mode, in low/out-of-product mode, controller 141 enters standby (102) and waits for a dispense request (104). Upon receipt of a dispense request (104), the controller initiates a measurement program to determine the amount of product dispensed during the dispensing cycle and the weight of the remaining product. The measurement program may optionally be preceded by a programmable delay. The delay may range from 1 to 300 seconds. The length of the delay may depend on the amount of product to be dispensed, the rate the product is dispensed and the like. This delay may also be implemented in proof of delivery mode. After the optional programmable delay, the measurement program commences and determines if any product was dispensed during the dispense cycle (106).
If no weight was lost during the dispense cycle, the controller determines that no product was dispensed and generates an out-of-product notification (112). The out-of-product notification may be any suitable visual and/or auditory notification or alarm. The out-of-product notification may also be a text message displayed on an LCD or other display on user interface 142 (shown in
If the controller is configured to automatically re-zero itself, the re-zeroing may occur upon the generation of the out-of-product notification before a new product container is loaded into the product holder.
If the controller determines that the weight has changed during the product dispense cycle and that product has therefore been dispensed (106), the controller proceeds to determine if the weight of the remaining product satisfies a low product condition (108). The low product condition may be a threshold weight manually input by a user or service technician via the user interface or it may be a preprogrammed value. If the weight of the remaining product satisfies the low product condition, the controller generates a low product notification (110). The low product notification may be any suitable visual and/or auditory notification or alarm. The low product notification may also be a text message displayed on an LCD or other display on user interface 142 (shown in
If the controller determines that the remaining weight of the product does not satisfy the low product condition (108), the controller determines that there is sufficient product remaining in the product container and the system returns to standby (102) and awaits another dispense request (104).
Various embodiments of the invention have been described. These and other embodiments are within the scope of the following claims.
This application is a divisional of U.S. application Ser. No. 11/954,425, filed Dec. 12, 2007, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
33861 | Whitney | Dec 1861 | A |
1985615 | Mitchell | Dec 1934 | A |
2219597 | Lutz | Oct 1940 | A |
2254269 | Clark et al. | Sep 1941 | A |
2319739 | Kessler | May 1943 | A |
2333791 | Hutchinson, Jr. | Nov 1943 | A |
2594975 | Mylting | Apr 1952 | A |
2679374 | Mylting | May 1954 | A |
2714472 | Richardson | Aug 1955 | A |
2990707 | Gerhardt et al. | Jul 1961 | A |
3091327 | Lalley | May 1963 | A |
3136157 | Seed et al. | Jun 1964 | A |
3197980 | Marple | Aug 1965 | A |
3412254 | Meyer-Doering et al. | Nov 1968 | A |
3447906 | Zimmerli | Jun 1969 | A |
3526334 | Ashton et al. | Sep 1970 | A |
3656478 | Swersey | Apr 1972 | A |
3743598 | Field | Jul 1973 | A |
3754871 | Hessel et al. | Aug 1973 | A |
3760166 | Adams et al. | Sep 1973 | A |
3772193 | Nelli et al. | Nov 1973 | A |
3774056 | Sample et al. | Nov 1973 | A |
3826113 | Noraas et al. | Jul 1974 | A |
3826408 | Berndt et al. | Jul 1974 | A |
3828869 | Sellers | Aug 1974 | A |
3834587 | Bengt et al. | Sep 1974 | A |
4040515 | Hessel | Aug 1977 | A |
4046996 | Williams et al. | Sep 1977 | A |
4076146 | Lausberg et al. | Feb 1978 | A |
4195500 | Tobita et al. | Apr 1980 | A |
4199001 | Kratz | Apr 1980 | A |
4211517 | Schmid | Jul 1980 | A |
4222496 | Start et al. | Sep 1980 | A |
4241400 | Kiefer | Dec 1980 | A |
4247396 | Buesing | Jan 1981 | A |
4265266 | Kierbow et al. | May 1981 | A |
4307787 | Raboud et al. | Dec 1981 | A |
4320855 | Ricciardi et al. | Mar 1982 | A |
4334784 | Engels | Jun 1982 | A |
4353482 | Tomlinson et al. | Oct 1982 | A |
4373418 | Rhodes et al. | Feb 1983 | A |
4396828 | Dino et al. | Aug 1983 | A |
4402426 | Faulkner et al. | Sep 1983 | A |
4404639 | McGuire et al. | Sep 1983 | A |
4433917 | Mendel et al. | Feb 1984 | A |
4463844 | Huffman et al. | Aug 1984 | A |
4482785 | Finnegan et al. | Nov 1984 | A |
4486910 | Saalmann et al. | Dec 1984 | A |
4509543 | Livingston et al. | Apr 1985 | A |
4513796 | Miller et al. | Apr 1985 | A |
4526215 | Harrison et al. | Jul 1985 | A |
4573606 | Lewis et al. | Mar 1986 | A |
RE32101 | Ricciardi et al. | Apr 1986 | E |
RE32102 | Ricciardi et al. | Apr 1986 | E |
4597091 | Blake | Jun 1986 | A |
4630654 | Kennedy, Jr. | Dec 1986 | A |
4632198 | Uchimura | Dec 1986 | A |
4660667 | Uchimura et al. | Apr 1987 | A |
4676399 | Burckhardt | Jun 1987 | A |
4690230 | Uchimura et al. | Sep 1987 | A |
4690305 | Copeland | Sep 1987 | A |
4697243 | Moore et al. | Sep 1987 | A |
4707848 | Durston et al. | Nov 1987 | A |
4711370 | Goudy, Jr. et al. | Dec 1987 | A |
4733971 | Pratt | Mar 1988 | A |
4756321 | Livingston et al. | Jul 1988 | A |
4766548 | Cedrone et al. | Aug 1988 | A |
4770859 | Heiser, Jr. | Sep 1988 | A |
4789014 | DiGianfilippo et al. | Dec 1988 | A |
4826661 | Copeland et al. | May 1989 | A |
4830508 | Higuchi et al. | May 1989 | A |
4834546 | Pütz | May 1989 | A |
4836685 | Verreault | Jun 1989 | A |
4837811 | Butler et al. | Jun 1989 | A |
4845965 | Copeland et al. | Jul 1989 | A |
4848381 | Livingston et al. | Jul 1989 | A |
4858449 | Lehn | Aug 1989 | A |
4867196 | Zetena et al. | Sep 1989 | A |
4867343 | Ricciardi et al. | Sep 1989 | A |
4872763 | Higuchi et al. | Oct 1989 | A |
4908190 | Maglio et al. | Mar 1990 | A |
4938240 | Lakhan et al. | Jul 1990 | A |
4964185 | Lehn | Oct 1990 | A |
4967811 | DiGianfilippo et al. | Nov 1990 | A |
4969011 | Faull et al. | Nov 1990 | A |
4976137 | Decker et al. | Dec 1990 | A |
4980292 | Elbert et al. | Dec 1990 | A |
4999124 | Copeland | Mar 1991 | A |
5014211 | Turner et al. | May 1991 | A |
5014877 | Roos | May 1991 | A |
5024352 | Gmür et al. | Jun 1991 | A |
5036479 | Prednis et al. | Jul 1991 | A |
5038807 | Bailey et al. | Aug 1991 | A |
5040699 | Gangemi | Aug 1991 | A |
5043860 | Koether et al. | Aug 1991 | A |
5053206 | Maglio et al. | Oct 1991 | A |
5064094 | Roos et al. | Nov 1991 | A |
5115842 | Crafts et al. | May 1992 | A |
5136281 | Bonaquist | Aug 1992 | A |
5147615 | Bird et al. | Sep 1992 | A |
5203366 | Czeck et al. | Apr 1993 | A |
5208930 | Chabard | May 1993 | A |
5219224 | Pratt | Jun 1993 | A |
5222027 | Williams et al. | Jun 1993 | A |
5240326 | Evanson | Aug 1993 | A |
5268153 | Muller | Dec 1993 | A |
5279448 | Hanlin et al. | Jan 1994 | A |
5283639 | Esch et al. | Feb 1994 | A |
5288145 | Mackey et al. | Feb 1994 | A |
5294022 | Earle | Mar 1994 | A |
5316195 | Moksnes et al. | May 1994 | A |
5322571 | Plummer et al. | Jun 1994 | A |
5332311 | Volk, Jr. et al. | Jul 1994 | A |
5332312 | Evanson | Jul 1994 | A |
5340211 | Pratt | Aug 1994 | A |
5345379 | Brous et al. | Sep 1994 | A |
5369032 | Pratt | Nov 1994 | A |
5370267 | Schroeder | Dec 1994 | A |
5389344 | Copeland et al. | Feb 1995 | A |
5390385 | Beldham | Feb 1995 | A |
5397028 | Jesadanont | Mar 1995 | A |
5400018 | Scholl et al. | Mar 1995 | A |
5404893 | Brady et al. | Apr 1995 | A |
5407598 | Olson et al. | Apr 1995 | A |
5411716 | Thomas et al. | May 1995 | A |
5419355 | Brennan et al. | May 1995 | A |
5427748 | Wiedrich et al. | Jun 1995 | A |
5497914 | Maltsis | Mar 1996 | A |
5500050 | Chan | Mar 1996 | A |
5505915 | Copeland et al. | Apr 1996 | A |
5556478 | Brady et al. | Sep 1996 | A |
5558435 | Marjo | Sep 1996 | A |
5580448 | Brandreth | Dec 1996 | A |
5584025 | Keithley et al. | Dec 1996 | A |
5584079 | Wong et al. | Dec 1996 | A |
5609417 | Otte | Mar 1997 | A |
5619183 | Ziegra et al. | Apr 1997 | A |
5625659 | Sears | Apr 1997 | A |
5625908 | Shaw | May 1997 | A |
5636008 | LoBiondo et al. | Jun 1997 | A |
5638417 | Boyer et al. | Jun 1997 | A |
5671262 | Boyer et al. | Sep 1997 | A |
5679173 | Hartman | Oct 1997 | A |
5681400 | Brady et al. | Oct 1997 | A |
5694323 | Koropitzer et al. | Dec 1997 | A |
5695091 | Winings et al. | Dec 1997 | A |
5724261 | Denny et al. | Mar 1998 | A |
5745381 | Tanaka et al. | Apr 1998 | A |
5757664 | Rogers et al. | May 1998 | A |
5758300 | Abe | May 1998 | A |
5759501 | Livingston et al. | Jun 1998 | A |
5761278 | Pickett et al. | Jun 1998 | A |
5762096 | Mirabile | Jun 1998 | A |
5769536 | Kotylak | Jun 1998 | A |
5777895 | Kuroda et al. | Jul 1998 | A |
H1743 | Graves et al. | Aug 1998 | H |
5821523 | Bunte et al. | Oct 1998 | A |
5826749 | Howland et al. | Oct 1998 | A |
5827486 | Crossdale | Oct 1998 | A |
5839097 | Klausner | Nov 1998 | A |
5851291 | Poterala et al. | Dec 1998 | A |
5861881 | Freeman et al. | Jan 1999 | A |
5864783 | Struck et al. | Jan 1999 | A |
5875430 | Koether | Feb 1999 | A |
5885446 | McGrew, Jr. | Mar 1999 | A |
5887975 | Mordaunt et al. | Mar 1999 | A |
5897671 | Newman et al. | Apr 1999 | A |
5902749 | Lichtwardt et al. | May 1999 | A |
5913915 | McQuinn | Jun 1999 | A |
5931877 | Smith et al. | Aug 1999 | A |
5933479 | Michael et al. | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5945910 | Gorra | Aug 1999 | A |
5956487 | Venkatraman et al. | Sep 1999 | A |
5961561 | Wakefield, II | Oct 1999 | A |
5967202 | Mullen et al. | Oct 1999 | A |
5973696 | Agranat et al. | Oct 1999 | A |
5974345 | Buck et al. | Oct 1999 | A |
5975352 | Spriggs et al. | Nov 1999 | A |
5979703 | Nystrom | Nov 1999 | A |
5980090 | Royal et al. | Nov 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5992686 | Cline et al. | Nov 1999 | A |
6003070 | Frantz | Dec 1999 | A |
6007788 | Bellon et al. | Dec 1999 | A |
6012041 | Brewer et al. | Jan 2000 | A |
6029286 | Funk | Feb 2000 | A |
6049792 | Hart et al. | Apr 2000 | A |
6061668 | Sharrow | May 2000 | A |
6073124 | Krishnan et al. | Jun 2000 | A |
6082149 | Woods | Jul 2000 | A |
6098843 | Soberanis et al. | Aug 2000 | A |
6120175 | Tewell | Sep 2000 | A |
6129449 | McCain et al. | Oct 2000 | A |
6133555 | Brenn | Oct 2000 | A |
6136184 | King | Oct 2000 | A |
6143257 | Spriggs et al. | Nov 2000 | A |
6164189 | Anson | Dec 2000 | A |
6167358 | Othmer et al. | Dec 2000 | A |
6220312 | Hirsch et al. | Apr 2001 | B1 |
6234218 | Boers | May 2001 | B1 |
6259956 | Myers et al. | Jul 2001 | B1 |
6321204 | Kazami et al. | Nov 2001 | B1 |
6330499 | Chou et al. | Dec 2001 | B1 |
6356205 | Salvo et al. | Mar 2002 | B1 |
6357292 | Schultz et al. | Mar 2002 | B1 |
6370454 | Moore | Apr 2002 | B1 |
6377868 | Gardner, Jr. | Apr 2002 | B1 |
6380495 | Ash et al. | Apr 2002 | B1 |
6418371 | Arnold | Jul 2002 | B1 |
6438471 | Katagishi et al. | Aug 2002 | B1 |
6441322 | Ash et al. | Aug 2002 | B1 |
6463940 | Thomas et al. | Oct 2002 | B1 |
6472615 | Carlson | Oct 2002 | B1 |
6490513 | Fish et al. | Dec 2002 | B1 |
6507966 | Mitchell et al. | Jan 2003 | B1 |
6513964 | Himmelright et al. | Feb 2003 | B1 |
6547097 | Cavallaro et al. | Apr 2003 | B1 |
6561381 | Osterheld et al. | May 2003 | B1 |
6697706 | Gardner, Jr. | Feb 2004 | B2 |
6707873 | Thompson et al. | Mar 2004 | B2 |
6719453 | Cosman et al. | Apr 2004 | B2 |
6792395 | Roberts | Sep 2004 | B2 |
6845298 | Nelson et al. | Jan 2005 | B2 |
6896140 | Perry | May 2005 | B1 |
6987228 | MacMichael et al. | Jan 2006 | B1 |
7069188 | Roberts | Jun 2006 | B2 |
7128215 | Danechi | Oct 2006 | B2 |
7201290 | Mehus et al. | Apr 2007 | B2 |
7410623 | Mehus et al. | Aug 2008 | B2 |
20010038018 | Bell et al. | Nov 2001 | A1 |
20010039501 | Crevel et al. | Nov 2001 | A1 |
20010047214 | Cocking et al. | Nov 2001 | A1 |
20010049846 | Guzzi et al. | Dec 2001 | A1 |
20010053939 | Crevel et al. | Dec 2001 | A1 |
20010054038 | Crevel et al. | Dec 2001 | A1 |
20020014496 | Cline et al. | Feb 2002 | A1 |
20030031084 | Bartos | Feb 2003 | A1 |
20030033156 | McCall | Feb 2003 | A1 |
20030033396 | McCall | Feb 2003 | A1 |
20030043688 | Peterson et al. | Mar 2003 | A1 |
20030121561 | Wagner et al. | Jul 2003 | A1 |
20030195656 | Gardner, Jr. et al. | Oct 2003 | A1 |
20040015269 | Jungmann et al. | Jan 2004 | A1 |
20040088076 | Gardner, Jr. et al. | May 2004 | A1 |
20040162850 | Sanville et al. | Aug 2004 | A1 |
20040216500 | Aouad | Nov 2004 | A1 |
20040220844 | Sanville et al. | Nov 2004 | A1 |
20040226755 | Pottebaum et al. | Nov 2004 | A1 |
20040226956 | Brooks | Nov 2004 | A1 |
20040226959 | Mehus et al. | Nov 2004 | A1 |
20040230339 | Maser et al. | Nov 2004 | A1 |
20040232163 | Reinsch et al. | Nov 2004 | A1 |
20040245284 | Mehus et al. | Dec 2004 | A1 |
20050065644 | Gardner, Jr. et al. | Mar 2005 | A1 |
20050072793 | Mehus et al. | Apr 2005 | A1 |
20050102059 | Gardner, Jr. et al. | May 2005 | A1 |
20050144737 | Roepke et al. | Jul 2005 | A1 |
20050269348 | Limback et al. | Dec 2005 | A1 |
20060173576 | Georg et al. | Aug 2006 | A1 |
20070000291 | France et al. | Jan 2007 | A1 |
20070154370 | Mehus et al. | Jul 2007 | A1 |
20080058771 | De Brabanter | Mar 2008 | A1 |
20080271928 | Mehus et al. | Nov 2008 | A1 |
20090090564 | Kresina | Apr 2009 | A1 |
20090126123 | Kim et al. | May 2009 | A1 |
20090151474 | Mehus et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
3933763 | Apr 1991 | DE |
4419415 | Dec 1995 | DE |
10016659 | Oct 2001 | DE |
100 39 408 | Dec 2001 | DE |
0917906 | May 1999 | EP |
2052251 | May 1980 | GB |
2120563 | Dec 1983 | GB |
59142832 | Aug 1984 | JP |
60020122 | Feb 1985 | JP |
60150823 | Aug 1985 | JP |
61098657 | May 1986 | JP |
62168529 | Jul 1987 | JP |
63001434 | Jan 1988 | JP |
01145525 | Jun 1989 | JP |
01148916 | Jun 1989 | JP |
01207124 | Aug 1989 | JP |
04049110 | Feb 1992 | JP |
06226068 | Aug 1994 | JP |
09066995 | Mar 1997 | JP |
09066999 | Mar 1997 | JP |
11-502932 | Mar 1999 | JP |
11156101 | Jun 1999 | JP |
9826704 | Jun 1998 | WO |
03059143 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100147876 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11954425 | Dec 2007 | US |
Child | 12711892 | US |