This invention relates generally to electronic communication and specifically to low cost communication via the power supply grid.
The United States uses electrical power at 120V and 60 Hz. The idea of superimposing high frequency signals onto the electrical power is not new and is common knowledge. This high frequency content can be extracted from the power supply by using a high pass filter or a band pass filter. Suppose that you wish to extract a 10 MHz square pulse signal from the power supply. A high pass filter with a cutoff frequency of 10 MHz or a band pass filter allowing the frequency range of 10 MHz to 50 MHz would allow the 10 MHz square pulse signal through while blocking everything else.
Another feature of power supply lines is that they have a low inductance meaning that any high frequency signal applied to the power supply line will be detectable anywhere on the power supply line. The power supply is not like a transmission line, the signals do not travel in a single direction but rather in all directions.
Furthermore it has been speculated in many trade magazines that soon all electrical appliances will be connected to the internet. But in reality, the cost of giving an electrical appliance such as a refrigerator the ability to connect to the internet is much too high to be justified. This patent application suggests an alternate method for electrical appliances to communicate with a master control device such as a computer at a much lower cost.
In this invention a low cost method is described for electrical and electronic appliances to communicate with a master control device (such as a computer) via the AC power supply. Each appliance contains a slave control device which ideally should always be supplied power even when the appliance is turned off. The master control device provides a periodic synchronization signal to which the slave control devices lock. Each slave control device is assigned two delays D1 and D2. At a delay D1 after the slave control device receives the periodic synchronization signal it can send a communication message to the master control device. At a delay D2 after the slave control device receives the periodic synchronization signal it can receive a communication message from the master control device.
Most if not all major electrical appliances are connected to the electrical power supply which supplies alternating current at 120V and 60 Hz. And they do have information we are interested in. A refrigerator could tell you what the temperatures in the upper and lower compartments are, a washing machine could tell you how many more minutes are required to complete it's cycle, a DVD player could tell you what is playing (useful if the kids are alone at home).
However these different types of information do not justify connecting the appliance to the internet as has been suggested in the trade magazines. The internet protocol is designed for exchanging much larger amounts of information and the cost of giving an electrical appliance such as a refrigerator the ability to connect to the internet is much too high to be justified. So this patent application describes a low cost method for electrical appliances to communicate with a master control device such as a computer.
Imagine the tower of babel. Everybody spoke at the same time in different languages. Nobody could understand each other and hence they were miserable. Now imagine the United Nations. Countries can talk to each other because they have interpreters. Now imagine a person called the “Master Control Device” who can understand all the languages of the United Nations. Assume that every hour he shouts out a synchronization message. When they hear the synchronization message different countries start counting out the seconds and when it is their turn they shout a message in their own language. Then they count off more seconds and when it is their turn they hear a response from the Master Control Device.
This patent application applies the method outlined above in an electrical fashion. It is crude but effective, and all the device needs to do is count out a delay after the synchronization signal and output their information or read the response. If as in claim 13, the periodic synchronization signal contains the duration between the periodic synchronization signal, then a delay locked loop (DLL) or a phase locked loop (PLL) could lock onto the periodic synchronization signal and provide timing accuracy for the delay.
In claim 2, the relationship between D1 and D2 could simply be that D2 occurs one maximum message duration before D1. When a device is connected to the power supply, it needs to obtain the D1 and D2, and it does this as in claim 3 and claim 4. When the appliance is disconnected the delays D1 and D2 are to be free for other appliances to use and this is done by claim 5. Since two appliances may be connected to the power supply at the same time there may be contention and this is resolved by claim 6.
Since bits may be dropped a method of determining the validity of a message is needed and this is covered in claim 7. There is really no requirement that all appliances use the same message format and this is covered in claim 8. In the simplest case the maximum allowed duration of the communication messages and the allowed delays may be derived from the periodicity of the synchronization signal and this is covered in claim 9. The periodicity of the synchronization signal could be variable and this is covered by claim 10. One reason to increase the duration between successive periodic synchronization signals is when new appliances are connected to the power supply and this is covered by claim 11.
As more devices are disconnected from the power supply, the assigned delays D1 and D2 may have to be changed and this is covered by claim 12. Aside from the assigned delays D1 and D2, there could is be another safeguard to ensure that the appliances be identified and this is covered in claim 14. A band pass filter would work as well as a high pass filter and this is covered by claim 15. Some devices have more information to transmit and this is covered by claim 16.
The master control device could save the communication messages for future use and this is covered by claim 17. The master control device could act as a gateway to the internet and this is covered in claim 18. Claim 19 covers the case when a delay locked loop (DLL) is used to calibrate the delays. Ideally the slave control device should always be connected to the power supply even when the appliance is switched off and it can be used to switch the appliance on and off and this is covered by claim 20.