This invention relates to circuits, and more specifically to a low bias current amplifier.
A power efficiency improvement of a Class A type amplifier is amplifier circuit design with two transistors in its output stage in a source follower type amplifier configuration. Source follower operation typically uses two “complementary” transistors, one an NPN-type and the other a PNP-type with both power transistors receiving the same input signal together that is equal in magnitude and phase to each other. In this configuration, the output current handling capability is significantly increased. The input signal is reproduced at the output, except at the midpoint when both transistors are OFF and at either rail. These amplifiers are more commonly known as Class B type amplifiers due to the “dead zone” in the midpoint. At very low biasing currents, Class B type amplifiers can oscillate and become unstable under high load conditions.
In accordance with an aspect of the invention, an amplifier is provided that comprises an output portion that sources and sinks current associated with an output load and an amplification portion that is biased by a relatively small bias current with respect to an output current of the amplifier. The amplification portion provides an amplified output signal to the output portion. The amplifier further comprises at least one impedance component coupled between the output portion and the amplification portion to alter at least one pole associated with the amplifier to mitigate instability of the amplifier related to the relatively small bias current.
In accordance with another aspect of the present invention, a Class B amplifier is provided that comprises an output portion that includes an N-type metal oxide field effect transistor (MOSFET) (NMOS) that sources current and P-type MOSFET (PMOS) that sinks current associated with an output load and an amplification portion that is biased by a relatively small bias current with respect to an output current of the amplifier, such that the ratio of the bias current of the amplification portion to an output current of the amplifier is about 1:20 to about 1:10,000. The amplification portion provides an amplified output signal to the gates of the NMOS and the PMOS. The Class B amplifier further comprises at least one impedance component coupled between the gates of the NMOS and the PMOS and the amplification portion to alter at least one pole associated with the amplifier to mitigate instability of the amplifier related to the relatively small bias current.
In accordance with yet another aspect of the invention, a Class B amplifier is provided that comprises means for sourcing and sinking current associated with an output load and means for providing an amplified output signal to the means for sourcing and sinking current. The Class B amplifier further comprises means for biasing the means for providing an amplified output signal with a bias current that is a relatively small with respect to an output current of the amplifier and means for altering at least one pole associated with the amplifier to mitigate instability of the amplifier related to the relatively small bias current.
In accordance with an aspect of the present invention, the amplification portion 12 is biased at a relatively low bias current with respect to the amount of output current IOUT provided at the output of the amplifier 10. For example, an output current can be provided that is about 20 times to about 10,000 times the bias current of the amplification portion 12. However, at heavy load conditions an input pole 18 formed from an output resistance (ROUT1) of the amplification portion 12 and an input capacitance (CIN1 and CIN2) of the NMOS MN1 and PMOS MP1 moves toward an output pole 20 formed from an output resistance (ROUT2) of the NMOS MN1 and the output capacitor CLOAD during the source phase. It is to be appreciated that the input pole 18 also moves toward an output pole formed from an output resistance (ROUT3) of the PMOS and the output capacitor CLOAD during the sink phase.
In either situation, if the output impedance of the amplification portion 12 is not small enough, the amplifier 10 becomes unstable. In order to push the input pole to a higher frequency, the amplification portion 12 could consume more current by increasing the bias current of the amplification portion 12 to lower the output impedance and consequently the gain. However, in accordance with an aspect of the present invention, one or more impedance components 16 are coupled between the output of the amplification portion 12 plus the gates of the NMOS MN1 and PMOS MP1 of the input portion 14 to push the input pole to a higher frequency and the output pole to a lower frequency without consuming more bias current at the amplification portion 12. The one or more impedance components 12 can be a diode, a transistor, an inductor, a resistor or combination thereof. The addition of one or more impedance components 16 effectively splits and moves the input pole 18 away from the output pole 20. With the one or more impedance components 16, the output of the amplification portion 12 sees another current path to the source of MN1 or MP1 so that the impedance at its output is reduced. Therefore, the input pole is moved to a higher frequency without increasing the bias current in the amplification portion 12. While the input pole 18 is moved to higher frequency, the output pole 20 is pushed to a lower frequency because of the increased impedance looking into the source of MN1 or MP1 and hence splitting the poles.
The increase in impedance, which causes a decrease in frequency, for the output pole 20 can be derived by applying a resistor model 30 of
where RL is the output load, RS is output impedance of the amplification portion 12, R is the resistance of the one or more impedance components 16 and RX is the output impedance associated with the output pole 20. An analogy to bipolar transistor characteristics can be employed such that:
This results in
As illustrated by the dashed line in the gain graph, the input pole and the output poles overlap such that a double overlapping pole 54 is a result. The doubling of the poles causes an increase in the slope of the phase rolloff since each pole causes a 902 shift in the phase of the output signal. For example, a gain rolloff of −20 db/decade causes a phase rolloff of 45°/decade that starts at a decade in frequency prior to a pole and ends a decade in frequency after the pole. Therefore, the phase will rolloff −40 db/decase for the double overlapping pole 54. As a result of the double overlapping pole 54, the phase has rolled off to −180° before the gain of the amplifier has reached zero. This is unacceptable since it will cause the amplifier to oscillate and become unstable. As illustrated by the solid line in the gain graph, the input pole 58 and the output pole 56 have been pushed apart from one another. This causes two spaced apart sloping portions that have less steep slope (i.e., −20 db/decade) during the first rolloff. As a result, the phase has rolled off to −155° when the gain of the amplifier has reached zero. This provides a phase margin of 35° that assures stability of the amplifier during normal operation.
The bias current IB1 is selected to be relatively low in respect to the amount of output current IOUT provided at the output of the amplifier 70. For example, a bias current of 3 microamps can provide an output current of 3 ma. In one aspect of the invention, an output current IOUT can be provided that is about 20 times to about 10,000 times the bias current IB1 of the amplification portion 72. A resistor R is coupled between the output of the amplification portion 72 and the gates of the NMOS MN1 and PMOS MP1 of the output portion 74 to push the input pole to a higher frequency and the output pole to a lower frequency as previously discussed without consuming more bias current at the amplification portion 72. The size of the resistor R can be selected based on a given bias current to output current ratio. For example, a 1 MOhm resistor can be used for a 1:1000 bias current to output current ratio, while a 100 MOhm resistor can be used for a 1:10,000 bias current to output current ratio.
It is to be appreciated that although the above examples of the present invention are illustrated with amplifiers, the present invention can be employed with other circuits that have a substantially identical poles in which one is associated with a low bias current and the other is associated with a second bias current linked together through a source follower configuration.
What have been described above are examples of the invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the invention are possible. Accordingly, the invention is intended to embrace all such alterations, modifications, and variations that fall within the scope of this application, including the appended claims.
The present invention claims priority from U.S. Provisional Patent Application No. 61/057,844, filed May 31, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4335358 | Hoeft | Jun 1982 | A |
Number | Date | Country | |
---|---|---|---|
20090295484 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61057844 | May 2008 | US |