The present invention is directed to a method of forming protective diffusion chromide and chromide/aluminide coatings. More particularly, this invention relates to applying a low cost diffusion chromide or a low cost chromide/aluminide coating.
The operating temperature within a gas turbine engine is both thermally and chemically hostile. Significant advances in high temperature capabilities have been achieved through the development of iron, nickel and cobalt-based superalloys and the use of oxidation-resistant environmental coatings capable of protecting superalloys from oxidation, hot corrosion, and other environmental degradation.
In the compressor portion of an aircraft gas turbine engine, atmospheric air is compressed to 10-25 times atmospheric pressure, and adiabatically heated to about 800°-1250° F. (425°-675° C.) in the process. This heated and compressed air is directed into a combustor, where it is mixed with fuel. The fuel is ignited, and the combustion process heats the gases to very high temperatures, in excess of about 3000° F. (1650° C.). These hot gases pass through the turbine, where rotating turbine wheels extract energy to drive the fan and compressor of the engine. The gases then pass into the exhaust system, where the gases supply thrust to propel the aircraft. To improve the efficiency of operation of the aircraft engine, combustion temperatures have been raised. Of course, as the combustion temperatures are raised, steps must be taken to prevent thermal degradation of the materials forming the flow path for these hot gases of combustion.
An aircraft gas turbine engine has a turbine to drive its compressor. In many designs, the turbine is subdivided into a high pressure turbine (HPT) and a low pressure turbine (LPT). The HPT is located just behind the combustor in the engine layout and experiences the highest temperature and pressure levels, nominally 2400° F. (1315° C.) and 300 psia respectively, developed in the engine. The HPT also operates at very high speeds (10,000 RPM for large turbofans, 50,000 for small helicopter engines). In order to meet life requirements at these levels of temperature and pressure, the HPT today is cooled with supplemental air cooling techniques and constructed from advanced alloys.
While a straight turbojet engine will usually have only one turbine (an HPT), most engines today are of the turbofan, either of the high bypass or low bypass type, or turboprop type and require one or two additional turbine(s) to drive a fan or a gearbox. The additional turbines are usually categorized as a Low Pressure Turbine (LPT) and immediately follows the HPT in the engine layout, the turbines typically including a plurality of stages. Since substantial pressure drop occurs across the HPT, as the HPT extracts energy from the hot fluid stream, the LPT operates with a much less energetic fluid and will usually require several stages (usually up to six) to extract additional energy from the stream.
Components formed from iron, nickel and cobalt-based superalloys cannot withstand long service exposures if located in certain sections of a gas turbine engine, where temperature is elevated, such as the LPT and HPT sections. A common solution is to provide such components with an environmental coating that inhibits high temperature oxidation and hot corrosion. Coating materials that have found wide use for this superalloy generally include diffusion aluminide coatings. These coatings are generally formed by such methods as diffusing aluminum deposited by chemical vapor deposition (CVD) or slurry coating into a substrate matrix, or by a diffusion process such as pack cementation, above-pack, or vapor (gas) phase aluminide (VPA) deposition. In the high-pressure stages, aluminum-containing coatings are employed that form stable alumina film. In the low-pressure stages, chromium-containing coatings are favored.
Component surfaces may also have metallic heat rejection coatings, such as platinum. These heat rejection coatings assist in reducing component temperature decrease by effectively reflecting the radiative energy away from the component surface. Accordingly, it is highly desirable to apply these heat rejection coatings to similarly exposed surfaces. However, this is not possible for certain metal alloy parts, such as HPT and LPT components, which may be regularly exposed to temperatures exceeding about 1450° F. (790° C.). In this temperature range, the heat rejection coating interdiffuses with the underlying metallic component surface, or substrate. In essence, a portion of the heat rejection coating material migrates into the component substrate material as elements of the substrate migrate in the opposite direction through the heat rejection coating forming oxides on its surface. This interdiffusion causes the reflective heat rejection surface to become a radiation absorber losing its ability to reflect radiative energy, resulting in a reduction of its ability to decrease component surface temperature, thereby decreasing the service life of the component.
A diffusion chromide or chromide/aluminide coating generally has two distinct zones, the outermost of which is an additive layer containing an environmentally resistant intermetallic generally represented by MCr or MCrAl respectively, where M is iron, nickel, or cobalt, depending on the substrate material. Beneath the additive layer is a diffusion zone comprising various intermetallic and metastable phases that form during the coating reaction as a result of diffusional gradient and changes in elemental solubility in the local regions of the substrate. During high temperature exposure in air, the additive layer forms a protective chromium oxide (chromia) or chromium oxide/aluminum oxide (chromia/alumina) scale or layer that inhibits corrosion, further oxidation, and interdiffusion of the subsequently applied reflective coating and the underlying substrate.
The prior art solutions for applying diffusion chromide or chromide/aluminide coatings including VPA and CVD are complicated, have environmental drawbacks, and are inherently costly. What is needed is a less costly approach to applying diffusion chromide and chromide/aluminide coatings that is more environmentally friendly.
The present invention is a process for applying a diffusion chromide coating as a barrier coating to a superalloy substrate for use in moderately high temperature applications, such as the superalloy components found in the LPT section of a gas turbine engine. The method includes, after cleaning and masking the surface, as required, first applying a metallic chromium-based layer of paint to the substrate after cleaning the substrate. The layer is allowed to dry. In addition to chromium, this paint includes a carrier material typically an evaporable solvent and a binder, both of which are typically organic. Next, the layer is heated to a first preselected temperature for a first preselected period of time to volatilize any remaining carrier material. The layer is then heated to a second preselected temperature, usually higher than the first preselected temperature, for a second preselected period of time to volatilize and remove the binder portion of the chromium-based paint layer. Depending on the composition of the carrier material and the binder, the first preselected temperature may be the same as the second preselected temperature and the solvent and the binder can be removed in a single step. Next, the layer is heated to a third predetermined temperature above the second preselected temperature, for a third predetermined period of time in the substantial absence of oxygen, without oxidizing the materials at the surface, to diffuse the chromium into the substrate, which creates a protective chromide coating on the substrate that serves as a diffusion barrier between the substrate and subsequently applied coatings such as reflective coatings.
An alternative embodiment of this method includes first applying a layer of paint to the substrate, the paint including both metallic chromium and aluminum. In addition to chromium and aluminum, this paint includes a carrier material and a binder, both of which are typically organic. Next, the layer is heated to a first preselected temperature for a first preselected period of time to volatilize the carrier material. The layer is then heated to a second preselected temperature, usually higher than the first preselected temperature, for a second preselected period of time to burn off and volatilize the binder portion of the chromium-based and aluminum-based paint layer. Depending on the composition of the carrier material and the binder, the first preselected temperature may be the same as the second preselected temperature and the solvent and the binder can be removed in a single step. Next, the layer is heated to a third predetermined temperature, above the second preselected temperature, for a third predetermined period of time in the substantial absence of oxygen to prevent oxidation of chromium and aluminum to diffuse the chromium and aluminum into the substrate, which creates a protective chromide and aluminide coating on the substrate that serves as a diffusion barrier between the substrate and subsequently applied coatings such as reflective coatings.
In additional embodiments, the layer of paint may include any of the following metals, either as elemental particles or as alloys: zirconium; hafnium; platinum; yttrium; silicon; aluminum and zirconium; aluminum and hafnium; aluminum and platinum; aluminum, platinum, and hafnium; aluminum, chromium, and zirconium.
As used herein a “chromide coating” is a coating that contains metallic chromium that is applied to the surface of the substrate in excess of any amount of chromium that may be present in the substrate alloy, and which alloys with elements of the base material substrate. During service, the chromium coating is typically not pure chromium, but includes a concentration of substrate elements as a result of the interdiffusion of the coating materials and the substrate materials at an atomic level. Even where the chromium coating as initially applied is substantially pure chromium, interdiffusion with the substrate typically occurs rapidly as a result of exposure at elevated temperatures. Such interdiffusion during application of the coating or thereafter during a heat treatment or service at elevated temperatures is acceptable and desirable to increase adherence of the coating to the substrate surface.
An advantage of the present invention is a significant labor, capital and materials cost reduction as ultra pure materials and high energy reactors are no longer required. Masking of machined surfaces with aluminum oxide powder or other complex masking is no longer required due to the ability to mask the substrate with simple maskants such as are typically used with painting processes. Another advantage of the present invention is that the process is more environmentally friendly than current practice since heavy metal-based powder waste such as aluminum oxide powder waste and chromium powder waste is reduced.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Referring now to
After the paint has dried, which usually entails evaporation of a substantial portion of the solvent, the next step of the process is a baking step in an air atmosphere in which the paint layer is heated to a first preselected temperature for a first preselected period of time to volatilize remaining solvents in paint layer 150. The first preselected temperature is generally in the range of about 300° F. (150° C.) to about 485° F. (250° C.), and the first preselected time is in the range about one hour to about three hours depending on the first preselected temperature with shorter times required for more elevated temperatures. In a preferred embodiment, the first preselected temperature is about 400° F. (200° C.) and the first preselected time is about two hours. The next step of the process is a second heat treatment step in which the paint layer is heated preferably in an inert atmosphere and preferably in the absence of oxygen to a second preselected temperature for a second preselected period of time to volatilize the remaining binders in the paint layer 160, which leaves the substrate coated with a layer that is now almost entirely chromium. The second preselected temperature is generally in the range of about 570° F. (300° C.) to about 930° F. (500° C.), and the second preselected time is in the range about one hour to about three hours depending on the second preselected temperature. Again, shorter times are used with higher temperatures. In a preferred embodiment the second preselected temperature is about 750° F. (400° C.) and the second preselected time is about two hours.
The next step of the process is a third heat treatment in which the chromium layer and substrate are heated in the absence of oxygen in an hydrogen reducing or vacuum furnace to a third preselected temperature for a third preselected period of time in an inert or reducing atmosphere such as a reducing atmosphere or an inert gas atmosphere to interdiffuse the chromium and the substrate 170. The protective atmosphere is required to prevent the premature oxidation of chromium that will inhibit its ability to diffuse into the substrate. During the third heat treatment, the third preselected temperature reached and maintained for the duration of the third heat treatment may range from about 1200° F. (650° C.) to about 2010° F. (1100° C.) for a duration of about 1 hour to about 4 hours depending on the third preselected temperature. One having skill in the art realizes that the duration of the third heat treatment also varies depending upon the temperature selected, since the rate of diffusion of chromium and substrate elements is exponentially affected by temperature, for example, the chromium layer and substrate will typically require about 2 hours of exposure at about 1560° F. (850° C.), or about 1 hour of exposure at about 1830° F. (1000° C.) to achieve substantially the same results, i.e., same depth of diffusion of chromium into the substrate. Therefore, any number of heat/exposure combinations may be employed as a matter of manufacturing convenience, so long as the results achieved substantially provide the results of the 1200° F./2010° F. (650° C./1100° C.) exposures just described. In a preferred embodiment, the third heat treatment 170 is performed at a temperature about 1830° F. (1000° C.) for a period of time about 2 hours. Once this third heat treatment has been completed a significant amount of chromium is diffused into substrate. Such chromium diffusion into a metal substrate is well known in the art. However, unlike some prior art processes in which application of chromium is performed at elevated temperatures so that uncontrollable diffusion occurs even as the elemental chromium is applied, the present invention requires a separate heat treatment step to accomplish controllable diffusion. The final step of this process is cooling the substrate to room temperature 180.
Referring now to
The next step of the process is a baking step in which the paint layer is heated in an air atmosphere to a first preselected temperature for a first preselected period of time to volatilize the solvents in the paint layer 250. The first preselected temperature is generally in the range of about 300° F. (150° C.) to about 485° F. (250° C.), and the first preselected time is in the range about one hour to about three hours depending on the first preselected temperature, with shorter times required for more elevated temperatures. In a preferred embodiment, the first preselected temperature is about 400° F. (200° C.) and the first preselected time is about two hours. The next step of the process is a second heat treatment step in which the paint layer is heated preferably in an inert atmosphere and preferably in the absence of oxygen to a second preselected temperature for a second preselected period of time to burn off and volatilize the remaining binders in the paint layer 260, which leaves the substrate coated with a layer that is now almost entirely aluminum and chromium. The second preselected temperature is generally in the range of about 570° F. (300° C.) to about 930° F. (500° C.), and the second preselected time is in the range about one hour to about three hours depending on the second preselected temperature. Again, shorter times are used with higher temperatures. In a preferred embodiment the second preselected temperature is about 750° F. (400° C.) and the second preselected time is about two hours.
The next step of the process is a third heat treatment in which the aluminum and chromium layer and substrate are heated in an hydrogen reducing or vacuum furnace to a third preselected temperature for a third preselected period of time in a protective atmosphere such as a reducing atmosphere or an inert gas atmosphere to interdiffuse the aluminum and chromium and the substrate 270. The protective atmosphere is require to prevent the premature oxidation of chromium and aluminum which will inhibit its ability to diffuse into the substrate. During the third heat treatment, the third preselected temperature reached and maintained for the duration of the third heat treatment may range from about 1200° F. (650° C.) to about 1830° F. (1000° C.) for a duration of about 1 hour to about 4 hours depending on the third preselected temperature. One having skill in the art realizes that the duration of the third heat treatment also varies depending upon the temperature selected, since the rate of diffusion of aluminum, chromium and substrate elements is exponentially affected by temperature, for example, the aluminum and chromium layer and substrate will typically require about 3 hours of exposure at about 1300° F. (700° C.), or about 1 hour of exposure at about 1600° F. (870° C.) to achieve substantially the same results, i.e., same depth of diffusion. In a preferred embodiment, the third heat treatment 270 is performed at a temperature about 1600° F. (870° C.) for a period of time about 2 hours. Therefore, any number of heat/exposure combinations may be employed as a matter of manufacturing convenience, so long as the results achieved substantially mirror the results of the 1200° F./1830° F. (650° C./1000° C.) exposures just described. Once this third heat treatment has been completed a significant amount of chromium and aluminum is diffused into substrate. Such aluminum and chromium diffusion into a metal substrate is well known in the art. However, unlike some prior art processes in which application of chromium and/or aluminum is performed at elevated temperatures so that diffusion occurs even as the elemental chromium and aluminum is applied, the present invention requires a separate heat treatment step to accomplish diffusion. The final step of this process is cooling the substrate to room temperature 260.
In alternative embodiments, the layer of paint may include any of the following metals, either as elemental particles or as alloys: zirconium; hafnium; platinum; yttrium; silicon; aluminum and zirconium; aluminum and hafnium; aluminum and platinum; aluminum, platinum, and hafnium; aluminum, chromium, and zirconium. For such elemental particles or alloys, the paint may be custom manufactured to appropriate compositions. The remaining steps of the process are identical to the process steps set forth above.
The coatings created by the present invention also form a diffusion barrier to protect subsequently applied coatings such as platinum reflective coatings. This means that the chromide and chromide/aluminide coatings created by the present invention inhibit the reflective coatings from interdiffusing into the substrate material. For example, if a platinum layer is applied to the surface of the chromide or chromide/aluminide layer created by the present invention, the platinum will not interdiffuse with the chromia or chromia/alumina coating when the coated substrate is exposed to a high temperature environment such as a gas turbine engine environment.
The coatings created by the present invention also form a corrosion barrier to protect subsequently applied coatings such as platinum reflective coatings. This means that the chromide and chromide/aluminide coatings created by the present invention prevent reactive chemicals from diffusing into the substrate material. For example, if a corrosive oxide eutectic layer is applied to the surface of the chromide or chromide/aluminide layer created by the present invention, the eutectic will not diffuse through the chromia or chromia/alumina coating when the coated substrate is exposed to a high temperature environment.
Testing of a coupon, typically lengths of material approximately one inch in diameter, aluminided by the method of the present invention have been conducted. For the present invention, a coupon of HS 188 alloy was coated with a single coat of paint that contains both aluminum and chromium. The surface preparation was a standard solvent and water wash. The coupon was heated to about 390° F. (200° C.) and held at that temperature for a period of about two hours to volatilize the solvents in the paint layer. The coupon was then heated to about 750° F. (400° C.) and held at that temperature for a period of about two hours to bum off and volatilize the binders in the paint layer. The coupon was then placed in a hydrogen reducing furnace and heated to a temperature of about 1875° F. (1025° C.) for one hour in order to diffuse the aluminum and chromium in the paint layer into the coupon, creating an aluminide and chromide layer on the surface of the coupon. The coupon was then cooled to room temperature and visually inspected. The portion of the coupon where the aluminide and chromide layer was still present appeared to have no change after exposure to the hot atmosphere.
While the present invention has been described as a method for applying a chromide or a chromide/aluminide coating to a metal substrate generally, the present invention can be applied to any moderate temperature jet aircraft engine component surface along the gas flow path of the engine. In this context, a moderate temperature jet aircraft component surface means any component surface that normally encounters temperatures in the range of about 800° F. to 1400° F. (450° C. to 800° C.). For example, chromide or chromide/aluminide process of the present invention can be applied to LPT engine components or HPT gas turbine components.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This Application is related to application Ser. No. 10/331,054, filed contemporaneously with this Application on Dec. 27, 2002, entitled “LOW COST ALUMINIDE PROCESS FOR MODERATE TEMPERATURE APPLICATIONS” assigned to the assignee of the present invention, and which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4451299 | Smeggil et al. | May 1984 | A |
5268045 | Clare | Dec 1993 | A |
5514482 | Strangman | May 1996 | A |
5556713 | Leverant | Sep 1996 | A |
5652028 | Taylor et al. | Jul 1997 | A |
5741556 | Taylor et al. | Apr 1998 | A |
5817371 | Gupta et al. | Oct 1998 | A |
5866271 | Stueber et al. | Feb 1999 | A |
5922409 | McMordie et al. | Jul 1999 | A |
6074706 | Beverley et al. | Jun 2000 | A |
6123997 | Schaeffer et al. | Sep 2000 | A |
6143141 | Leverant et al. | Nov 2000 | A |
6283714 | Rigney et al. | Sep 2001 | B1 |
6676992 | Pfaendtner et al. | Jan 2004 | B1 |
Number | Date | Country |
---|---|---|
1079002 | Feb 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20040126496 A1 | Jul 2004 | US |