Low-cost, high-performance composite bipolar plate

Information

  • Patent Grant
  • 11916264
  • Patent Number
    11,916,264
  • Date Filed
    Friday, September 18, 2020
    3 years ago
  • Date Issued
    Tuesday, February 27, 2024
    2 months ago
Abstract
This invention describes a low-cost, lightweight, high-performance composite bipolar plate for fuel cell applications. The composite bipolar plate can be produced using stamped or pressed into the final form including flow channels and other structures prior to curing.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to the field of low-cost, high-performance composites.


BACKGROUND OF THE INVENTION

Without limiting the scope of the invention, its background is described in connection with compound conductive materials.


Bipolar plates are an important key component of fuel cells primarily because of their ability to simultaneously provide a thermally and electrically conductive plate that also distributes and separates gases. Significant effort is aimed at reducing the weight and cost of bipolar plates for fuel cell applications. In the present investigation, efforts were made to develop composite bipolar plates by using methods and materials that allow compression stamping/pressing processes to achieve performance and cost goals. Today, most bipolar plates are composed entirely of graphite while progress is being made to one-day use lightweight composite bipolar plates made of graphite and a polymer filler. Thus far, graphite has been an ideal candidate for composing bipolar plates because of its mechanical, chemical, thermal, gas barrier, electrical, flame retardant and other properties.


Graphite is commonly used to enhance strength, electrical, and thermal conductivity of a composite material. Graphite has been used as a component in a wide number of composite materials including resins, epoxies, and polymers. Composite plates can be prepared by using different reinforcing fillers such as natural graphite, synthetic graphite, carbon black, or carbon fibers with phenolic resin as a polymer matrix precursor in its liquid and powder form. The composite plates prepared with appropriate proportion of components were characterized for physical and mechanical properties. It is found that by changing the component amounts for composite bipolar plates, improvements can be achieved that increase performance and decrease cost compared to that of pure graphite bipolar plates.


SUMMARY OF THE INVENTION

The method herein enables the dispersion/compounding of graphite, carbon black, graphene oxide or any additive with a polymeric component that can be extruded, stamped, or otherwise mass-produced into a bipolar plate. The particles of the one material are coated with the material of another conductive component or multiple conductive components using a milling process. The coated surface of the material creates conductive connective pathways through the volume of the final composite structure. By controlling the ratio of the components, one can achieve low density, high electrical conductivity, and surface hardness required for mass process by extrusion stamping or other mass manufacturing process.


In one embodiment, the present invention includes a method of making a conductive, composite bipolar plate made of coated particles for making a composite material that enhances a property of the composite material, comprising: providing a powdered component called a powdered host particle; providing a second powdered component called a conductive additive that comprises a softening or melting temperature higher than the melting point of the powdered host particle; inputting said powdered host particle and said conductive additive into a ball mill; and ball milling said powdered host and said conductive additive for a milling time to sufficiently mix but not melt the powdered host particle into a conductive host-additive particle. In one aspect, the powdered host particle is a powder from a resin of polymethylpentene. In one aspect, the conductive additive is comprised of graphite, graphene oxide, carbon nanotubes, or carbon nanowires. In one aspect, the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell, and the bipolar plate comprises a formable resin with one or more conductive materials. In one aspect, the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell that comprises the bipolar plate having a plurality of formed serpentine flow field on a first side of said bipolar plate and an interdigitated flow field on a second side of said bipolar plate, a plate margin having a first header aperture formed therethrough, a first port formed therethrough between said first header aperture and said serpentine flow field, a second header aperture formed therethrough, and a second port formed therethrough between said second header aperture and said interdigitated flow field. In one aspect, the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell that comprises a first seal disposed on said second side of said bipolar plate and having a first passageway formed therein to define a first fluid transmission path between said first header and a second passageway formed therein to define a second fluid transmission path between said second port and said interdigitated flow field. In one aspect, the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell comprises a second seal disposed on said first side of said bipolar plate and having a third passageway formed therein to define a third fluid communication path from said second header to said second port and a fourth passageway formed therein to define a fourth fluid communication path from said first port to said serpentine flow field. In one aspect, the powdered host particle is a powder from any resin of a particle size greater than 5 μm. In one aspect, the powdered host particle is a powder from a resin of polymethylpentene. In one aspect, the conductive additive is comprised of graphite, graphene oxide, carbon nanotubes or carbon nanowires or any combination formed in situ in the ball mill prior to the addition of the powdered host particle.


Another embodiment of the present invention includes a method of making a conductive composite particle or material, comprising: providing a powdered host particle; providing a conductive additive with a softening or melting temperature higher than the melting point of the powdered host particle; mixing the powdered host particle and the powdered additive in a ball mill; and milling the powdered host and the powdered additive for a time sufficient to mix but not melt the powdered host particle to form an electrically conductive host-additive blend. In one aspect, the powdered host particle is a powder from a resin of polymethylpentene. In another aspect, the electrically conductive host-additive blend has at least one of the following properties: a bulk density less than 1.75 g/cm3, an electrical conductivity greater than 250 S/cm, or a Rockwell hardness >80. In another aspect, the method further comprises the step of extruding, stamping, or otherwise mass-producing the electrically conductive host-additive blend into a bipolar plate. In another aspect, the bipolar plate is adapted for use in a PEM fuel cell, wherein the bipolar plate further comprises a formable resin with one or more conductive additives. In another aspect, the method further comprises the step of assembling the bipolar plate into a PEM fuel cell that comprises the bipolar plate having a plurality of formed serpentine flow field on a first side of said bipolar plate and an interdigitated flow field on a second side of said bipolar plate, a plate margin having a first header aperture formed therethrough, a first port formed therethrough between said first header aperture and said serpentine flow field, a second header aperture formed therethrough, and a second port formed therethrough between said second header aperture and said interdigitated flow field. In another aspect, the method further comprises the step of assembling the bipolar plate into a PEM fuel cell comprises a first seal disposed on said second side of said bipolar plate and having a first passageway formed therein to define a first fluid transmission path between said first header and a second passageway formed therein to define a second fluid transmission path between said second port and said interdigitated flow field. In another aspect, the method further comprises the step of assembling the bipolar plate into a PEM fuel cell comprises a second seal disposed on said first side of said bipolar plate and having a third passageway formed therein to define a third fluid communication path from said second header to said second port and a fourth passageway formed therein to define a fourth fluid communication path from said first port to said serpentine flow field. In another aspect, the powdered host particle is a powder from any resin of a particle size greater than 5 μm. In another aspect, the conductive additive is comprised of graphite, graphene oxide, carbon nanotubes, carbon nanowires or any combination.







DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are illustrative of ways to make and use the invention and do not delimit the scope of the invention.


As used herein, the term “graphene” refers to a polycyclic hexagonal lattice with carbon atoms covalently bonded to each other. The covalently bonded carbon atoms can form a six-member ring as a repeating unit, and may also include at least one of a five-member ring and a seven-member ring. Multiple graphene layers are referred to in the art as graphite. Thus, graphene may be a single layer, or also may comprise multiple layers of graphene that are stacked on other layers of graphene yielding graphene oxide. Generally, graphene oxide can have a maximum thickness of about 100 nanometers (nm), specifically about 0.5 nm to about 90 nm.


As used herein, the term “graphene oxide flake” refers to a crystalline or “flake” form of graphene oxide that has been oxidized and includes many graphene sheets oxidized and stacked together and can have oxidation levels ranging from 0.01% to 25% by weight in ultra pure water. The flakes are preferably substantially flat.


As used herein, the term “PEM fuel cell” refers to a proton exchange membrane fuel cell, but also referred to as a polymer electrolyte membrane (PEM) fuel cell that converts, e.g., hydrogen and ambient air into water and an electrical current. The present invention finds particular uses in PEM fuel cells.


Graphite, graphene oxide, carbon nano tubes/fiber, and carbon black are collectively known as conductive components. Undoped TPX® Polymethylpentene (PMP) characteristics include electrical insulating properties and strong hydrolysis resistance (TPX® is a registered trademark to Mitsui Chemical). The TPX particles can be subjected to mechanochemical processing in what is generically referred to as a “ball mill.” The TPX has a particle size greater than or equal to 2 μm. When grinding in the ball mill, the balls (media) in their random movement are rolling against each other and the container, exerting shearing forces on the carbon black and the TPX particles. The resulting TPX particles can be coated on the exterior and have not been melted nor has the particle's size been reduced by more than 20% due to the milling process.


A useful and simple equation describing the grinding momentum is m×v (mass×velocity), which enables a calculation of how the attrition mill fits into the family of mills. For example, a 2-liter ball mill uses 6 lbs (or ˜2600 stainless steel balls) of 0.25″ diameter stainless steel balls weighing 1 g each. Milling or mixing can be accomplished in a closed chamber for 10 to 100 minutes at 1,000 RPM or less to coat the host particles. The other mills, such as sand, bead, and horizontal, use smaller media from 0.3 mm to 2 mm, but run at a very high rpm (roughly 100-1000). High-speed dispersers with no media run at an even faster rpm (1000-4000). An attrition mill directly agitates the media to achieve grinding.


For efficient fine grinding, both impact action and shearing force are generally required. The grinding media's random movement and spinning at different rotational energies exert shearing forces and impact forces on the carbon black and host particles. The milling/mixing time may range from 5 to 60 minutes. The combination of milling/mixing speed, media size and milling/mixing time enables the production of a host particle covered with conductive additives. The conductive composition of the composite can vary relative to each other but we have found a ratio of “77:3:10” (graphite:GO:TPX) exhibits the outstanding properties. By controlling the ratio of components, unique properties can be achieved such as a bulk density less than 1.75 g/cm3, electrical conductivity greater than 250 S/cm, and Rockwell hardness >80.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.


It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.


All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.


As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.


The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context. In certain embodiments, the present invention may also include methods and compositions in which the transition phrase “consisting essentially of” or “consisting of” may also be used.


As used herein, words of approximation such as, without limitation, “about”, “substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skilled in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “about” may vary from the stated value by at least ±1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.


All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

Claims
  • 1. A method of making a conductive, composite bipolar plate made of coated particles for making a composite material that enhances a property of the composite material, comprising: providing a powdered component called a powdered host particle, wherein the powdered host particle is a powder from a resin of polymethylpentene;providing a second powdered component called a conductive additive that comprises a softening or melting temperature higher than the melting point of the powdered host particle, wherein the conductive additive comprises substantially flat graphene oxide flakes, and wherein the conductive additive is formed in situ in a ball mill prior to the addition of the powdered host particle;inputting said powdered host particle into the ball mill; andball milling said powdered host and said conductive additive for a milling time to sufficiently mix but not melt the powdered host particle into a conductive host-additive particle.
  • 2. The method of claim 1, wherein the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell, and the bipolar plate comprises a formable resin with one or more conductive materials.
  • 3. The method of claim 1, wherein the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell that comprises the bipolar plate having a plurality of formed serpentine flow field on a first side of said bipolar plate and an interdigitated flow field on a second side of said bipolar plate, a plate margin having a first header aperture formed therethrough, a first port formed therethrough between said first header aperture and said serpentine flow field, a second header aperture formed therethrough, and a second port formed therethrough between said second header aperture and said interdigitated flow field.
  • 4. The method of claim 1, wherein the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell that comprises a first seal disposed on said second side of said bipolar plate and having a first passageway formed therein to define a first fluid transmission path between said first header and a second passageway formed therein to define a second fluid transmission path between said second port and said interdigitated flow field.
  • 5. The method of claim 1, wherein the conductive host-additive particle is formed into a bipolar plate assembly for a PEM fuel cell comprises a second seal disposed on said first side of said bipolar plate and having a third passageway formed therein to define a third fluid communication path from said second header to said second port and a fourth passageway formed therein to define a fourth fluid communication path from said first port to said serpentine flow field.
  • 6. A method of making a conductive composite particle or material, comprising: providing a powdered host particle, wherein the powdered host particle is a powder from a resin of polymethylpentene;providing a conductive additive with a softening or melting temperature higher than the melting point of the powdered host particle, wherein the conductive additive comprises substantially flat graphene oxide flakes, and wherein the conductive additive is formed in situ in a ball mill prior to the addition of the powdered host particle;mixing the powdered host particle in the ball mill; andmilling the powdered host and the powdered additive for a time sufficient to mix but not melt the powdered host particle to form an electrically conductive host-additive blend.
  • 7. The method of claim 6, wherein the electrically conductive host-additive blend has at least one of the following properties: a bulk density less than 1.75 g/cm3, an electrical conductivity greater than 250 S/cm, or a Rockwell hardness >80.
  • 8. The method of claim 6, further comprising the step of extruding, stamping, or otherwise mass-producing the electrically conductive host-additive blend into a bipolar plate.
  • 9. The method of claim 8, wherein the bipolar plate is adapted for use in a PEM fuel cell, wherein the bipolar plate further comprises a formable resin with one or more conductive additives.
  • 10. The method of claim 8, further comprising assembling the bipolar plate into a PEM fuel cell that comprises the bipolar plate having a plurality of formed serpentine flow field on a first side of said bipolar plate and an interdigitated flow field on a second side of said bipolar plate, a plate margin having a first header aperture formed therethrough, a first port formed therethrough between said first header aperture and said serpentine flow field, a second header aperture formed therethrough, and a second port formed therethrough between said second header aperture and said interdigitated flow field.
  • 11. The method of claim 10, further comprising assembling the bipolar plate into a PEM fuel cell comprises a first seal disposed on said second side of said bipolar plate and having a first passageway formed therein to define a first fluid transmission path between said first header and a second passageway formed therein to define a second fluid transmission path between said second port and said interdigitated flow field.
  • 12. The method of claim 10, further comprising assembling the bipolar plate into a PEM fuel cell comprises a second seal disposed on said first side of said bipolar plate and having a third passageway formed therein to define a third fluid communication path from said second header to said second port and a fourth passageway formed therein to define a fourth fluid communication path from said first port to said serpentine flow field.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/758,524 filed on Mar. 8, 2018, now U.S. Pat. No. 11,038,182 issued on Jun. 15, 2021, which is a U.S. National Stage Application of International Application No. PCT/US2016/052292, filed on Sep. 16, 2016 claiming the priority to U.S. Provisional Application No. 62/221,157 filed on Sep. 21, 2015, the contents of each of which are incorporated by reference herein.

US Referenced Citations (117)
Number Name Date Kind
2459520 Greenshields Jan 1949 A
4046863 Kobayashi et al. Sep 1977 A
5057370 Krieg et al. Oct 1991 A
5360582 Boyd et al. Nov 1994 A
5501934 Sukata et al. Mar 1996 A
5506061 Kindl et al. Apr 1996 A
5509993 Hirschvogel Apr 1996 A
5583176 Haberle Dec 1996 A
6004712 Barbetta et al. Dec 1999 A
6172163 Rein et al. Jan 2001 B1
6348279 Saito et al. Feb 2002 B1
6436567 Saito et al. Aug 2002 B1
7005205 Gyoten et al. Feb 2006 B1
7231084 Tang et al. Jun 2007 B2
7329698 Noguchi et al. Feb 2008 B2
7623340 Song et al. Nov 2009 B1
8168964 Hiura et al. May 2012 B2
8216541 Jang et al. Jul 2012 B2
8580132 Lin et al. Nov 2013 B2
9758379 Blair Sep 2017 B2
9802206 Kitaura et al. Oct 2017 B2
10138969 Hattori et al. Nov 2018 B2
10287167 Blair May 2019 B2
11038182 Restrepo Jun 2021 B2
11214658 Restrepo Jan 2022 B2
20020008031 Barsukov et al. Jan 2002 A1
20020119358 Rock Aug 2002 A1
20020182387 Mercuri et al. Dec 2002 A1
20040000735 Gilbert, Sr. et al. Jan 2004 A1
20040033189 Kaschak et al. Feb 2004 A1
20040071896 Kang Apr 2004 A1
20040209150 Rock Oct 2004 A1
20050041373 Pruss Feb 2005 A1
20050191471 Haggquist Sep 2005 A1
20050196636 Kawakami et al. Sep 2005 A1
20050208319 Finley et al. Sep 2005 A1
20070219336 Ito Sep 2007 A1
20070284557 Gruner et al. Dec 2007 A1
20080048152 Jang et al. Feb 2008 A1
20080206124 Jang et al. Aug 2008 A1
20080279710 Zhamu et al. Nov 2008 A1
20080318110 Budinski et al. Dec 2008 A1
20090017211 Cruner et al. Jan 2009 A1
20090092747 Zhamu et al. Apr 2009 A1
20090140801 Ozyilmaz et al. Jun 2009 A1
20090215953 Hwang et al. Aug 2009 A1
20090224420 Wilkinson Sep 2009 A1
20090241496 Pintault et al. Oct 2009 A1
20100006445 Tomatschger Jan 2010 A1
20100028681 Dai et al. Feb 2010 A1
20100055025 Jang et al. Mar 2010 A1
20100055458 Jang et al. Mar 2010 A1
20100056819 Jang et al. Mar 2010 A1
20100092809 Drzal et al. Apr 2010 A1
20100143732 Swift et al. Jun 2010 A1
20100147188 Mamak et al. Jun 2010 A1
20100151318 Lopatin et al. Jun 2010 A1
20100209731 Humano Aug 2010 A1
20100239870 Bowen Sep 2010 A1
20100296253 Miyamoto et al. Nov 2010 A1
20100317790 Jang et al. Dec 2010 A1
20110017585 Zhamo et al. Jan 2011 A1
20110041980 Kim et al. Feb 2011 A1
20110049437 Crain et al. Mar 2011 A1
20110088931 Lettow et al. Apr 2011 A1
20110120347 Chung et al. May 2011 A1
20110143018 Peng et al. Jun 2011 A1
20110159372 Zhamu et al. Jun 2011 A1
20110223405 Compton et al. Sep 2011 A1
20110256376 Compton et al. Oct 2011 A1
20110267673 Agrawal et al. Nov 2011 A1
20110274610 Paquette et al. Nov 2011 A1
20110281034 Lee et al. Nov 2011 A1
20120025131 Forero Feb 2012 A1
20120025420 Utashiro et al. Feb 2012 A1
20120055612 Ahmed et al. Mar 2012 A1
20120065309 Agrawal et al. Mar 2012 A1
20120077017 Buresch Mar 2012 A1
20120107562 Bolotin et al. Mar 2012 A1
20120129736 Tour et al. May 2012 A1
20120184065 Gharib et al. Jul 2012 A1
20120220198 Peukert et al. Aug 2012 A1
20120228555 Cheng et al. Sep 2012 A1
20120282419 Ahn et al. Nov 2012 A1
20120298396 Hong et al. Nov 2012 A1
20120298620 Jiang et al. Nov 2012 A1
20130015409 Fugetsu Jan 2013 A1
20130018204 Jeon et al. Jan 2013 A1
20130114367 Heusinger et al. May 2013 A1
20130156678 Banerjee et al. Jun 2013 A1
20130196123 Sarver et al. Aug 2013 A1
20130217222 Johnson et al. Aug 2013 A1
20130236715 Zhamu et al. Sep 2013 A1
20130240033 Jeon et al. Sep 2013 A1
20130264041 Zhamu et al. Oct 2013 A1
20130272950 Yun et al. Oct 2013 A1
20130330833 Ruiz et al. Dec 2013 A1
20140000751 Kagumba et al. Jan 2014 A1
20140018480 Lee et al. Jan 2014 A1
20140030590 Wang et al. Jan 2014 A1
20140117745 Wilke et al. May 2014 A1
20140134092 Shankman May 2014 A1
20140143018 Nies et al. May 2014 A1
20140204384 Lee et al. Jul 2014 A1
20140227211 Shankman Aug 2014 A1
20140272199 Lin et al. Sep 2014 A1
20140299475 Bullington et al. Oct 2014 A1
20150284253 Zhamu et al. Oct 2015 A1
20150368436 Chiu et al. Dec 2015 A1
20160016803 Stoltz et al. Jan 2016 A1
20160083552 Nosker et al. Mar 2016 A1
20160144339 Kim et al. May 2016 A1
20160216629 Grinwald Jul 2016 A1
20170092960 Serov Mar 2017 A1
20170166722 Zhamu et al. Jun 2017 A1
20170233290 Christiansen et al. Aug 2017 A1
20190051903 Manabe et al. Feb 2019 A1
Foreign Referenced Citations (55)
Number Date Country
101462889 Jun 2009 CN
102021633 Apr 2011 CN
102586952 Jul 2012 CN
102719719 Jul 2012 CN
103058541 Apr 2013 CN
103130436 Jun 2013 CN
103215693 Jul 2013 CN
103408880 Nov 2013 CN
103545536 Jan 2014 CN
10356997 Feb 2014 CN
103757823 Apr 2014 CN
103819915 May 2014 CN
103962102 Aug 2014 CN
104319372 Jan 2015 CN
104446176 Mar 2015 CN
104844930 Apr 2015 CN
106700356 May 2017 CN
108276576 Jul 2018 CN
0949704 Oct 1999 EP
1227531 Jul 2002 EP
2560228 Feb 2013 EP
723598 Feb 1955 GB
S6169853 Apr 1986 JP
64009808 Jan 1989 JP
2012007224 Jan 2012 JP
2012136567 Jul 2012 JP
20110119429 Nov 2011 KR
20130048741 Apr 2013 KR
20130090979 Aug 2013 KR
1020150026092 Mar 2015 KR
1020170019802 Feb 2017 KR
2456361 Jul 2012 RU
2009032069 Mar 2009 WO
2009059193 May 2009 WO
2010089326 Aug 2010 WO
2010091352 Aug 2010 WO
2011014242 Feb 2011 WO
2011074125 Jun 2011 WO
2011078639 Jun 2011 WO
2011086391 Jul 2011 WO
2011087301 Jul 2011 WO
2011099761 Aug 2011 WO
2011162727 Dec 2011 WO
2012058553 May 2012 WO
2012148880 Nov 2012 WO
2012177864 Dec 2012 WO
2013001266 Jan 2013 WO
2013096990 Jul 2013 WO
2014062226 Apr 2014 WO
2014080144 May 2014 WO
2014104446 Jul 2014 WO
2014138587 Sep 2014 WO
2014210584 Dec 2014 WO
2016154057 Sep 2016 WO
2017154533 Sep 2017 WO
Non-Patent Literature Citations (79)
Entry
CN 102586952 Google translation 7 pp.
CN 103545536 Google translation 5 pp.
Extended European Search Report for EP 19862892.7 dated Oct. 12, 2021, 11 pp.
Osicka, et al., “Light-Induced and Sensing Capabilities of SI-ATRP Modified Graphene Oxide particles in Elastomeric Matrix,” Active and Passive Smart Structures and Integrated Systems 2017, vol. 10164, 1016434, doi: 10.1117/12.2260703, 10.pp.
Wang, Y., et al., “Kevlar oligomer functionalized graphene for polymer composites,” Polymer, 52, Juen 15, 2011, 3661-3670.
Extended European Search Report for EP 16849382.3 dated Apr. 30, 2019, 10 pp.
Extended European Search Report for EP 17865997.5 dated Jul. 22, 2019, 7 pp.
International Search Report and Written Opinion for PCT/US2019/051405 from KIPO dated Jan. 3, 2020.
Kaur, S., et al., “Enhanced thermal transport at covalently functionalized carbon nanotube array interfaces,” Nature Communications, Jan. 22, 2014, pp. 1-8.
Kirschner, M., “Ozone,” Ullmann's Enclyclopedia of Industrial Chemistry, vol. 25, 2012, pp. 637-644.
Maguire, J. A., et al., “Efficient low-temperature thermal functionalization of alkanes. Transfer dehydrogenation catalized by Rh(PMe3)2CI(CO) in solution under a high-pressure hydrogen atmosphere,” J. Am. Chem. Soc., Aug. 1, 1991, vol. 113:17, pp. 6706-6708.
Minus, M., et al., “The Processing, Properties, and Structure of Carbon Fibers,” JOM, Feb. 2005, pp. 52-58.
Pauling, L., General Chemistry, Chapter 15, “Oxidation-Reduction Reactions. Electrolysis,” Dover Publications, Inc., 1970, 41 pp.
Polymers: A Properties Database, “Poly(ethylene terphthalate)”, Chemnetbase, downloaded from http://poly.chemnetbase.com, Jan. 24, 2016, 5 pp.
Babak, F., et al., “Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites,” The Scientific World Journal, vol. 2014, ID 276323, 10 pp.
Rahman, M.A., et al., “The effect of residence time on the physical characterists of PAN-based fibers produced using a solvent-free coagulation process,” Materials Science and Engineering A 448, 2007, pp. 275-280.
Wang, Q., et al., “Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning,” J. Appl. Polym. Sci., 2013.
Xia, et al., “Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate,” Journal of Power Sources, vol. 178, Dec. 5, 2007, pp. 363-367.
Chemical Book, <<https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8295389.htm>>, year 2017.
Chemical Book, <<https://www.chemicalbook.com/ProductChemical PropertiesCB8123794_EN.htm>>, year 2017.
Gong, et al., “Optimization of the Reinforcement of Polymer-Based Nanocomposites with Graphene,” ECCM15—15th European Conference on Composite Materials, Venice, Italy, Jun. 24-28, 2012.
Gulotty, R., et al., “Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube—Polymer Nancomposites,” UC Riverside—Polytechnic of Turin (2013), 25 pp.
Porter, Roger S. et al., “Property Opportunities with Polyolefins, A Review Preparations and Applications of High Stiffness and Strength by Uniaxial Draw,” Polymer, 35:23, 1994, pp. 4979-4984.
Song, M., et al., “The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets,” Journal of Nanotechnology, vol. 2012, Art. ID 329318, Mar. 28, 2012, 5 pp.
Zheng, H., et al., “Graphene oxide-poly (urea-formaldehyde) composites for corrosion protection of mild steel,” Corrosion Science, Apr. 27, 2018, 139, pp. 1-12.
Extended European Search Report for EP 15834377.2 dated Mar. 9, 2018, 8 pp.
Extended European Search Report for EP 16780450.9 dated Jul. 13, 2018, 18 pp.
Wu, Q., et al., “Suprecapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films,” ACS Nano (2010), 4(4):1963-1970.
Academic Press Dictionary of Science and Technology (“Flake”, p. 1, obtained online Aug. 19, 2016).
Bourlinos, A.B., et al., “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir 2003, vol. 19, pp. 6050-6055.
Ebinezar, et al., “Analysis of hardness test for aluminum carbon nanotube metal matrix and graphene,” Indian Journal of Engineering, vol. 10, No. 21, 2014, pp. 33-39.
Extended European Search Report and Opinion for EPO 12844344.7 dated Oct. 22, 2015, 8 pp.
Extended European Search Report and Opinion for EPO 14759787.6 dated Oct. 6, 2016, 13 pp.
Extended European Search Report and Opinion for EPO 14760912.7 dated May 11, 2016, 8 pp.
Fang, M., et al., ““Covalent polymer functionalization of graphenenanosheets and mechanical properties of composites” Journal of Materials Chemistry, 2009, vol. 19, No. 38, pp. 7098-7105”.
Feng, H., et al., “A low-temperature method to produce highly reduced graphene oxide,” Nature Communications, Feb. 26, 2013, 8 pp.
FMC, Persulfates Technical Information, (http://ww.peroxychem.com/media/90826/aod_brochure_persulfate.pdf, downloaded on Jan. 19, 2017) 16 pp.
Herman, A., et al., “Bipolar plates for PEM fuel cells: a review.” International Journal of Hydrogen Energy, 2005, vol. 30, No. 12, pp. 1297-1302.
Hwang, T., et al., “One-step metal electroplating and patterning on a plastic substrate using an electrically-conductive layer of few-layer graphene,” Carbon, Sep. 17, 2011, vol. 50, No. 2, pp. 612-621.
International Search Report and Written Opinion for PCT/US2012/061457 from KIPO dated Mar. 15, 2013, 10 pp.
International Search Report and Written Opinion for PCT/US2014/021765 from KIPO dated Jul. 24, 2014, 11 pp.
International Search Report and Written Opinion for PCT/US2014/021810 from KIPO dated Jul. 14, 2014, 10 pp.
International Search Report and Written Opinion for PCT/US2014/062371 from KIPO dated Feb. 11, 2015, 12 pp.
International Search Report and Written Opinion for PCT/US2015/045657 from KIPO dated Oct. 27, 2015, 6 pp.
International Search Report and Written Opinion for PCT/US2015/049398 from KIPO dated Dec. 16, 2015, 13 pp.
International Search Report and Written Opinion for PCT/US2016/014873 from KIPO dated May 13, 2016, 15 pp.
International Search Report and Written Opinion for PCT/US2016/022229 from KIPO dated Jun. 27, 2016, 15 pp.
International Search Report and Written Opinion for PCT/US2016/023273 from KIPO dated Jul. 12, 2016.
International Search Report and Written Opinion for PCT/US2016/023435 from KIPO dated May 30, 2016, 13 pp.
International Search Report and Written Opinion for PCT/US2016/025307 from KIPO dated Sep. 12, 2016, 11 pp.
International Search Report and Written Opinion for PCT/US2016/025338 from KIPO dated Jul. 25, 2016, 12 pp.
International Search Report and Written Opinion for PCT/US2016/052292 from KIPO dated Nov. 21, 2016, 14 pp.
International Search Report and Written Opinion for PCT/US2017/027231 from KIPO dated Jul. 11, 2017, 18 pp.
Jeon, I., et al., “Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of AmericaPNAS, Apr. 10, 2012, vol. 109, No. 15, pp. 5588-5593.”.
Liu, Y. B., et al., “Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques,” Journal of Materials Science, vol. 29, No. 8, 1994, pp. 1999-2007.
McQuarrie (2011, General Chemistry (4th Edition). University Science Books, Appendix G “Standard Reduction Voltages for Aqueous Solutions at 25C, p A-34 to A-37 and also p. 949, Table 25.3. Online version available at:http://app.knovel.com/hotlink!toc/id:kpGCE00013/general-chemistry-4th/general-chemistry-4th)”.
Merriam-Webster (“Definition of Flake” p. 1-9, obtained online Aug. 19, 2016).
Mohajerani, E., et al., “Morphological and thickness analysis for PMMA spin coated films,” Journal of Optoelectronics and Advanced Materials, vol. 9:12, Dec. 2007, p. 3901-3906.
Moustafa, S.F., et al., “Copper matrix SiC and A1203 particulate composites by powder metallurgy technique,” Materials Letters, 2002, vol. 53, No. 4, pp. 244-249.
Ong, T. S., et al., “Effect of atmosphere on the mechanical milling of natural graphite,” Carbon, 2000, vol. 38, No. 15, pp. 2077-285.
Rafiee, M. et al., “Fracture and fatigue in graphene nanocomposites.” Small, 2010, vol. 6, No. 2, pp. 179-183.
Steurer, P., et al., ““Functionalized graphenes and thermoplasticnanocomposites based upon expanded graphite oxide.”” Macromolecular Rapid Communications, 2009, vol. 30, Nos. 4-5, pp. 316-327.
Szabo, T., et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater., vol. 18, Mar. 29, 2006, pp. 2740-2749.
Taeseon, H., et al.,“One-step metal electroplating and patterning on a plastic substrate using an electrically conductive layer of few-layer graphene,” Carbon, Elsevier, Oxford, GB, vol. 50, No. 2, Sep. 8, 2011, pp. 612-621.
USP Technologies, “What is the pH of H2O2 solutions?,” http://www.h2o2.com/faqs/FaqDetail.aspx?fld=26, accessed Jan. 19, 2017, 2 pp.
Wang, X. et al., ““In situ polymerization of graphene nanosheets andpolyurethane with enhanced mechanical and thermal properties.”” Journal of materials Chemistry, 2011, vol. 21, No. 12, pp. 4222-4227.
Wang, Y., et al., “Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst,” ACS Nano, vol. 5, No. 12, Oct. 30, 2011, pp. 9927-9933.
Wu, Z-S. et al., “Field Emission of Single-Layer Films Prepared by Electrophoretic Deposition.” Advanced Materials, 21, 2009, pp. 1756-1760.
Zhao, W., et al., “Preparation of graphene by exfoliation of graphite using wet ball milling.” Journal of Materials Chemistry, Jun. 3, 2010, vol. 20, pp. 5817-5819.
Extended European Search Report and Opinion for EPO 17185605.7 dated Nov. 29, 2017, 7 pp.
International Search Report and Written Opinion for PCT/US2017/058512 from KIPO dated Feb. 7, 2018, 14 pp.
Oh, Won-Chun, et al., “The Effect of Thermal and Ultrasonic Treatment on the Formation of Graphene-oxide Nanosheets,” Journal of the Korean Physical Society, vol. 56, No. 4, Apr. 2010, pp. 1097-1102.
Extended European Search Report for EP 16765526.5 dated Feb. 13, 2018, 7 pp.
Extended European Search Report for EP 16769452.0 dated Mar. 1, 2018, 9 pp.
Extended European Search Report for EP 16780450.9 dated Apr. 19, 2018, 17 pp.
Jeon, I-Y., et al., “Large Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction,” J Am Chem Soc (2013), 135-1386-1393.
Li, Y., et al., “Hybridizing wood cellulose and graphene oxide toward high-performance fibers,” NPG Asia Materials, 7, Jan. 9, 2015, 14 pp.
Tissera, N., et al., “Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating,” Applied Surface Science, 324, Nov. 4, 2014 (2015), pp. 455-463.
Extended European Search Report for EP 23154238.2 dated Jun. 13, 2023, 7 pp.
Related Publications (1)
Number Date Country
20210005906 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
62221157 Sep 2015 US
Continuations (1)
Number Date Country
Parent 15758524 US
Child 17025609 US