(1) Field of the Invention
This invention relates to antenna devices and, more particularly, to an omni-directional antenna device molded of conductive loaded resin-based materials comprising micron conductive powders, micron conductive fibers, or a combination thereof, homogenized within a base resin when molded. This manufacturing process yields a conductive part or material usable within the EMF or electronic spectrum(s).
(2) Description of the Prior Art
Antennas are essential in any electronics system containing wireless communication links. A wide variety of applications use antennas to implement transmitting and/or receiving functions. Lowering the cost of antenna materials and/or production costs, as well as creating new packaging capabilities, offers significant advantages for any application utilizing and antenna device.
Several prior art inventions relate to omni-directional antenna devices or to antenna devices of conductive resin materials. U.S. Pat. No. 6,741,221, B2 to Aisenbrey teaches low cost antennas using conductive plastics or conductive composites. U.S. Pat. No. 4,633,265 to Wheeler teaches an omni-directional antenna formed of plural dipoles extending from a common center and capable of use for low frequency and high frequency ranges. U.S. Pat. No 4,143,337 to Salvat et al teaches an omni-directional antenna that has a diagram that is capable of directivity in elevation changes. U.S. Pat. No 5,121,129 to Lee et al teaches an EHF omni-directional antenna. U.S. Pat. 5,534,880 to Button et al teaches a stacked biconical omni directional antenna. U.S. Patent Publication US 2003/0184490 A1 to Raiman et al teaches a sectorized omni-directional antenna.
A principal object of the present invention is to provide an effective omni-directional antenna device.
A further object of the present invention is to provide a method to form an omni-directional antenna device.
A further object of the present invention is to provide an omni-directional antenna device molded of conductive loaded resin-based materials.
A yet further object of the present invention is to provide an omni-directional antenna device molded of conductive loaded resin-based material where the characteristics can be altered or the visual characteristics can be altered by forming a metal layer over the conductive loaded resin-based material.
A yet further object of the present invention is to provide methods to fabricate an omni-directional antenna device from a conductive loaded resin-based material incorporating various forms of the material.
A yet further object of the present invention is to provide a method to fabricate an omni-directional antenna device from a conductive loaded resin-based material where the material is in the form of a fabric.
A yet further object of the present invention is to provide an omni-directional antenna device capable of monopole, dipole, planar, or other configurations.
A yet further object of the present invention is to provide an omni-directional antenna device that is easily integrated into an electronic appliance such as a camera, cell phone, GPS system, and the like.
In accordance with the objects of this invention, an antenna device is achieved. The antenna device comprises a first hemispherical shaped lobe and a second hemispherical shaped lobe. The first and second hemispherical shaped lobes intersect at a central axis. The first and second hemispherical shaped lobes comprise a conductive loaded, resin-based material comprising conductive materials in a base resin host.
Also in accordance with the objects of this invention, an antenna device is achieved. The antenna device comprises a first hemispherical shaped lobe and a second hemispherical shaped lobe. The first and second hemispherical shaped lobes intersect at a central axis. The first and second hemispherical shaped lobes comprise a conductive loaded, resin-based material comprising conductive materials in a base resin host. The percent by weight of the conductive materials is between about 20% and about 50% of the total weight of the conductive loaded resin-based material.
Also in accordance with the objects of this invention, a method to form an antenna device is achieved. The method comprises providing a conductive loaded, resin-based material comprising conductive materials in a resin-based host. The conductive loaded, resin-based material is molded into the antenna device.
In the accompanying drawings forming a material part of this description, there is shown:
a, 1b, and 1c illustrate a first preferred embodiment of the present invention showing an omni-directional antenna device comprising a conductive loaded resin-based material.
a and 5b illustrate a fourth preferred embodiment wherein conductive fabric-like materials are formed from the conductive loaded resin-based material.
a and 6b illustrate, in simplified schematic form, an injection molding apparatus and an extrusion molding apparatus that may be used to mold omni-directional antenna devices of a conductive loaded resin-based material.
a and 9b illustrate a fourth preferred embodiment of the present invention showing an omni-directional antenna device integrated into a camera button.
a and 11b illustrate a sixth preferred embodiment of the present invention showing an omni-directional antenna with a counterpoise comprising a trace on a circuit board.
This invention relates to antennas molded of conductive loaded resin-based materials comprising micron conductive powders, micron conductive fibers, or a combination thereof, homogenized within a base resin when molded.
The conductive loaded resin-based materials of the invention are base resins loaded with conductive materials, which then makes any base resin a conductor rather than an insulator. The resins provide the structural integrity to the molded part. The micron conductive fibers, micron conductive powders, or a combination thereof, are homogenized within the resin during the molding process, providing the electrical continuity.
The conductive loaded resin-based materials can be molded, extruded or the like to provide almost any desired shape or size. The molded conductive loaded resin-based materials can also be cut, stamped, or vacuumed formed from an injection molded or extruded sheet or bar stock, over-molded, laminated, milled or the like to provide the desired shape and size. The thermal or electrical conductivity characteristics of antennas fabricated using conductive loaded resin-based materials depend on the composition of the conductive loaded resin-based materials, of which the loading or doping parameters can be adjusted, to aid in achieving the desired structural, electrical or other physical characteristics of the material. The selected materials used to fabricate the antenna devices are homogenized together using molding techniques and or methods such as injection molding, over-molding, insert molding, thermo-set, protrusion, extrusion or the like. Characteristics related to 2D, 3D, 4D, and 5D designs, molding and electrical characteristics, include the physical and electrical advantages that can be achieved during the molding process of the actual parts and the polymer physics associated within the conductive networks within the molded part(s) or formed material(s).
The use of conductive loaded resin-based materials in the fabrication of antenna devices significantly lowers the cost of materials and the design and manufacturing processes used to hold ease of close tolerances, by forming these materials into desired shapes and sizes. The antenna devices can be manufactured into infinite shapes and sizes using conventional forming methods such as injection molding, over-molding, or extrusion or the like. The conductive loaded resin-based materials, when molded, typically but not exclusively produce a desirable usable range of resistivity from between about 5 and 25 ohms per square, but other resistivities can be achieved by varying the doping parameters and/or resin selection(s).
The conductive loaded resin-based materials comprise micron conductive powders, micron conductive fibers, or any combination thereof, which are homogenized together within the base resin, during the molding process, yielding an easy to produce low cost, electrically conductive, close tolerance manufactured part or circuit. The micron conductive powders can be of carbons, graphites, amines or the like, and/or of metal powders such as nickel, copper, silver, or plated or the like. The use of carbons or other forms of powders such as graphite(s) etc. can create additional low level electron exchange and, when used in combination with micron conductive fibers, creates a micron filler element within the micron conductive network of fiber(s) producing further electrical conductivity as well as acting as a lubricant for the molding equipment. The micron conductive fibers can be nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like, or combinations thereof. The structural material is a material such as any polymer resin. Structural material can be, here given as examples and not as an exhaustive list, polymer resins produced by GE PLASTICS, Pittsfield, Mass., a range of other plastics produced by GE PLASTICS, Pittsfield, Mass., a range of other plastics produced by other manufacturers, silicones produced by GE SILICONES, Waterford, N.Y., or other flexible resin-based rubber compounds produced by other manufacturers.
The resin-based structural material loaded with micron conductive powders, micron conductive fibers, or in combination thereof can be molded, using conventional molding methods such as injection molding or over-molding, or extrusion to create desired shapes and sizes. The molded conductive loaded resin-based materials can also be stamped, cut or milled as desired to form create the desired shape form factor(s) of the antennas. The doping composition and directionality associated with the micron conductors within the loaded base resins can affect the electrical and structural characteristics of the antenna devices and can be precisely controlled by mold designs, gating and or protrusion design(s) and or during the molding process itself. In addition, the resin base can be selected to obtain the desired thermal characteristics such as very high melting point or specific thermal conductivity.
A resin-based sandwich laminate could also be fabricated with random or continuous webbed micron stainless steel fibers or other conductive fibers, forming a cloth like material. The webbed conductive fiber can be laminated or the like to materials such as Teflon, Polyesters, or any resin-based flexible or solid material(s), which when discretely designed in fiber content(s), orientation(s) and shape(s), will produce a very highly conductive flexible cloth-like material. Such a cloth-like material could also be used in forming antenna devices that could be embedded in a person's clothing as well as other resin materials such as rubber(s) or plastic(s). When using conductive fibers as a webbed conductor as part of a laminate or cloth-like material, the fibers may have diameters of between about 3 and 12 microns, typically between about 8 and 12 microns or in the range of about 10 microns, with length(s) that can be seamless or overlapping.
The conductive loaded resin-based material of the present invention can be made resistant to corrosion and/or metal electrolysis by selecting micron conductive fiber and/or micron conductive powder and base resin that are resistant to corrosion and/or metal electrolysis. For example, if a corrosion/electrolysis resistant base resin is combined with stainless steel fiber and carbon fiber/powder, then a corrosion and/or metal electrolysis resistant conductive loaded resin-based material is achieved. Another additional and important feature of the present invention is that the conductive loaded resin-based material of the present invention may be made flame retardant. Selection of a flame-retardant (FR) base resin material allows the resulting product to exhibit flame retardant capability. This is especially important in antenna device applications as described herein.
The homogeneous mixing of micron conductive fiber and/or micron conductive powder and base resin described in the present invention may also be described as doping. That is, the homogeneous mixing converts the typically non-conductive base resin material into a conductive material. This process is analogous to the doping process whereby a semiconductor material, such as silicon, can be converted into a conductive material through the introduction of donor/acceptor ions as is well known in the art of semiconductor devices. Therefore, the present invention uses the term doping to mean converting a typically non-conductive base resin material into a conductive material through the homogeneous mixing of micron conductive fiber and/or micron conductive powder into a base resin.
As an additional and important feature of the present invention, the molded conductor loaded resin-based material exhibits excellent thermal dissipation characteristics. Therefore, antenna devices manufactured from the molded conductor loaded resin-based material can provide added thermal dissipation capabilities to the application. For example, heat can be dissipated from electrical devices physically and/or electrically connected to an antenna device of the present invention.
As a significant advantage of the present invention, antenna devices constructed of the conductive loaded resin-based material can be easily interfaced to an electrical circuit or to ground. In one embodiment, a wire can be attached to a conductive loaded resin-based antenna device via a screw that is fastened to the antenna device. For example, a simple sheet-metal type, self tapping screw can, when fastened to the material, achieve excellent electrical connectivity via the conductive matrix of the conductive loaded resin-based material. To facilitate this approach a boss may be molded into the conductive loaded resin-based material to accommodate such a screw. Alternatively, if a solderable screw material, such as copper, is used, then a wire can be soldered to the screw that is embedded into the conductive loaded resin-based material. In another embodiment, the conductive loaded resin-based material is partly or completely plated with a metal layer. The metal layer forms excellent electrical conductivity with the conductive matrix. A connection of this metal layer to another circuit or to ground is then made. For example, if the metal layer is solderable, then a soldered connection may be made between the antenna device and a circuit wire or a grounding wire.
Referring now to
Each lobe 14 and 16 comprises conductive loaded resin-based material as described in the present invention. The conductive loaded resin-based material is easily formed into the multiple lobe design by molding processes such as injection molding, extrusion, and the like. As a result, a complex and very useful antenna design is achieved using a very simple and manufacturable process. The present invention antenna 10 is far easier to manufacture than metal wire, sheet, or tube alternatives known in the art. Further, the unique and complex shape of the antenna device 10 is preferably formed as a single, homogeneous piece of the conductive loaded resin-based material. The uniquely formulated conductive fiber network and polymer matrix generates an exceptional balance of low resistivity with excellent dielectric and resonance properties for the antenna device. These inherent capabilities of the novel conductive loaded resin-based material are useful for forming the antenna device with a large bandwidth and with an easily tunable frequency response. Further, the conductive loaded resin-based antenna device 10 is less susceptible to near field interference than a comparable metal device.
In the present invention, the novel conductive loaded resin-based material is combined with a unique, hemispherical lobe 14 and 16 arrangement to form a novel and very useful antenna 10. The antenna 10 exhibits an omni-directional field response about the central axis. The center, or resonant, frequency of operation, is easily tuned by scaling the dimensions of the antenna 10. A larger antenna 10 creates a lower center frequency. A smaller antenna 10 creates a higher center frequency. The omni-directional antenna 10 is useful for both transmitting and receiving signals throughout the allocated spectrum range from about 3 KHz to about 300 GHz. An exemplary hemispherical antenna 10 has been fabricated with a tuned operating range of between about 3 GHz and about 5 GHz. The omni-directional antenna 10 of the present invention is useful for a variety of communications applications.
As an optional feature, in one embodiment the conductive loaded resin-based antenna device 10 further comprises a metal layer overlying the antenna surfaces. This metal layer is used to alter the visual, mechanical, and/or electrical properties of the antenna. If used, the metal layer may be formed by plating or by coating. If the method of formation is metal plating, then the resin-based structural material of the conductive loaded, resin-based material is one that can be metal plated. There are many of the polymer resins that can be plated with metal layers. For example, GE Plastics, SUPEC, VALOX, ULTEM, CYCOLAC, UGIKRAL, STYRON, CYCOLOY are a few resin-based materials that can be metal plated. The metal layer may be formed by, for example, electroplating or physical vapor deposition.
Referring now to
If the conductors 112 and 116 are metal, such as metal wire, then the connection to the conductive loaded resin-based antenna devices 104 and 108 is made in any of several ways. In one embodiment, a pin, not shown, is embedded into the conductive loaded resin-based material by insert molding, ultrasonic welding, pressing, or other means. A connection with a metal wire 112 can easily be made to this pin and results in excellent contact to the conductive loaded resin-based antenna device 104. In another embodiment, a hole is formed in to the conductive loaded resin-based material either during the molding process or by a subsequent process step such as drilling, punching, or the like. A pin is placed into the hole and is then ultrasonically welded to form a permanent mechanical and electrical contact.
In yet another embodiment, a pin or even the wire 112 is soldered to the conductive loaded resin-based material. In this case, a hole is formed in the axis of the antenna devices 104 and 108. According to one embodiment, the hole is formed during the molding operation. In another embodiment, the hole is subsequently formed by drilling, stamping, punching, or the like. A solderable layer is then formed in the hole. The solderable layer is preferably formed by metal plating. The conductors 112 and 116 are placed into the hole and then mechanically and electrically bonded by point, wave, or reflow soldering. According to another embodiment, the coaxial central conductor 112 and/or shielding conductor 116 also comprises the conductive loaded resin-based material. In this embodiment, the conductors 112 and 116 are preferably co-molded with the antennas 104 and 108.
In a fifth embodiment 250, as shown in
Referring now to
Referring now to
Referring now to
The conductive loaded resin-based material of the present invention typically comprises a micron powder(s) of conductor particles and/or in combination of micron fiber(s) homogenized within a base resin host.
Referring now to
Similarly, a conductive, but cloth-like, material can be formed using woven or webbed micron stainless steel fibers, or other micron conductive fibers. These woven or webbed conductive cloths could also be sandwich laminated to one or more layers of materials such as Polyester(s), Teflon(s), Kevlar(s) or any other desired resin-based material(s). This conductive fabric may then be cut into desired shapes and sizes.
Antenna devices formed from conductive loaded resin-based materials can be formed or molded in a number of different ways including injection molding, extrusion or chemically induced molding or forming.
b shows a simplified schematic diagram of an extruder 70 for forming antenna devices using extrusion. Conductive loaded resin-based material(s) is placed in the hopper 80 of the extrusion unit 74. A piston, screw, press or other means 78 is then used to force the thermally molten or a chemically induced curing conductive loaded resin-based material through an extrusion opening 82 which shapes the thermally molten curing or chemically induced cured conductive loaded resin-based material to the desired shape. The conductive loaded resin-based material is then fully cured by chemical reaction or thermal reaction to a hardened or pliable state and is ready for use. Thermoplastic or thermosetting resin-based materials and associated processes may be used in molding the conductive loaded resin-based articles of the present invention.
The advantages of the present invention may now be summarized. An effective omni-directional antenna device is achieved. A method to form the omni-directional antenna device is achieved. The omni-directional antenna device is molded of conductive loaded resin-based materials. The characteristics of the omni-directional antenna device can be altered or the visual characteristics can be altered by forming a metal layer over the conductive loaded resin-based material. The methods to fabricate an omni-directional antenna device from a conductive loaded resin-based material incorporate various forms of the material. A method to fabricate an omni-directional antenna device from a conductive loaded resin-based material where the material is in the form of a fabric is achieved. The omni-directional antenna device is capable of monopole, dipole, planar, and other configurations. The omni-directional antenna device is easily integrated into an electronic appliance such as a camera, cell phone, GPS system, and the like.
As shown in the preferred embodiments, the novel methods and devices of the present invention provide an effective and manufacturable alternative to the prior art.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
This Patent Application claims priority to the U.S. Provisional Patent Application 60/496,765, filed on Aug. 21, 2003, which is herein incorporated by reference in its entirety. This Patent Application is a Continuation-in-Part of INT01-002CIP, filed as U.S. patent application Ser. No. 10/309,429, filed on Dec. 4, 2002, now U.S. Pat. No. 6,870,516 also incorporated by reference in its entirety, which is a Continuation-in-Part application filed as U.S. patent application Ser. No. 10/075,778, filed on Feb. 14, 2002, now U.S. Pat. No. 6,741,221 which claimed priority to U.S. Provisional Patent Applications Ser. No. 60/317,808, filed on Sep. 7, 2001, Ser. No. 60/269,414, filed on Feb. 16, 2001, and Ser. No. 60/268,822, filed on Feb. 15, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3916078 | Priaroggia | Oct 1975 | A |
4143377 | Salvat et al. | Mar 1979 | A |
4633265 | Wheeler | Dec 1986 | A |
5121129 | Lee et al. | Jun 1992 | A |
5534880 | Button et al. | Jul 1996 | A |
5771027 | Marks et al. | Jun 1998 | A |
6147660 | Elliott | Nov 2000 | A |
6147662 | Grabau et al. | Nov 2000 | A |
6717550 | Aisenbrey | Apr 2004 | B1 |
6741221 | Aisenbrey | May 2004 | B2 |
6870516 | Aisenbrey | Mar 2005 | B2 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20050078050 | Aisenbrey | Apr 2005 | A1 |
20060003667 | Aisenbrey | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
2377449 | Jul 2001 | GB |
200021470 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050007290 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60496765 | Aug 2003 | US | |
60317808 | Sep 2001 | US | |
60269414 | Feb 2001 | US | |
60268822 | Feb 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10309429 | Dec 2002 | US |
Child | 10900964 | US | |
Parent | 10075778 | Feb 2002 | US |
Child | 10309429 | US |