Low cost optical film stack

Abstract
A rearview assembly for a vehicle includes a housing for attachment to the vehicle, a glass element disposed in the housing and a display disposed behind the mirror element in the housing. The display contains a light source for emitting light, a first brightness enhancement film having a first plurality of prismatic elements extending in a first direction and positioned to receive light emitted from the light source, a diffuser configured to transmit about 97% of light from the first brightness enhancing film, a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the diffuser, and a display element disposed to receive light from the second brightness enhancement film with the display element having a second plurality of prismatic elements extending in a second direction. The first direction is substantially vertical and the second direction is substantially horizontal.
Description
FIELD OF THE INVENTION

The present disclosure generally relates to a backlight assembly for a display, and more particularly, to a rearview assembly for a vehicle having a display using the inventive backlight assembly.


SUMMARY OF THE INVENTION

According to one aspect of this disclosure, a backlight assembly for a display having a polarized transmission axis includes a light source for emitting light and a first brightness enhancement film having a plurality of prismatic elements extending in a first direction. The brightness enhancing film is positioned to receive light emitted from the light source. The backlight assembly also includes a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and a diffuser positioned to receive light exiting the first brightness enhancement film. Light exiting the diffuser enters the second brightness enhancement film.


According to another aspect of this disclosure, a display includes a light source for emitting light, a first brightness enhancement film having a plurality of prismatic elements extending in a first direction and positioned to receive light emitted from the light source, and a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the first brightness enhancement film. The display also includes a diffuser having a transmissivity to light of about 97%. The diffuser is disposed between the first brightness enhancing film and the second brightness enhancing film.


According to yet another aspect of this disclosure, a rearview assembly for a vehicle includes a housing for attachment to the vehicle, a glass element disposed in the housing and a display disposed behind the glass element in the housing. The display contains a light source for emitting light, a first brightness enhancement film having a first plurality of prismatic elements extending in a first direction and positioned to receive light emitted from the light source, a diffuser configured to transmit about 97% of light from the first brightness enhancing film, a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting the diffuser, and a display element disposed to receive light from the second brightness enhancement film with the display element having a second plurality of prismatic elements extending in a second direction. The first direction is substantially vertical and the second direction is substantially horizontal.


These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1A is a front perspective view of a rearview assembly having a display constructed according to the embodiments described herein;



FIG. 1B is a front elevational view of the rearview assembly shown in FIG. 1A;



FIG. 2 is a partially exploded top perspective view of the rearview assembly shown in FIG. 1A;



FIG. 3 is a schematic side view of a display and backlight assembly according to an embodiment described herein;



FIG. 4A is a polar plot of a luminance emitted by the rearview assembly according to one embodiment;



FIG. 4B is a polar plot of a luminance emitted by the rearview assembly according to another embodiment;



FIG. 4C is a polar plot of a luminance emitted by the rearview assembly according to yet another embodiment; and



FIG. 4D is a polar plot of a luminance emitted by the rearview assembly according to an additional embodiment.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a backlight assembly, particularly one adapted for use in a vehicle rearview assembly. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.


For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the disclosure as oriented in FIGS. 1A and 1B. Unless stated otherwise, the term “front” shall refer to the surface of the element closer to an intended viewer of the rearview assembly, and the term “rear” shall refer to the surface of the element further from the intended viewer of the rearview assembly. However, it is to be understood that the invention may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.


Backlight assemblies for liquid crystal displays (LCDs) are known, which include one or more brightness enhancement films (BEFs). A BEF is used to enhance the brightness of the display in one dimension. Thus, to enhance brightness in both dimensions of the display, a first BEF is used to enhance the brightness in the vertical direction and a second BEF is used to enhance the brightness in the horizontal direction. A BEF generally includes a plurality of parallel prismatic elements that extend one direction on one surface of a film. To enhance brightness in a vertical direction, the BEF is arranged so that its prisms extend horizontally. To enhance brightness in a horizontal direction, the BEF is arranged so that its prisms extend vertically. Thus, when enhancing the brightness in both dimensions of the display, the BEFs are arranged with their prismatic elements at a 90 degree angle relative to one another. Backlight assemblies for LCDs are generally known to include diffusers for diffusing light emitted by the backlight assembly. Diffusion of the light by the diffuser provides an even illumination by softening any high points of transmissivity of light within the LCD or BEFs. Diffusers are known to be located behind, or in front of, the BEFs. LCDs typically include polarizers such that light from a backlight is polarized and the LCD element selectively transmits light from the backlight based upon the orientation of the liquid crystal molecules in the element. Light that is transmitted through the LCD element has a polarization that is aligned with the polarized transmission axis of the LCD element. For example, if the polarized transmission axis of the LCD is vertical, vertically polarized light is selectively transmitted through the LCD. Likewise, if the polarized transmission axis of the LCD is horizontal, horizontally polarized light is selectively transmitted through the LCD.


A problem occurs in certain circumstances where a viewer of the LCD is at a high viewing angle with respect to a display plane of the LCD. Specifically, the luminance of the LCD may appear to change by a noticeable amount as the viewing angle changes. The embodiments described herein reduce this problem by altering the order in which the diffuser and the BEFs are positioned and can further reduce this problem through the use of a high transmissivity diffuser.



FIGS. 1A, 1B, and 2 show a rearview assembly 10 that includes a glass cover element 12, shown in the form of an optional mirror element 12, and a housing 30. Housing 30 is configured to be mounted via a mount 32 (FIG. 2) to a windscreen or header of a vehicle in the manner in which interior rearview mirror assemblies are typically mounted. As shown in FIG. 2, rearview assembly 10 includes a display module 18 positioned behind mirror/glass element 12 so as to project and display images therethrough. Rearview assembly 10 may also optionally include a bi-modal switch 200 (FIGS. 1A and 1B) configured to at least one of activate and deactivate the display module 18 and alter a position of the glass element 12 to alternate between a first position and a second position. Pivoting the rearview assembly 10 when the display module 18 is activated can reduce unwanted reflections that detract from the displayed image. In both day and night time driving conditions, unwanted reflections can occur (e.g., backgrounds with high levels of ambient light, and headlamps when the reflected images thereof may not line up with the headlamps shown in the display module 18).


As shown in FIG. 2, the glass element 12 is generally planar, with an outer perimeter 46 and a border 48 around the outer perimeter 46. The border 48 may incorporate a chrome ring or other similar finish to conceal a front shield 14 and other elements located behind the glass element 12 in the rearview assembly 10, including, without limitation, a seal on an electrochromic unit, an applique, foam adhesive, or pad printing. The border 48 may extend from the outer perimeter 46 of the glass element 12 to an outer edge 50 of a display 22. Alternatively, the border 48 may be narrower and not reach from the outer perimeter 46 to the outer edge 50 of the display 22 along at least some portions of the border 48. The perimeter of the glass element 12 may also have a ground edge, a beveled edge, or be frameless.


The glass element 12 may be an electro-optic element or an element such as a prism. One non-limiting example of an electro-optic element is an electrochromic medium, which includes at least one solvent, at least one anodic material, and at least one cathodic material. Typically, both of the anodic and cathodic materials are electroactive and at least one of them is electrochromic. It will be understood that regardless of its ordinary meaning, the term “electroactive” will be defined herein as a material that undergoes a modification in its oxidation state upon exposure to a particular electrical potential difference. Additionally, it will be understood that the term “electrochromic” will be defined herein, regardless of its ordinary meaning, as a material that exhibits a change in its extinction coefficient at one or more wavelengths upon exposure to a particular electrical potential difference. Electrochromic components, as described herein, include materials whose color or opacity are affected by electric current, such that when an electrical current is applied to the material, the color or opacity change from a first phase to a second phase. The electrochromic component may be a single-layer, single-phase component, multi-layer component, or multi-phase component, as described in U.S. Pat. No. 5,928,572 entitled “ELECTROCHROMIC LAYER AND DEVICES COMPRISING SAME,” U.S. Pat. No. 5,998,617 entitled “ELECTROCHROMIC COMPOUNDS,” U.S. Pat. No. 6,020,987 entitled “ELECTROCHROMIC MEDIUM CAPABLE OF PRODUCING A PRESELECTED COLOR,” U.S. Pat. No. 6,037,471 entitled “ELECTROCHROMIC COMPOUNDS,” U.S. Pat. No. 6,141,137 entitled “ELECTROCHROMIC MEDIA FOR PRODUCING A PRE-SELECTED COLOR,” U.S. Pat. No. 6,241,916 entitled “ELECTROCHROMIC SYSTEM,” U.S. Pat. No. 6,193,912 entitled “NEAR INFRARED-ABSORBING ELECTROCHROMIC COMPOUNDS AND DEVICES COMPRISING SAME,” U.S. Pat. No. 6,249,369 entitled “COUPLED ELECTROCHROMIC COMPOUNDS WITH PHOTOSTABLE DICATION OXIDATION STATES,” and U.S. Pat. No. 6,137,620 entitled “ELECTROCHROMIC MEDIA WITH CONCENTRATION ENHANCED STABILITY, PROCESS FOR THE PREPARATION THEREOF AND USE IN ELECTROCHROMIC DEVICES;” U.S. Patent Application Publication No. 2002/0015214 A1 entitled “ELECTROCHROMIC DEVICE;” and International Patent Application Nos. PCT/US98/05570 entitled “ELECTROCHROMIC POLYMERIC SOLID FILMS, MANUFACTURING ELECTROCHROMIC DEVICES USING SUCH SOLID FILMS, AND PROCESSES FOR MAKING SUCH SOLID FILMS AND DEVICES,” PCT/EP98/03862 entitled “ELECTROCHROMIC POLYMER SYSTEM,” and PCT/US98/05570 entitled “ELECTROCHROMIC POLYMERIC SOLID FILMS, MANUFACTURING ELECTROCHROMIC DEVICES USING SUCH SOLID FILMS, AND PROCESSES FOR MAKING SUCH SOLID FILMS AND DEVICES,” which are all incorporated herein by reference in their entirety. The glass element 12 may also be any other element having partially reflective, partially transmissive properties. To provide electric current to the glass element 12, electrical elements are provided on opposing sides of the element, to generate an electrical potential therebetween.


As shown in FIG. 2, rearview assembly 10 may further include a front shield 14 and a rear shield 16 that together function to shield radio frequency (RF) electromagnetic radiation and to provide support for the glass element 12 and the display module 18. The front and rear shields 14 and 16 are formed from one or more materials which are suitable to block RF radiation, including without limitation, steel. The display module 18 is disposed behind the front shield 14, with a display 22 viewable through an opening in the front shield 14. The components of display module 18 are described below with reference to FIG. 3.


The display 22 may be generally planar, with the outer edge 50 defining a front surface 78. The front surface 78 of the display 22 can be shaped to correspond to and fit within the shape of the viewing area of the rearview assembly 10. Alternatively, the display 22 may have a front surface 78 which fits within but is not complementary to the viewing area, for example, where the front surface 78 of the display 22 is generally rectangular and the front surface of the glass element 12 has a contoured outer perimeter 46. The distance between the outer edge 50 of the display 22 and the outer perimeter 46 of the glass element 12 is about 9 mm or less along at least a portion of the outer edge 50. In one embodiment, the display 22 has a viewable front surface 78 area, which is about 56 to about 70 percent of the viewing area of the glass element 12.


A glare sensor 102 may be provided in a location which receives light through the glass element 12, and which is not behind the display 22. The glare sensor 102 receives light from head lamps of a trailing vehicle, and measures information regarding the likely glare visible on the glass element 12 and communicates this information to the rearview assembly 10 so that the rearview assembly 10 can be optimized to allow viewing of the display 22 through the glass element 12. The glare sensor 102 could also be packaged at least partially within the housing 30 of the rearview assembly 10 and have a light guide which is configured to propagate light to the glare sensor 102. The glare sensor 102 could also be an imager on a rear portion of the vehicle, wherein a signal representative of the received light is communicated from the glare sensor 102 to the rearview assembly 10.


Additional details of the rearview assembly shown in FIGS. 1A, 1B, and 2 are disclosed in U.S. application Ser. No. 14/494,909 entitled “DISPLAY MIRROR ASSEMBLY,” filed on Dec. 15, 2014, on behalf of Ethan Lee et al., the entire disclosure of which is incorporated herein by reference.



FIG. 3 schematically illustrates an embodiment of a display module 18. As shown, a light source in the form of an LED light engine 110 is provided with an exit aperture from which light exits from the LED light engine 110. The LED light engine 110 may be a direct backlight or an edge-lit configuration. Coupled to the LED light engine 110 exit aperture is a first BEF 112 positioned to receive light from the LED light engine 110. The first BEF 112 has a plurality of prismatic elements extending in a first direction. A diffuser 114 is positioned to receive light from the first BEF 112 and diffuse the light toward a second BEF 116. The second BEF 116 is positioned to receive light exiting the diffuser 114 and is provided having a plurality of prismatic elements extending in a second direction. The second direction may be substantially perpendicular to the first direction. Display 22 is disposed to receive light from the second BEF 116. In some embodiments, the first direction of the plurality of prismatic elements is substantially vertical with respect to the rearview assembly 10 and the second direction of prismatic elements is substantially horizontal with respect to the rearview assembly 10. In other embodiments, the first direction is substantially horizontal and the second direction is substantially vertical with respect to the rearview assembly 10.


In the depicted embodiment, the diffuser 114 has a transmissivity to light greater than about 93% and more specifically between about 97% to about 98%. The diffuser 114 may have a thickness of about 115 microns, with about 100 microns of the thickness being a base film and about 15 microns being a diffuser film. The overall thickness of the diffuser may vary up to about 15 microns. The base film may include a polyethylene terephthalate base layer and a back coating which functions as an anti-static surface. The diffuser 114 may have a haze of between about 80% and 90%. Haze is a measurement of wide angle scattering of the light as it passes through diffusion films. In some embodiments, the haze is approximately 84% while in other embodiments it is about 89.5%. According to one example, the diffuser 114 may be a diffusion film available from Kimoto™ Corporation.


According to one example, the first and second BEFs 112 and 116 may each be a 90-50 BEF available from 3M Corporation, and display 22 may be an in plane switching type (IPS-Type) LCD. LED light engine 110 may take various forms such as a direct LED light engine such as disclosed in United States Patent Application Publication No. 2009/0096937 A1 entitled “VEHICLE REARVIEW ASSEMBLY INCLUDING A DISPLAY FOR DISPLAYING VIDEO CAPTURED BY A CAMERA AND USER INSTRUCTIONS,” filed on Aug. 18, 2008, on behalf of Frederick T. Bauer et al., the entire disclosure of which is incorporated herein by reference, or an edge-illuminated LED light engine such as disclosed in United States Patent Application Publication No. 2013/0321496 A1 entitled “SEGMENTED EDGE-LIT BACKLIGHT ASSEMBLY FOR A DISPLAY,” filed on May 29, 2012, on behalf of Andrew Weller et al., the entire disclosure of which is incorporated herein by reference.


Cross hatching may be reduced by providing an anti-glare polarizer, such as a Nitto Denko AGT1 anti-glare polarizer, on the front surface of the display. Such an anti-glare polarizer further reduces cross-hatching without reducing the intensity of the display 22.


When the rearview assembly 10 is used within a vehicle, it is typically viewed at an angle between about +15° to about +25° or about −15° to about −25° by a driver of the vehicle. Occupants of the front passenger seat of the vehicle typically view the assembly 10 at about a +40° to about a +50° angle or about a −40° to about a −50° angle. Positive designations of angles indicate viewing angles along the 0° horizontal axis, while negative designations of angles indicate viewing angles along the 180° horizontal axis. These angles can increase and decrease based on the length and positioning of the rearview assembly 10. Other occupants of the vehicle may view the display at angles ranging between about −25° to about −40° and about +25° to about +40°. Typically, the occupants of the vehicle view the rearview assembly 10 at a substantially horizontal angle with respect to the rearview assembly 10, with only about 1° to about 6° variation in the vertical viewing angle, and more specifically about 3°. In some situations, it is beneficial that all occupants of the vehicle may see information (e.g., digital compass, seatbelt indicator, weather data) displayed by the rearview assembly 10 with the maximum luminance possible.


The luminance of the rearview assembly 10 changes with respect to the angle at which it is viewed. Due to the geometry of the rearview assembly 10 and the proximity to front seat passengers, different portions of the display 22 may be simultaneously viewed at different angles by the same passenger. For example, a driver may view a driver-side portion of the assembly 10 at about a −15° angle and may view a passenger-side portion of the assembly 10 at about a −25° angle. The change in luminance across angles may lead to one portion of the rearview assembly 10 appearing darker than another, or may provide a lower luminance to one occupant than another. Additionally, the use of BEFs having prismatic elements oriented in different directions can lead to light cancellation zones. The light cancellation zones are perceived by the viewer as dark spots where the local illumination of the display 22 is lower than the surrounding display 22. Further, light is often emitted from the prior art displays at angles which are unlikely to be viewed by occupants of the vehicle and therefore the emitted light is used inefficiently. Accordingly, it is advantageous to produce a display module 18 which uses light efficiently and in a manner which does not produce dark spots within the range of likely viewable angles.


EXPERIMENTAL RESULTS

With reference to FIGS. 4A-4D, polar plots are shown depicting experimental results of luminance values obtained from several configurations of displays used in rearview mirror assembly 10. FIGS. 4A-C depict luminance values of prior art configurations of display modules where diffusers are placed behind or in front of two BEFs, respectively. Additionally, the prismatic elements of the first and second BEFs of the prior art displays are in a different order than the present disclosure. Further, the diffusers of the prior art embodiments have a lower transmissivity of light (e.g., about 75%) than the diffuser 114 of the present disclosure. Generally, the prior art configurations lead to a lower overall luminance, less uniform change in luminance with changing angle, and/or dark spots along the horizontal axis of the rearview assembly 10.


Depicted in FIG. 4A is a polar plot of the luminance of a prior art configuration of a display module for the rearview assembly 10. The display module includes, in order from back to front, a light source, a diffuser, a first BEF, and a second BEF. The diffuser has a transmissivity to light of about 75%. In this particular configuration, the first BEF has a plurality of vertical prismatic elements and the second BEF has a plurality of horizontal prismatic elements. As can be seen from the polar plot, the luminance undergoes a large change across the horizontal axis of the polar plot between the likely viewed angles with relation to the overall scale of values. In fact, the luminance change is about 853 cd/m2 to about 229 cd/m2 between a +10° and about +50° and about a −10° and about −50° along the horizontal axis of the plot. This results in a decrease of approximately 624 cd/m2, or about a 60% decrease in luminance, across the likely viewing angles. Additionally, it can be seen between the +40° and +50° viewing angle that the luminance decreases and then increases. This would result in a perceived dark spot for the viewer in addition to the viewer perceiving an overall shift in luminance across the rearview assembly 10. A similar effect is seen along the horizontal axis line between the −30° and −50° viewing angle.


Depicted in FIG. 4B is a polar plot of the luminance of another prior art embodiment of a display module having, in order from back to front, a light source, a first BEF, a second BEF, and a diffuser. The diffuser has a transmissivity to light of about 75%. In this particular configuration, the first BEF has a plurality of horizontal prismatic elements and the second BEF has a plurality of vertical prismatic elements. While the re-ordering of the BEFs and the diffuser removed the dark spots seen in FIG. 4A, light from the light source is still distributed into vertical viewing angles not likely to be readily perceived by an occupant of the vehicle. For example, for an occupant to observe the 40° viewing angle along the 90 degree axis, the driver's head would need to be against the ceiling or near the floor of the vehicle, both of which are unlikely viewing positions. Accordingly, because light is exiting the display at angles occupants are unlikely to observe, the assembly is inefficient because it could be directing that light toward the likely viewing angles along the horizontal axis, thus increasing the perceived luminance by the occupant.


With reference to FIG. 4C, depicted is a polar plot of the luminance of another prior art embodiment of a display module having, in order from back to front, a light source, a diffuser, a first BEF, a second BEF, and a polarized diffuser. In this particular configuration, the first BEF has a plurality of vertical prismatic elements and the second BEF has a plurality of horizontal prismatic elements. The diffuser has a transmissivity to light of approximately 75%. The polarized diffuser includes a polarizing layer and a diffusing layer. The polarized diffuser has a thickness between about 0.2 millimeters and about 1.0 millimeters leading to an overall increase in the thickness of the display module relative to other prior art display module embodiments. Additionally, the peak luminance values have been reduced to approximately 1067 cd/m2 due to the use of two diffusers, one of the diffusers having the additional polarizing layer. As can be seen in FIG. 4C, the luminance across the likely viewing angles undergoes a large decrease which would be perceived by a viewer of the display module.


Referring now to FIG. 4D, depicted is a polar plot of the luminance of the rearview assembly 10 incorporating an embodiment of the display module 18 described above. In the embodiment of the backlighting assembly that produced the depicted embodiment, the first BEF 112 is positioned adjacent the LED light engine 110 such that light emitted from the LED light engine 110 enters the first BEF 112. The first direction of prismatic elements on the first BEF 112 is substantially vertical. The diffuser 114, which has a transmissivity of greater than about 97%, is placed next to the first BEF 112 such that the directed light exiting the first BEF 112 is diffused by the diffuser 114. Finally, diffused light exits the diffuser 114 and enters the second BEF 116 which has a plurality of prismatic elements oriented in the second direction which is substantially horizontal with relation to the rearview assembly 10.


Referring again to FIG. 4D, the orientation and configuration of the first and second BEFs 112, 116 and the diffuser 114 spreads the light of the LED light engine 110 in an oblong pattern across the horizontal axis of the polar plot. As can be seen, between the likely viewed angles of about +25 degrees to about +50 degrees and about −25 degrees to about −50 degrees, the rearview assembly does not produce dark spots as in FIG. 4A. Additionally, by using diffuser 114 which has a transmissivity greater than about 95% in front of the first BEF 112, and behind the second BEF 116, the display 22 typically has greater overall luminance values, as well as increased luminance values across likely viewed angles, than the embodiments of FIGS. 4A-C. This means that more light from the LED engine 110 is making it to the display 22. By directing the light such that it is substantially emitted toward likely viewing angles, as done in the embodiment of FIG. 4C, the light is being used more efficiently than in the prior art designs.


Although disclosed with respect to a display having essentially the same full size as the glass element 12, the present disclosure may be used in displays of various sizes whether included in a rearview assembly or not. For example, the present invention may be incorporated in human-machine-interfaces, televisions, and other displays frequently viewed at an angle.


It will be appreciated that embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of a rearview assembly 10, as described herein. The non-processor circuits may include, but are not limited to, signal drivers, clock circuits, power source circuits, and/or user input devices. As such, these functions may be interpreted as steps of a method used in using or constructing a classification system. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, the methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein, will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.


According to one embodiment, a rearview mirror assembly for a vehicle includes a housing for attachment to the vehicle, a mirror element disposed in said housing and a display assembly disposed behind said mirror element in said housing. The display assembly includes the backlight assembly and a display element disposed to receive light from a second brightness enhancement film.


It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.


For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.


It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the claims as interpreted according to the principles of patent law, including the doctrine of equivalents.

Claims
  • 1. A backlight assembly for a display having a polarized transmission axis comprising: a light source for emitting light;a first brightness enhancement film having a plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from the light source;a second brightness enhancement film having a plurality of prismatic elements extending in a second direction; anda diffuser positioned to receive light exiting the first brightness enhancement film, wherein light exiting the diffuser enters the second brightness enhancement film.
  • 2. The backlight assembly of claim 1, wherein the first direction of the plurality of prismatic elements of the first brightness enhancement film is substantially vertical relative to the display.
  • 3. The backlight assembly of claim 2, wherein the second direction of the plurality of prismatic elements of the second brightness enhancement film is substantially horizontal relative to the display.
  • 4. The backlight assembly of claim 1, wherein the diffuser has a transmissivity greater than about 90%.
  • 5. The backlight assembly of claim 4, wherein the transmissivity of the diffuser is greater than about 95%.
  • 6. The backlight assembly of claim 3, wherein said light source is an LED light engine.
  • 7. The backlight assembly of claim 1, wherein the backlight assembly is configured to have a substantially uniform luminance between at least one of: about a +30 degree viewing angle and about a +50 degree viewing angle across a horizontal axis thereof; and about a −30 degree viewing angle and about a −50 degree viewing angle across a horizontal axis thereof.
  • 8. The backlight assembly of claim 1, wherein the display includes a display element disposed to receive light from said second brightness enhancement film.
  • 9. The backlight assembly of claim 8, wherein said display is a liquid crystal display.
  • 10. The backlight assembly of claim 9, wherein said liquid crystal display is an IPS-Type liquid crystal display.
  • 11. The backlight assembly of claim 1, wherein the first direction of the plurality of prismatic elements of the first brightness enhancement film is substantially vertical, the second direction of the plurality of prismatic elements of the second brightness enhancement film is substantially horizontal and the diffusor has a transmissivity greater than about 95%.
  • 12. A display comprising: a light source for emitting light;a first brightness enhancement film having a plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from said light source;a second brightness enhancement film having a plurality of prismatic elements extending in a second direction and positioned to receive light exiting said first brightness enhancement film; anda diffuser having a transmissivity to light of about 97%, wherein the diffuser is disposed between the first brightness enhancing film and the second brightness enhancing film,wherein the display is configured to have a substantially uniform luminance between at least one of: about a +30 degree viewing angle and about a +50 degree viewing angle across a horizontal axis thereof; and about a −30 degree viewing angle and about a −50 degree viewing angle across a horizontal axis thereof.
  • 13. The display of claim 12, further comprising: a display element, wherein said display element is an IPS-Type liquid crystal display.
  • 14. A rearview assembly for a vehicle comprising: a housing for attachment to the vehicle;a glass element disposed in said housing; anda display disposed behind said glass element in said housing, said display comprising: a light source for emitting light;a first brightness enhancement film having a first plurality of prismatic elements extending in a first direction, and positioned to receive light emitted from said light source;a diffuser configured to transmit about 97% of light from the first brightness enhancing film;a second brightness enhancement film having a second plurality of prismatic elements extending in a second direction and positioned to receive light exiting said diffuser; anda display element disposed to receive light from said second brightness enhancement film,wherein the first direction is substantially vertical and the second direction is substantially horizontal relative to the rearview assembly.
  • 15. The rearview assembly of claim 14, wherein said glass element is a mirror element.
  • 16. The rearview assembly of claim 15, wherein said mirror element is partially reflective and partially transmissive.
  • 17. The rearview assembly of claim 15, wherein said mirror element is an electrochromic mirror element.
  • 18. The rearview assembly of claim 14, wherein said light source is an LED light engine.
  • 19. The rearview assembly of claim 17, wherein said display element is a liquid crystal display.
  • 20. The rearview assembly of claim 15, wherein said liquid crystal display is an IPS-Type liquid crystal display.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/106,341, filed on Jan. 22, 2015, entitled “LOW COST OPTICAL FILM STACK,” the entire disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (468)
Number Name Date Kind
2131888 Harris Oct 1938 A
2632040 Rabinow Mar 1953 A
2827594 Rabinow Mar 1958 A
3179845 Kulwiec Apr 1965 A
3581276 Newman May 1971 A
3663819 Hicks et al. May 1972 A
4109235 Bouthors Aug 1978 A
4139801 Linares Feb 1979 A
4151526 Hinachi et al. Apr 1979 A
4214266 Myers Jul 1980 A
4236099 Rosenblum Nov 1980 A
4257703 Goodrich Mar 1981 A
4258979 Mahin Mar 1981 A
4277804 Robison Jul 1981 A
4286308 Wolff Aug 1981 A
4310851 Pierrat Jan 1982 A
4357558 Massoni et al. Nov 1982 A
4376909 Tagami et al. Mar 1983 A
4479173 Rumpakis Oct 1984 A
4499451 Suzuki et al. Feb 1985 A
4599544 Martin Jul 1986 A
4638287 Umebayashi et al. Jan 1987 A
4645975 Meitzler et al. Feb 1987 A
4665321 Chang et al. May 1987 A
4665430 Hiroyasu May 1987 A
4692798 Seko et al. Sep 1987 A
4716298 Etoh Dec 1987 A
4727290 Smith et al. Feb 1988 A
4740838 Mase et al. Apr 1988 A
4768135 Kretschmer et al. Aug 1988 A
4862037 Farber et al. Aug 1989 A
4891559 Matsumoto et al. Jan 1990 A
4910591 Petrossian et al. Mar 1990 A
4930742 Schofield et al. Jun 1990 A
4934273 Endriz Jun 1990 A
4967319 Seko Oct 1990 A
5005213 Hanson et al. Apr 1991 A
5008946 Ando Apr 1991 A
5027200 Petrossian et al. Jun 1991 A
5036437 Macks Jul 1991 A
5072154 Chen Dec 1991 A
5086253 Lawler Feb 1992 A
5096287 Kakinami et al. Mar 1992 A
5121200 Choi et al. Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5166681 Bottesch et al. Nov 1992 A
5182502 Slotkowski et al. Jan 1993 A
5187383 Taccetta et al. Feb 1993 A
5197562 Kakinami et al. Mar 1993 A
5230400 Kakainami et al. Jul 1993 A
5235178 Hegyi Aug 1993 A
5243417 Pollard Sep 1993 A
5289321 Secor Feb 1994 A
5296924 Blancard et al. Mar 1994 A
5304980 Maekawa Apr 1994 A
5329206 Slotkowski et al. Jul 1994 A
5347261 Adell Sep 1994 A
5347459 Greenspan et al. Sep 1994 A
5355146 Chiu et al. Oct 1994 A
5379104 Takao Jan 1995 A
5386285 Asayama Jan 1995 A
5396054 Krichever et al. Mar 1995 A
5402170 Parulski et al. Mar 1995 A
5408357 Beukema Apr 1995 A
5414461 Kishi et al. May 1995 A
5416318 Hegyi May 1995 A
5418610 Fischer May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5428464 Silverbrook Jun 1995 A
5430450 Holmes Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5451822 Bechtel et al. Sep 1995 A
5452004 Roberts Sep 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475441 Parulski et al. Dec 1995 A
5475494 Nishida et al. Dec 1995 A
5481268 Higgins Jan 1996 A
5483346 Butzer Jan 1996 A
5483453 Uemura et al. Jan 1996 A
5485155 Hibino Jan 1996 A
5485378 Franke et al. Jan 1996 A
5488496 Pine Jan 1996 A
5508592 Lapatovich et al. Apr 1996 A
5515448 Nishitani May 1996 A
5523811 Wada et al. Jun 1996 A
5530421 Marshall et al. Jun 1996 A
5535144 Kise Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5541724 Hoashi Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5554912 Thayer et al. Sep 1996 A
5574443 Hsieh Nov 1996 A
5574463 Shirai et al. Nov 1996 A
5576975 Sasaki et al. Nov 1996 A
5587929 League et al. Dec 1996 A
5592146 Kover, Jr. et al. Jan 1997 A
5602542 Windmann et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5615023 Yang Mar 1997 A
5617085 Tsutsumi et al. Apr 1997 A
5621460 Hatlestad et al. Apr 1997 A
5634709 Iwama Jun 1997 A
5642238 Sala Jun 1997 A
5646614 Abersfelder et al. Jul 1997 A
5650765 Park Jul 1997 A
5660454 Mori et al. Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5680123 Lee Oct 1997 A
5684473 Hibino et al. Nov 1997 A
5707129 Kobayashi Jan 1998 A
5708410 Blank et al. Jan 1998 A
5708857 Ishibashi Jan 1998 A
5710565 Shirai et al. Jan 1998 A
5714751 Chen Feb 1998 A
5715093 Schierbeek et al. Feb 1998 A
5729194 Spears et al. Mar 1998 A
5736816 Strenke et al. Apr 1998 A
5745050 Nakagawa Apr 1998 A
5751211 Shirai et al. May 1998 A
5751832 Panter et al. May 1998 A
5754099 Nishimura et al. May 1998 A
5760828 Cortes Jun 1998 A
5764139 Nojima et al. Jun 1998 A
5767793 Agravante et al. Jun 1998 A
5781105 Bitar et al. Jul 1998 A
5786787 Eriksson et al. Jul 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5798727 Shirai et al. Aug 1998 A
5811888 Hsieh Sep 1998 A
5812321 Schierbeek et al. Sep 1998 A
5837994 Stam et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5845000 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5867214 Anderson et al. Feb 1999 A
5877897 Schofield et al. Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5904729 Ruzicka May 1999 A
5905457 Rashid May 1999 A
5912534 Benedict Jun 1999 A
5923027 Stam et al. Jul 1999 A
5935613 Benham et al. Aug 1999 A
5940011 Agravante et al. Aug 1999 A
5942853 Piscart Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956079 Ridgley Sep 1999 A
5956181 Lin Sep 1999 A
5959555 Furuta Sep 1999 A
5990469 Bechtel et al. Nov 1999 A
6008486 Stam et al. Dec 1999 A
6009359 El-Hakim et al. Dec 1999 A
6018308 Shirai Jan 2000 A
6025872 Ozaki et al. Feb 2000 A
6046766 Sakata Apr 2000 A
6049171 Stam et al. Apr 2000 A
6060989 Gehlot May 2000 A
6061002 Weber et al. May 2000 A
6067111 Hahn et al. May 2000 A
6072391 Suzuki et al. Jun 2000 A
6078355 Zengel Jun 2000 A
6097023 Schofield et al. Aug 2000 A
6102546 Carter Aug 2000 A
6106121 Buckley et al. Aug 2000 A
6111498 Jobes et al. Aug 2000 A
6115651 Cruz Sep 2000 A
6122597 Saneyoshi et al. Sep 2000 A
6128576 Nishimoto et al. Oct 2000 A
6130421 Bechtel et al. Oct 2000 A
6130448 Bauer et al. Oct 2000 A
6140933 Bugno et al. Oct 2000 A
6144158 Beam Nov 2000 A
6151065 Steed et al. Nov 2000 A
6151539 Bergholz et al. Nov 2000 A
6154149 Tychkowski et al. Nov 2000 A
6157294 Urai et al. Dec 2000 A
6166629 Hamma Dec 2000 A
6166698 Turnbull et al. Dec 2000 A
6167755 Damson et al. Jan 2001 B1
6172600 Kakinami et al. Jan 2001 B1
6172601 Wada et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6184781 Ramakesavan Feb 2001 B1
6185492 Kagawa et al. Feb 2001 B1
6191704 Takenaga et al. Feb 2001 B1
6200010 Anders Mar 2001 B1
6218934 Regan Apr 2001 B1
6222447 Schofield et al. Apr 2001 B1
6249214 Kashiwazaki Jun 2001 B1
6250766 Strumolo et al. Jun 2001 B1
6255639 Stam et al. Jul 2001 B1
6259475 Ramachandran et al. Jul 2001 B1
6265968 Betzitza et al. Jul 2001 B1
6268803 Gunderson et al. Jul 2001 B1
6269308 Kodaka et al. Jul 2001 B1
6281632 Stam et al. Aug 2001 B1
6281804 Haller et al. Aug 2001 B1
6289332 Menig et al. Sep 2001 B2
6300879 Regan et al. Oct 2001 B1
6304173 Pala et al. Oct 2001 B2
6317057 Lee Nov 2001 B1
6320612 Young Nov 2001 B1
6324295 Valery et al. Nov 2001 B1
6329925 Skiver et al. Dec 2001 B1
6330511 Ogura et al. Dec 2001 B2
6335680 Matsuoka Jan 2002 B1
6344805 Yasui et al. Feb 2002 B1
6348858 Weis et al. Feb 2002 B2
6349782 Sekiya et al. Feb 2002 B1
6356206 Takenaga et al. Mar 2002 B1
6356376 Tonar et al. Mar 2002 B1
6357883 Strumolo et al. Mar 2002 B1
6363326 Scully Mar 2002 B1
6369701 Yoshida et al. Apr 2002 B1
6379013 Bechtel et al. Apr 2002 B1
6396040 Hill May 2002 B1
6396397 Bos et al. May 2002 B1
6403942 Stam Jun 2002 B1
6408247 Ichikawa et al. Jun 2002 B1
6412959 Tseng Jul 2002 B1
6415230 Maruko et al. Jul 2002 B1
6421081 Markus Jul 2002 B1
6424272 Gutta et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6424892 Matsuoka Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6433680 Ho Aug 2002 B1
6437688 Kobayashi Aug 2002 B1
6438491 Farmer Aug 2002 B1
6441872 Ho Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6443602 Tanabe et al. Sep 2002 B1
6447128 Lang et al. Sep 2002 B1
6452533 Yamabuchi et al. Sep 2002 B1
6463369 Sadano et al. Oct 2002 B2
6465962 Fu et al. Oct 2002 B1
6466701 Ejiri et al. Oct 2002 B1
6469739 Bechtel et al. Oct 2002 B1
6472977 Pochmuller Oct 2002 B1
6473001 Blum Oct 2002 B1
6476731 Miki et al. Nov 2002 B1
6476855 Yamamoto Nov 2002 B1
6483429 Yasui et al. Nov 2002 B1
6483438 DeLine et al. Nov 2002 B2
6487500 Lemelson et al. Nov 2002 B2
6491416 Strazzanti Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6501387 Skiver et al. Dec 2002 B2
6507779 Breed et al. Jan 2003 B2
6515581 Ho Feb 2003 B1
6515597 Wada et al. Feb 2003 B1
6520667 Mousseau Feb 2003 B1
6522969 Kannonji Feb 2003 B2
6542085 Yang Apr 2003 B1
6542182 Chutorash Apr 2003 B1
6545598 De Villeroche Apr 2003 B1
6550943 Strazzanti Apr 2003 B2
6553130 Lemelson et al. Apr 2003 B1
6558026 Strazzanti May 2003 B2
6559761 Miller et al. May 2003 B1
6572233 Northman et al. Jun 2003 B1
6575643 Takahashi Jun 2003 B2
6580373 Ohashi Jun 2003 B1
6581007 Hasegawa et al. Jun 2003 B2
6583730 Lang et al. Jun 2003 B2
6587573 Stam et al. Jul 2003 B1
6591192 Okamura et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6594614 Studt et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611227 Nebiyeloul-Kifle Aug 2003 B1
6611610 Stam et al. Aug 2003 B1
6611759 Brosche Aug 2003 B2
6614387 Deadman Sep 2003 B1
6616764 Kramer et al. Sep 2003 B2
6617564 Ockerse et al. Sep 2003 B2
6618672 Sasaki et al. Sep 2003 B2
6630888 Lang et al. Oct 2003 B2
6631316 Stam et al. Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6642840 Lang et al. Nov 2003 B2
6642851 Deline et al. Nov 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6665592 Kodama Dec 2003 B2
6670207 Roberts Dec 2003 B1
6670910 Delcheccolo et al. Dec 2003 B2
6674370 Rodewald et al. Jan 2004 B2
6675075 Engelsberg et al. Jan 2004 B1
6677986 Pöchmüller Jan 2004 B1
6683539 Trajkovic et al. Jan 2004 B2
6683969 Nishigaki et al. Jan 2004 B1
6690268 Schofield et al. Feb 2004 B2
6690413 Moore Feb 2004 B1
6693517 McCarty et al. Feb 2004 B2
6693518 Kumata Feb 2004 B2
6693519 Keirstead Feb 2004 B2
6693524 Payne Feb 2004 B1
6717610 Bos et al. Apr 2004 B1
6727808 Uselmann et al. Apr 2004 B1
6727844 Zimmermann et al. Apr 2004 B1
6731332 Yasui et al. May 2004 B1
6734807 King May 2004 B2
6737964 Samman et al. May 2004 B2
6738088 Uskolovsky et al. May 2004 B1
6744353 Sjonell Jun 2004 B2
6772057 Breed et al. Aug 2004 B2
6774988 Stam et al. Aug 2004 B2
6846098 Bourdelais et al. Jan 2005 B2
6847487 Burgner Jan 2005 B2
6861809 Stam Mar 2005 B2
6902307 Strazzanti Jun 2005 B2
6912001 Okamoto et al. Jun 2005 B2
6913375 Strazzanti Jul 2005 B2
6923080 Dobler et al. Aug 2005 B1
6930737 Weindorf et al. Aug 2005 B2
6946978 Schofield Sep 2005 B2
7012543 DeLine et al. Mar 2006 B2
7038577 Pawlicki et al. May 2006 B2
7046448 Burgner May 2006 B2
7175291 Li Feb 2007 B1
7255465 DeLine et al. Aug 2007 B2
7262406 Heslin et al. Aug 2007 B2
7265342 Heslin et al. Sep 2007 B2
7292208 Park et al. Nov 2007 B1
7311428 DeLine et al. Dec 2007 B2
7321112 Stam et al. Jan 2008 B2
7360932 Uken et al. Apr 2008 B2
7417221 Creswick et al. Aug 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7467883 DeLine et al. Dec 2008 B2
7468651 DeLine et al. Dec 2008 B2
7505047 Yoshimura Mar 2009 B2
7533998 Schofield et al. May 2009 B2
7548291 Lee et al. Jun 2009 B2
7565006 Stam et al. Jul 2009 B2
7567291 Bechtel et al. Jul 2009 B2
7579940 Schofield et al. Aug 2009 B2
7653215 Stam Jan 2010 B2
7658521 DeLine et al. Feb 2010 B2
7683326 Stam et al. Mar 2010 B2
7711479 Taylor et al. May 2010 B2
7719408 DeWard et al. May 2010 B2
7720580 Higgins-Luthman May 2010 B2
7815326 Blank et al. Oct 2010 B2
7877175 Higgins-Luthman Jan 2011 B2
7881839 Stam et al. Feb 2011 B2
7888629 Heslin et al. Feb 2011 B2
7914188 DeLine et al. Mar 2011 B2
7972045 Schofield Jul 2011 B2
7994471 Heslin et al. Aug 2011 B2
8031225 Watanabe et al. Oct 2011 B2
8045760 Stam et al. Oct 2011 B2
8059235 Utsumi et al. Nov 2011 B2
8063753 Deline et al. Nov 2011 B2
8090153 Schofield et al. Jan 2012 B2
8100568 Deline et al. Jan 2012 B2
8116929 Higgins-Luthman Feb 2012 B2
8120652 Bechtel et al. Feb 2012 B2
8142059 Higgins-Luthman et al. Mar 2012 B2
8162518 Schofield Apr 2012 B2
8201800 Filipiak Jun 2012 B2
8203433 Deuber et al. Jun 2012 B2
8217830 Lynam Jul 2012 B2
8222588 Schofield et al. Jul 2012 B2
8237909 Ostreko et al. Aug 2012 B2
8258433 Byers et al. Sep 2012 B2
8282226 Blank et al. Oct 2012 B2
8325028 Schofield et al. Dec 2012 B2
8339526 Minikey, Jr. Dec 2012 B2
8421950 Kim Apr 2013 B2
8482683 Hwang et al. Jul 2013 B2
20010019356 Takeda et al. Sep 2001 A1
20010022616 Rademacher et al. Sep 2001 A1
20010026316 Senatore Oct 2001 A1
20010045981 Gloger et al. Nov 2001 A1
20020040962 Schofield et al. Apr 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020191127 Roberts et al. Dec 2002 A1
20030002165 Mathias et al. Jan 2003 A1
20030007261 Hutzel et al. Jan 2003 A1
20030016125 Lang et al. Jan 2003 A1
20030016287 Nakayama et al. Jan 2003 A1
20030025596 Lang et al. Feb 2003 A1
20030025597 Schofield Feb 2003 A1
20030030546 Tseng Feb 2003 A1
20030030551 Ho Feb 2003 A1
20030030724 Okamoto Feb 2003 A1
20030035050 Mizusawa Feb 2003 A1
20030043269 Park Mar 2003 A1
20030052969 Satoh et al. Mar 2003 A1
20030058338 Kawauchi et al. Mar 2003 A1
20030067383 Yang Apr 2003 A1
20030076415 Strumolo Apr 2003 A1
20030080877 Takagi et al. May 2003 A1
20030085806 Samman et al. May 2003 A1
20030088361 Sekiguchi May 2003 A1
20030090568 Pico May 2003 A1
20030090569 Poechmueller May 2003 A1
20030090570 Takagi et al. May 2003 A1
20030098908 Misaiji et al. May 2003 A1
20030103141 Bechtel et al. Jun 2003 A1
20030103142 Hitomi et al. Jun 2003 A1
20030117522 Okada Jun 2003 A1
20030122929 Minaudo et al. Jul 2003 A1
20030122930 Schofield et al. Jul 2003 A1
20030133014 Mendoza Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030141965 Gunderson et al. Jul 2003 A1
20030146831 Berberich et al. Aug 2003 A1
20030169158 Paul, Jr. Sep 2003 A1
20030179293 Oizumi Sep 2003 A1
20030202096 Kim Oct 2003 A1
20030202357 Strazzanti Oct 2003 A1
20030214576 Koga Nov 2003 A1
20030214584 Ross, Jr. Nov 2003 A1
20030214733 Fujikawa et al. Nov 2003 A1
20030222793 Tanaka et al. Dec 2003 A1
20030222983 Nobori et al. Dec 2003 A1
20030227546 Hilborn et al. Dec 2003 A1
20040004541 Hong Jan 2004 A1
20040027695 Lin Feb 2004 A1
20040032321 McMahon et al. Feb 2004 A1
20040036768 Green Feb 2004 A1
20040051634 Schofield et al. Mar 2004 A1
20040056955 Berberich et al. Mar 2004 A1
20040057131 Hutzel et al. Mar 2004 A1
20040064241 Sekiguchi Apr 2004 A1
20040066285 Sekiguchi Apr 2004 A1
20040075603 Kodama Apr 2004 A1
20040080404 White Apr 2004 A1
20040080431 White Apr 2004 A1
20040085196 Milelr et al. May 2004 A1
20040090314 Iwamoto May 2004 A1
20040090317 Rothkop May 2004 A1
20040096082 Nakai et al. May 2004 A1
20040098196 Sekiguchi May 2004 A1
20040107030 Nishira et al. Jun 2004 A1
20040107617 Shoen et al. Jun 2004 A1
20040109060 Ishii Jun 2004 A1
20040114039 Ishikura Jun 2004 A1
20040119668 Homma et al. Jun 2004 A1
20040125905 Vlasenko et al. Jul 2004 A1
20040202001 Roberts et al. Oct 2004 A1
20050140855 Utsumi Jun 2005 A1
20050237440 Sugimura et al. Oct 2005 A1
20060007550 Tonar et al. Jan 2006 A1
20060115759 Kim et al. Jun 2006 A1
20060139953 Chou et al. Jun 2006 A1
20060158899 Ayabe et al. Jul 2006 A1
20070171037 Schofield et al. Jul 2007 A1
20080068520 Minikey, Jr. et al. Mar 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080247192 Hoshi et al. Oct 2008 A1
20080294315 Breed Nov 2008 A1
20090015736 Weller et al. Jan 2009 A1
20090141516 Wu et al. Jun 2009 A1
20100201896 Ostreko et al. Aug 2010 A1
20130028473 Hilldore et al. Jan 2013 A1
20130279014 Fish, Jr. et al. Oct 2013 A1
20130329401 Yamamoto Dec 2013 A1
20140347488 Tazaki et al. Nov 2014 A1
20150293272 Pham Oct 2015 A1
Foreign Referenced Citations (12)
Number Date Country
0513476 Nov 1992 EP
0899157 Mar 1999 EP
2378350 Nov 2013 EP
2338363 Dec 1999 GB
1178693 Mar 1999 JP
2005148119 Jun 2005 JP
2005327600 Nov 2005 JP
2008139819 Jun 2008 JP
200743875 Dec 2007 TW
9621581 Jul 1996 WO
2007103573 Sep 2007 WO
2010090964 Aug 2010 WO
Non-Patent Literature Citations (18)
Entry
TW 200743875—Dec. 1, 2007, English Translation.
Palalau et al., “FPD Evaluation for Automotive Application,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 97-103, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Adler, “A New Automotive AMLCD Module,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 67-71, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Sayer, et al., “In-Vehicle Displays for Crash Avoidance and Navigation Systems,” Proceedings of the Vehicle Display Symposium, Sep. 18, 1996, pp. 39-42, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Knoll, et al., “Application of Graphic Displays in Automobiles,” SID 87 Digest, 1987, pp. 41-44, 5A.2.
Terada, et al., “Development of Central Information Display of Automotive Application,” SID 89 Digest, 1989, pp. 192-195, Society for Information Display, Detroit Center, Santa Ana, CA.
Thomsen, et al., “AMLCD Design Considerations for Avionics and Vetronics Applications,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 139-145, Society for Information Display, Metropolitan Detroit Chapter, CA.
Knoll, et al., “Conception of an Integrated Driver Information System,” SID International Symposium Digest of Technical Papers, 1990, pp. 126-129, Society for Information Display, Detroit Center, Santa Ana, CA.
Vincen, “An Analysis of Direct-View FPDs for Automotive Multi-Media Applications,” Proceedings of the 6th Annual Strategic and Technical Symposium “Vehicular Applications of Displays and Microsensors,” Sep. 22-23, 1999, pp. 39-46, Society for Information Display, Metropolitan Detroit Chapter, San Jose, CA.
Zuk, et al., “Flat Panel Display Applications in Agriculture Equipment,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 125-130, Society for Information Display, Metropolitan Detroit Chapter, CA.
Vijan, et al., “A 1.7-Mpixel Full-Color Diode Driven AM-LCD,” SID International Symposium, 1990, pp. 530-533, Society for Information Display, Playa del Rey, CA.
Vincen, “The Automotive Challenge to Active Matrix LCD Technology,” Proceedings of the Vehicle Display Symposium, 1996, pp. 17-21, Society for Information Display, Detroit Center, Santa Ana, CA.
Corsi, et al., “Reconfigurable Displays Used as Primary Automotive Instrumentation,” SAE Technical Paper Series, 1989, pp. 13-18, Society of Automotive Engineers, Inc., Warrendale, PA.
Schumacher, “Automotive Display Trends,” SID 96 Digest, 1997, pp. 1-6, Delco Electronics Corp., Kokomo, IN.
Knoll, “The Use of Displays in Automotive Applications,” Journal of the SID 5/3 1997, pp. 165-172, 315-316, Stuttgart, Germany.
Donofrio, “Looking Beyond the Dashboard,” SID 2002, pp. 30-34, Ann Arbor, MI.
Stone, “Automotive Display Specification,” Proceedings of the Vehicle Display Symposium, 1995, pp. 93-96, Society for Information Display, Detroit Center, Santa Ana, CA.
International Searching Authority; Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration; May 5, 2016; 9 pages; Russia.
Related Publications (1)
Number Date Country
20160216560 A1 Jul 2016 US
Provisional Applications (1)
Number Date Country
62106341 Jan 2015 US