This application claims the benefit of Taiwan Patent application Serial No. 95107989, filed Mar. 9, 2006, the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to a liquid crystal display and a driving method therefor, and more particularly to a low color-shift liquid crystal display and a driving method therefor.
2. Description of the Related Art
Along with the trend in thinning the thickness of display, liquid crystal display is currently widely applied in various electronic products such as mobile phone, notebook, and color TV, and so on. However, in a conventional color liquid crystal display, only one driving voltage is provided to a pixel during a frame period, therefore the corresponding liquid crystal tilts to an angle and results in color-shift due to the change in the view-angle. As shown in
It is therefore an object of the invention to provide a color-shift liquid crystal display and a driving method therefor capable of effectively reducing color-shift to improve the image quality of the display.
The invention achieves the above-identified object by providing a liquid crystal display including a number of scan lines, a number of data lines, a pixel, a first switch circuit, and a second switch circuit. The scan lines includes an Nth scan line and an (N+1)th scan line, where N is a positive integer. The pixel includes a first sub-pixel and a second sub-pixel. The first switch circuit is coupled to the Nth scan line and the (N+1)th scan line and is used for controlling the second sub-pixel. The second switch circuit is coupled to the Nth scan line and is used for controlling the first sub-pixel. The pixel is used for displaying a red, a green, a blue, or a white color.
Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
FIG. 2(Related Art) is a transmittance vs. driving voltage diagram of a conventional liquid crystal display under different view-angles;
FIG. 3(Related Art) is a grey level vs. driving voltage diagram of a conventional liquid crystal display under different view-angles;
Referring to
The first switch circuit S1 includes a thin film transistor T42 and a thin film transistor T43. The second switch circuit S2 includes a thin film transistor T41. The thin film transistor T41 includes a first gate, a first source and a first drain. The first gate is controlled by the Nth scan line. The first source is coupled to the Mth data line. The first drain is coupled to the first sub-pixel SP1. The thin film transistor T42 includes a second gate, a second source and a second drain. The second gate is controlled by the Nth scan line. The second source is coupled to the Mth data line. The thin film transistor T43 includes a third gate, a third source and a third drain. The third gate is controlled by the (N+1)th scan line. The third source is coupled to the second drain. The third drain is coupled to the second sub-pixel SP2.
When the thin film transistor T42 and the thin film transistor T43 are turned on at the same time, a sub-pixel voltage V1 is transmitted to the first sub-pixel SP2 by the Mth data line. When the thin film transistor T41 is turned on but the thin film transistor T43 is not turned on, a sub-pixel voltage V2 is transmitted to the first sub-pixel SP1 by the Mth data line.
Referring to both
The view-angle characteristic of the pixel P is the average of the accumulated sum of the view-angle characteristic of the first sub-pixel SP1 and the second sub-pixel SP2. Through appropriate design, the arrangement of the liquid crystal molecules of the first sub-pixel SP1 and the second sub-pixel SP2, the view-angle characteristic of the first sub-pixel SP1 and the view-angle characteristic of the second sub-pixel SP2 are compensated by each other, hence reducing the color-shift caused due to difference in view-angle. Besides, the data line of the present embodiment of the invention is driven according to the dot inversion mode. However, other modes such as the frame inversion mode, the row inversion mode and the column inversion mode are also applicable to the present embodiment of the invention.
Referring to
When selecting a sub-pixel voltage V1 and a sub-pixel voltage V2 corresponding to each grey level, the present embodiment of the invention obtains an optimized view-angle for each grey level according to a trial-and-error method. Moreover, under the circumstances of certain grey levels such as the normally white state, the sub-pixel voltage V1 can be designed to be equal to the sub-pixel voltage V2 so as to avoid transmittance loss.
Referring to
Referring to
According to the present embodiment of the invention, a pixel is divided into a first sub-pixel and a second sub-pixel, and by means of different driving methods, the two sub-pixels of the pixel are respectively driven by two different voltages, causing two different angles of inclination to the liquid crystal such that the optical effect in the display domain of the two sub-pixels can compensate for each other. Take the multi-domain vertical alignment liquid crystal display for example. The conventional four display domains are changed into eight display domains, such that the difference between the luminance when the display is viewed from a front view-angle and the luminance when the display is viewed from a slant view-angle is compensated, and that the view-angle effect of the liquid crystal display using eight display domains is better than the view-angle effect of the liquid crystal display using four display domains. Take the transflective liquid crystal display for example. The pixels in the reflective area and the pixels in the transmissive area are driven by two different voltages respectively, such that the optical effect in the reflective area is matched to the optical effect in the transmissive area. If a twisted nematic liquid crystal display is used, the color-shift caused by the difference in view-angle can also be reduced by increasing the number of display domains.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
95107989 A | Mar 2006 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5610739 | Uno et al. | Mar 1997 | A |
6072555 | Mizutome et al. | Jun 2000 | A |
6486930 | Kwon | Nov 2002 | B1 |
6525710 | Kwon | Feb 2003 | B1 |
6788757 | Lu et al. | Sep 2004 | B1 |
6850305 | Hsieh et al. | Feb 2005 | B2 |
6922183 | Ting et al. | Jul 2005 | B2 |
6982690 | Lee et al. | Jan 2006 | B2 |
6999053 | Lee et al. | Feb 2006 | B2 |
7084942 | Luo | Aug 2006 | B2 |
7129923 | Lu | Oct 2006 | B2 |
7256775 | Eom | Aug 2007 | B2 |
7277077 | Bu et al. | Oct 2007 | B2 |
7471274 | Kim | Dec 2008 | B2 |
7522147 | Lin et al. | Apr 2009 | B2 |
7535248 | Chen et al. | May 2009 | B2 |
7576724 | Lin et al. | Aug 2009 | B2 |
20030117422 | Hiyama et al. | Jun 2003 | A1 |
20030151574 | Chang et al. | Aug 2003 | A1 |
20030169223 | Lee et al. | Sep 2003 | A1 |
20030227429 | Shimoshikiryo | Dec 2003 | A1 |
20030227433 | Moon | Dec 2003 | A1 |
20040004685 | Luo | Jan 2004 | A1 |
20040051690 | Chang | Mar 2004 | A1 |
20040051835 | Hsieh et al. | Mar 2004 | A1 |
20050116615 | Matsumoto et al. | Jun 2005 | A1 |
20050213015 | Shimoshikiryo | Sep 2005 | A1 |
20050285827 | Eom | Dec 2005 | A1 |
20060007077 | Joo et al. | Jan 2006 | A1 |
20060109224 | Chang et al. | May 2006 | A1 |
20060145964 | Park et al. | Jul 2006 | A1 |
20060186822 | Park | Aug 2006 | A1 |
20070063945 | Hung et al. | Mar 2007 | A1 |
20070146278 | Pan et al. | Jun 2007 | A1 |
20070188523 | Lee et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
05265045 | Oct 1993 | JP |
WO-2004086129 | Oct 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070211007 A1 | Sep 2007 | US |