Claims
- 1. A system comprising an optical fiber exhibiting a low-birefringence when in an unstressed condition, wherein said optical fiber is disposed to convey a beam of light along an optical path between a source comprising an optical head adapted to fly over the surface of a magneto-optical disk, and a storage location on the optical disk, and means for compensating for in plane bend induced birefringence to increase the SNR of polarization information of said optical fiber, wherein the means for compensating comprises a rotating ½ wave plate in combination with a static ¼ wave plate.
- 2. A system as claimed in claim 1 wherein the rotating ½ wave plate is coupled in series with the static ¼ wave plate.
- 3. A system comprising an optical fiber exhibiting a low-birefringence when in an unstressed condition, wherein said optical fiber is disposed to convey a beam of light along an optical path between a source comprising an optical head adapted to fly over the surface of a magneto-optical disk, and a storage location on the optical disk, and means for compensating for in plane bend induced birefringence to increase the SNR of polarization information of said optical fiber, wherein the means for compensating comprises a liquid crystal retarder and a fixed ½ wave plate.
- 4. A system comprising an optical fiber exhibiting a low-birefringence when in an unstressed condition, wherein said optical fiber is disposed to convey a beam of light along an optical path between a source comprising an optical head adapted to fly over the surface of a magneto-optical disk, and a storage location on the optical disk, and means for compensating for in plane bend induced birefringence to increase the SNR of polarization information of said optical fiber, wherein the means for compensating comprises, a fixed ¼ wave plate, and a rotatable leaky beam splitter.
- 5. A system comprising an optical fiber exhibiting a low-birefringence when in an unstressed condition, wherein said optical fiber is disposed to convey a beam of light along an optical path between a source comprising an optical head adapted to fly over the surface of a magneto-optical disk, and a storage location on the optical disk, the beam of light is directed between said storage location and said at least one optical fiber by a steerable micro-machined mirror, and means for compensating for out of plate induced birefringence to increase the SNR of polarization information of said optical fiber, wherein the means for compensating includes a ¼ wave plate and a liquid crystal cell.
- 6. A system comprising an optical fiber exhibiting a low-birefringence when in an unstressed condition, wherein said optical fiber is disposed to convey a beam of light along an optical path between a source comprising an optical head adapted to fly over the surface of a magneto-optical disk, and a storage location on the optical disk, the beam of light is directed between said storage location and said at least one optical fiber by a steerable micro-machined mirror, and means for compensating for out of plate induced birefringence to increase the SNR of polarization information of said optical fiber, wherein the means for compensating includes a fixed ¼ wave plate and a rotatable ¼ wave plate.
RELATED APPLICATIONS
The present invention is related to and is a continuation of application Ser. No. 09/124,812, filed Jul. 29, 1998 and claims priority from U.S. Provisional Applications No. 60/079,903 entitled “Optical Drive Utilizing Low Birefringence Fiber,” filed Mar. 30, 1998 and No. 60/088,192 entitled “Laser Phase Noise Minimization In Optical Drive,” filed Jun. 5, 1998, which are incorporated herein by reference.
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
4269483 |
Feldtkeller |
May 1981 |
A |
5850375 |
Wilde et al. |
Dec 1998 |
A |
5909306 |
Goldberg et al. |
Jun 1999 |
A |
6034375 |
Hiroshi |
May 2000 |
A |
Provisional Applications (2)
|
Number |
Date |
Country |
|
60/079903 |
Mar 1998 |
US |
|
60/088192 |
Jun 1998 |
US |
Continuations (1)
|
Number |
Date |
Country |
Parent |
09/124812 |
Jul 1998 |
US |
Child |
09/844378 |
|
US |