This application is a U.S. National Stage Application of International Application No. PCT/CN2013/073322 filed Mar. 28, 2013, which claims priority from Chinese Patent Application No. 201210343128.9 filed Sep. 14, 2012. The entirety of all the above-listed applications are incorporated herein by reference.
The invention belongs to the technical field of metal alloys, and in particular, refers to a low cost and high strength titanium alloy that iron and aluminum can be used as the main alloying element, and the heat treatment process.
The excellent comprehensive properties of the titanium and the titanium alloy can be widely applied in the aerospace field, etc., but as compared to the aluminum alloy and the ferrous materials, the high cost limits the broader use of the titanium alloy, particularly in the civil field, so in order to popularize the application of the titanium alloy, it is necessary to research and develop the low cost titanium alloy and the manufacturing technique thereof. Among the relative higher cost factors in the titanium alloy, the vacuum melting and processing account for 60% of the total cost, the raw materials account for 40% of the total cost, therefore the titanium alloy composition design by using the inexpensive alloy elements may effectively reduce the costs of the titanium alloy.
Among the inexpensive alloy elements, the iron element is one of the most common, the most widely used elements, and the iron element is an excellent β phase stable element among the titanium alloy. Adding a certain amount of the iron into the titanium alloy may lower the phase transformation point, stabilize the β phase, and improve the hot and cold processing property of materials, so Fe is widely used in many titanium alloys. For example, adding 2% (mass %) of the iron into the aerial TB6 alloy may improve the thermoforming property, which is very suitable for the isothermal forging and the super-plastic forming processes.
The Industrial pure iron, the carbon steel and the cast iron may be used as the master alloy to realize that the iron element and the traces of the carbon element are added into the titanium alloy, and adding a certain amount of the aluminum element can further improve the strength of titanium alloy. Our previous experiments also show that a certain amount of the iron element in the titanium alloy has a very good strengthening effect.
A purpose of the invention is to provide a low cost titanium alloy that the iron and the aluminum can be used as the main alloying element, and the alloy heat treatment process, that is, the temperature and the time for obtaining the optimum comprehensive property of the alloy.
The technical solution is that: alloy elements of the low cost and high strength titanium alloy and the weight percent thereof are as follows: the content of Fe is 3%˜7%, the content of Al is 3%˜5%, the content of C is 0.01%˜0.02%, the balance is Ti, and the unavoidable impurities.
The heat treatment process provided by the invention, characterized in that the heat treatment includes a solid solution treatment and an ageing treatment, and in the solid solution treatment, the temperature is 820˜950° C., the time is 60 minutes, water quenching (WQ); in the ageing treatment, the temperature is 450˜550° C., the time is 4 hours, air cooling (AC).
The advantage of the invention is that, compared to the commonly used titanium alloy, the alloy does not include the expensive alloy elements of the molybdenum, vanadium etc., which can reduce the raw material costs of the alloy, and the solid solution and ageing heat treatment process of the low cost and high strength alloy is recommended as an effective basis for the element heat treatment design later, which allows the alloy have the excellent comprehensive mechanical properties and have a wide application prospect in the engineering field.
The invention is explained in further detail below, the low cost and high strength titanium alloy is characterized in that, the weight percent composition of the alloy are: the content of Fe is 3%˜7%, the content of Al is 3%˜5%, the content of C is 0.01˜0.02%, the balance is Ti and the unavoidable impurities.
The low cost Ti—Fe—Al—C titanium alloy is manufactured as follows: the titanium sponge grade 0, 99.3% of the industrial pure iron, 99.5% of the industrial pure aluminum, the industrial 45 carbon steel are mixed, which satisfy the composition demand; and then the mixture is pressed to the block with the 200 tons hydraulic machine. The pressed block is double-melted with the 5 KG vacuum suspension induction furnace in which the smelting temperature is 1700° C.˜1850° C., so the titanium alloy cast ingot is obtained. The titanium alloy is stripped, removed the head and tail, and flayed, then is painted by the glass protective lubricant; finally the bars and the plates are forged by the cogging forging. The temperature of the cogging heating is between 950° C. and 1050° C., the temperature of the final precision forging is between 800° C. and 900° C.
The alloy raw materials are prepared by the nominal composition Ti—5Fe—3Al—0.02C (the weight percentage, %). Titanium sponge grade 0, 99.3% industrial pure iron, 99.5% industrial pure aluminum, and industrial 45 carbon steel are used as the raw materials. The raw materials are mixed and the mixture is pressed to the block with the 200 tons hydraulic machine. The pressed block is double-melted with the 5 KG vacuum suspension induction furnace to acquire the alloy cast ingot. After the stripping process, the cast ingot is painted by the glass protective lubricant to prevent the alloy oxidation at high temperature. The cast ingot is cogging forged in 980° C., subsequently is subjected to multi-pass upsetting and stretching in 850° C. to refine the microstructure, finally the φ25 mm bar is forged. After the 560° C./1 h/AC heat treatment, the room temperature tensile properties of the bar are that: the tensile strength σb=1100 MPa, the yield strength σ0.2=950 MPa, the elongation δ=13% (as illustrated in
After the solid solution and ageing treatment of 840° C./40 min/water quenching (WQ)+475° C./4 h/air cooling (AC) and 860° C./40 min/WQ+500° C./4 h/AC, the bar obtains the following mechanical properties: the tensile strength σb=1290 MPa, the yield strength σ0.2=1180 MPa, the elongation δ=10% (as illustrated in
The alloy raw materials are prepared by the nominal composition Ti—3Fe—5Al—0.01C (weight percentage, %). Titanium sponge grade 0, 99.3% industrial pure iron, 99.5% industrial pure aluminum are used as the raw materials. Then the raw materials are mixed and the mixture is pressed to the block with the 200 tons hydraulic machine, the pressed block is double-melted with the 5 KG vacuum suspension induction furnace to acquire the alloy cast ingot. After the stripping process, the cast ingot is painted by the glass protective lubricant to prevent the alloy high temperature oxidation. The cast ingot is cogging forged in 980° C., subsequently are subjected to multi-pass upsetting and stretching in 850° C. to refine the microstructure, finally the φ25 mm bar is forged. After the 600° C./1 h/AC heat treatment, the room temperature tensile properties of the bar are that: the tensile strength σb=1180 MPa, the yield strength σ0.2=950 MPa, the elongation δ=16% (as illustrated in
After the solid solution and ageing treatment of 940° C./40 min/WQ+500° C./4 h/AC and 900° C./40 min/WQ+500° C./4 h/AC, the bar obtains the mechanical properties, in which the tensile strength σb=1180 MPa, the yield strength σ0.2=980 MPa, the elongation δ=8% (as illustrated in
the nominal compositions in Example 3˜Example 6 refer to table 1.
Table 1 the alloy nominal compositions in Example 3˜Example 6
Fe: 2%˜7%; Al: 3%˜5%; C: 0.01%˜0.02%; the balance is Ti, and the unavoidable impurities.
The alloy manufacturing processes in the above examples are similar to the example 1 and example 2, the alloy in example 3˜6 is forged to the Φ15 mm bar, after the 500° C.˜650° C./1 h/AC heat treatment, the obtained mechanical property typical values are that: the tensile strength900 MPa, the yield strength830 MPa, the elongation9%.
After the (820° C.˜950° C.)/1 hANQ+(450° C.˜550° C.)/4 h/AC heat treatment, the obtained mechanical property typical values of the alloy in Example 3˜6 are that: the tensile strength1000 MPa, the yield strength900 MPa, the elongation 6%.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0343128 | Sep 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2013/073322 | 3/28/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/040408 | 3/20/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2575962 | Jaffee | Nov 1951 | A |
2754204 | Jaffee | Jul 1956 | A |
2804409 | Kessler | Aug 1957 | A |
2867534 | Jaffee | Jan 1959 | A |
3147115 | Vordahl | Sep 1964 | A |
20080071347 | Cambronne | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
1271024 | Oct 2000 | CN |
1508272 | Jun 2004 | CN |
1962913 | May 2007 | CN |
101456102 | Jun 2009 | CN |
101463436 | Jun 2009 | CN |
101899590 | Dec 2010 | CN |
102400013 | Apr 2012 | CN |
102482735 | May 2012 | CN |
2001-115221 | Apr 2001 | JP |
2009270163 | Nov 2009 | JP |
WO 2011049465 | Apr 2011 | WO |
Entry |
---|
Matthew J. Donachie, Jr., Titanium, A Technical Guide, Second Ed., ASM International, 2000, Ch. 4, pp. 25-32. |
G.W. Kuhlman, Forging of Titanium Alloys, Metalworking: Bulk Forming, vol. 14A, ASM Handbook, ASM International, 2005, pp. 331-353 (print), pp. 1-9 (online). |
Leonard E. Samuels, Light Microscopy of Carbon Steels, Ch. 4 (partial), Low-Carbon Irons and Steels, ASM International, 1999, pp. 39-59. |
International Search Report in related PCT Application No. PCT/CN2013/073322, (WO2014/040408) dated Sep. 14, 2012, and English language translation of same, 5 pgs. |
Number | Date | Country | |
---|---|---|---|
20150184272 A1 | Jul 2015 | US |