1. Field of the Invention
The present invention generally relates to a demodulator structure, more particularly to a low complexity and low power phase shift keying demodulator structure.
2. Description of the Prior Art
Generally speaking, the wireless powering systems or high receiving signal-to-noise ratio systems for the low industry, science and medical science (ISM) band mostly adopt the amplitude shift keying (ASK) technique. Despite the ASK demodulator structure being convenient to implementation in practice, according to ref. 1 and 2, the demodulation way of the ASK using the envelope detection may cause the demodulator poor in area efficiency for the systems applied to the low ISM band.
Besides, the modulation/demodulation of the ASK may not implement the wireless transmission with a high data rate, which is only suitable for the applications where data rate is of secondary importance. For those wireless systems adopting low ISM band and requiring high-data-rate transmission, such as some implantable biomedical applications, the frequency-shift keying demodulator submitted by ref. 3 is another option. The technology in ref. 3 gets rid of the high cost defect caused by the ASK demodulation, but the energy efficiency of the wireless transmission is compromised instead. As a result, the overall efficiency of the wireless powering system is tremendously affected.
A phase shift keying (PSK) demodulator has been submitted by ref. 4. Although the PSK technique possesses higher efficiency compared to the frequency shift keying (FSK) and ASK counterparts, the receiver must have a precise reference signal in order to estimate an unknown phase and recover correct information while obtaining the phase offset. Among the PSK demodulation techniques, the Costas loop is the most realistic method. All the PSK demodulation techniques including the Costas loop require employing the closed-loop techniques such as phase-locked loop for carrier recovery, resulting in significant complexity.
Further, if the demodulator uses the phase-locked loop, the power consumption and implementation area of the system will considerably increase. Motivated by the limited power budget for the wireless applications mentioned above, a differential phase shift keying (DPSK) structure has been submitted by ref. 5. Although the structure uses the differential coding to eliminate the demand of the closed-loop techniques such as the phase-locked loop, the structure still suffers from the problems of complexity and power consumption. Moreover, for the structure in ref. 5, correct demodulation is still relied on the clock signal generated by the oscillator. Owing to the phase drifting of the oscillator stemming from the device imperfection nature, an additional compensation circuit may be needed, resulting in the increase in complexity. In addition, to achieve the same bit error rate, the DPSK structure is worse in the aspect of power efficiency as compared to the binary phase shift keying (BPSK) counterpart. Apparently, there seems no satisfactory breakthrough in making better compromise between the power efficiency and implementation area. Therefore, overcoming the disadvantages of the prior arts has been of primary importance to the skilled people in the related field.
Following is the reference list, which is as:
The disadvantages of prior arts to be solved are listed below:
The present invention provides a low complexity and low power phase shift keying demodulator structure to overcome the aforesaid disadvantages. It comprises: a digitizer, which inputs a binary phase shift keying signal (BPSK Signal) and then digitizes the BPSK signal for an output waveform; a phase-transition-independent carrier clock extractor, which comprises a discharge path controlled by a power-on-reset signal, the discharge path assuring the phase shift keying demodulator of a proper operation; and a capacitance load path controlled by a Vtune™ signal, the capacitance load path providing a compensation mechanism to the circuits of the demodulator while they are effected by process variation, the Vtune™ signal deciding whether the capacitance load path is electrified, Vtune™ is electrically connected to a power end or a reference ground end without any specific bias before the demodulator is actually used, the phase-transition-independent carrier clock extractor being connected to the digitizer and detecting the phase transition on the output of the digitizer; a binary correlater, which is individually and electrically connected to the digitizer and phase-transition-independent carrier clock extractor and has correlated processes to the output signal of the digitizer and carrier clock signal obtained from the phase-transition-independent carrier clock extractor; a delay element, which is electrically connected to the phase-transition-independent carrier clock extractor and receives and processes the carrier clock signal from the phase-transition-independent carrier clock extractor; and a sampler, which is individually and electrically connected to the binary correlater and delay element and samples the signal from the binary correlater according to the signal from the delay element in order to finish the demodulation.
Thus the advantages of the present invention are as follows:
Other and further features, advantages, and benefits of the invention will become apparent in the following description taken in conjunction with the following drawings. It is to be understood that the foregoing general description and following detailed description are exemplary and explanatory but are not to be restrictive of the invention. The accompanying drawings are incorporated in and constitute a part of this application and, together with the description, serve to explain the principles of the invention in general terms. Like numerals refer to like parts throughout the disclosure.
The objects, spirits, and advantages of the preferred embodiments of the present invention will be readily understood by the accompanying drawings and detailed descriptions, wherein:
Following preferred embodiments and figures will be described in detail so as to approach aforesaid object.
With reference to
the binary correlater 40 is individually and electrically connected to the digitizer 20 and phase-transition-independent carrier clock extractor 30 and has correlated processes to the output signal of the digitizer 20 and carrier clock signal obtained from the phase-transition-independent carrier clock extractor 30; the delay element 50 is electrically connected to the phase-transition-independent carrier clock extractor 30 and receives and processes the carrier clock signal from the phase-transition-independent carrier clock extractor 30; the sampler 60 is individually and electrically connected to the binary correlater 40 and delay element 50 and samples the signal from the binary correlater 40 according to the signal from the delay element 50 in order to obtain a demodulated output 70.
Wherein the digitizer 20 includes a Schmitt trigger and an inverter.
Wherein the digitizer 20 includes a circuit, having a hysteresis function, and an inverter.
Wherein the phase-transition-independent carrier clock extractor 30 includes two D-type flip-flops, one NOR gate, two P-type transistors, three N-type transistors, two capacitors, and one Schmitt trigger.
Wherein the phase-transition-independent carrier clock extractor 30 includes a circuit having a hysteresis function.
Wherein the binary correlater 40 includes an exclusive-OR gate.
Wherein the delay element 50 includes an inverter, a capacitor, and a Schmitt trigger.
Wherein the delay element 50 includes a circuit having a hysteresis function.
Wherein the sampler 60 includes a D-type flip-flop.
Further, with reference to
The output result of the digitizer 20 is an inphase digital signal (IDS) on the output node and may be fed into the phase-transition-independent carrier clock extractor 30 wherein partial circuits are modified from the data/clock separator of ref. 1. The modified circuits replace the high-complexity and high-power-consumption circuits, such as the circuits of the phase-locked loop, in prior arts; hence the present invention has the advantages of low power and small area. The theory for the phase-transition-independent carrier clock extractor 30 is described as follows: A power-on-reset pulse (POR) in
Producing the POR may reset Q1 and Q2 in
Once the IDS, the output node of the digitizer 20, has the situation of the phase transition, the CCS in
While the voltage level of the node A is charged to let the level of the node B in
Please be noted that the rising time of the signal on the node A should be greater than 0.5 carrier period and smaller thanone carrier period; thereupon the CCS of the node may be generated correctly. With the comparisons of the phase-transition-independent carrier clock extractor 30 and the partial circuits of the data/clock separator of ref. 1, a capacitive load path is added between the node A and the ground which is defined as the lowest level of the whole circuits. The capacitance load path whose effectiveness is subject to the Vtune™ assures the demodulator of a proper operation while the demodulator suffers from extreme process and temperature variations. The Vtune™ may be either connected to the power source (the highest level) of the whole circuits or the reference ground end (the lowest level) before the demodulator or a system with the demodulator is truly applied or electrified. As a result, there is no need to add specific bias for such a demodulator.
The binary correlater 40 functions as a mixer and is to input the IDS on the output node of the digitizer 20 and the CCS of the phase-transition-independent carrier clock extractor 30 for the aforesaid correlated processes. Due to those of the IDS and CCS being digitalized, the binary correlater can be formed with an exclusive-OR gate.
The extracted CCS in
The capacitance value of the delay element 50 should be carefully estimated. The sampling may not appear at the moment where the output signal of the binary correlater 40 on the node D goes through the zero crossing point. Thus the present invention may finally have the signal 70 generated by the demodulator without the preamble circuits in Ref. 5 and not meet the problem of the phase drifting of the oscillator of the design in ref. 5.
For analyzing results and making comparison, the present invention is tested and verified through a 0.18-μm CMOS process of the Taiwan Semiconductor Manufacturing Company Limited (TSMC). It should be noted that the process applicability of the structure may not be restricted. Other processes may also be applied for the purpose of the verification. Comparing to the off-the-shelf consumer electronics products and assemblies of the non-wireless-powering systems, lowering the power consumption to the wireless powering system is much more important than that to the non-wireless-powering system. The present invention adopts the Schmitt trigger circuit in ref. 6 to have all the Schmitt triggers in
In addition, to completely verify the performance of applying the present invention to the wireless powering system, the present invention further adopts the wireless PSK transmitter in ref. 7 for verification. Following is the table 1 representing the comparison of the performance summary of the BPSK demodulator and those of the references.
In table 1, the simplified nouns are described as follows:
Please note that the carrier frequency of the present invention is set as 4 Mhz according to specific requirements, but it is not restricted by the value of 4 Mhz and may be flexible according to different needs. Moreover, for the Data-Rate-to-Carrier-Frequency Ratio in table 1, the present invention is restricted by the transceiver, but not the demodulator itself. According to table 1, not only the area of the demodulator is better than the references, but also the efficiency is enhanced.
Although this invention has been disclosed and illustrated with reference to particular embodiments, the principles involved are susceptible for use in numerous other embodiments that will be apparent to persons skilled in the art. This invention is, therefore, to be limited only as indicated by the scope of the appended claims.