The present invention relates to a low divergence diode laser.
Edge-emitting diode lasers generally produce laser beams with an elliptical cross-section and a large divergence in the growth direction, i.e., perpendicular to the substrate upon which the layers of the laser are grown. For example, semiconductor quantum well lasers with output wavelengths of about 870-980 nanometers (nm) generally have an optical field distribution spot size of approximately 0.4-0.6 micrometer (μm), while the size of the quantum well in the growth direction is only about 6-10 nm. Light with wavelengths of about 870-980 nm is thus strongly diffracted, producing a large beam divergence of approximately 30-40° in the growth or transverse (vertical) direction. This large beam divergence degrades the coupling efficiency of the laser diode with single mode optical fibers. There is therefore a need for efficient diode lasers with transverse beam divergences of at most about 20-30°.
The beam divergence of a diode laser can be reduced by spreading the optical field over a larger range of depths with respect to the substrate or growth direction. However, the optical field is restricted by waveguiding resulting from confinement layers located above and below the active layer containing the quantum wells from which photons are emitted. These confinement layers are generally about 1-1.5 μm thick and their refractive index is lower than the refractive index of the active layer. If the optical field distribution is spread, the thickness of these confinement layers usually needs to be increased correspondingly because the decay of the optical field distribution in these confinement layers should be large enough to prevent significant leakage into the high refractive index, high loss n++ GaAs substrate, p++ GaAs contact layer and metal layers. Performance parameters such as internal loss, efficiency and threshold current are degraded by optical leakage into such lossy layers. However, the thickness of the confinement layers is limited by the total thickness that can be practically grown. For example, extremely thick layers tend to develop undesirable morphological features such as pinholes, and undulations, and suffer from particulate contamination. Moreover, thick layers generally have unacceptably high series resistance.
It is desired, therefore, to provide a diode laser with a transverse beam divergence of less than about 28° that alleviates one or more difficulties of the prior art, or at least to provide a useful alternative to existing diode lasers.
In accordance with one aspect of the present invention, there is provided a diode laser formed by a plurality of layers including n-type layers and p-type layers, the plurality of layers having a substantially asymmetric refractive index profile with respect to a growth direction of the layers, so as to generate an optical field having a distribution with a larger fraction in n-type layers than in p-type layers of the laser, and the plurality of layers being configured to generate a beam with a divergence of less than about 28° in the growth direction.
Preferably, the plurality of layers includes an active layer for generating the optical field, a trap layer for attracting the optical field, and a separation layer between the active layer and the trap layer for repelling the optical field.
Preferably, the length of the laser is at least about 1 mm, and the plurality of layers is configured so that the threshold current density of the laser is less than about 400 Amp per centimeter squared (A cm−2).
In another aspect of the invention, the plurality of layers is configured to generate a beam with a transverse divergence of at most about 17° and a spot size of at least about 0.8 μm, the laser having an internal loss of approximately 1.5 cm−1 or less.
In still another aspect of the invention, the plurality of layers is configured to generate a beam with a transverse divergence of at most about 13° and a spot size of at least about 1.1 μm, the laser having an internal loss of approximately 1.2 cm−1 or less.
Various preferred embodiments of the present invention improve on the prior art by including an asymmetric layer structure around the active region, such that a larger fraction of the optical field is in the n-type layers of the structure below the active region than is in the p-type layers above the active region, and configured to provide a low transverse beam divergence. These embodiments can be designed to have a low internal loss, a reasonably low threshold current density and a relatively large spot size to allow for high power operation.
Certain preferred embodiments of the present invention generally exhibit threshold current densities of about 300-370 A cm−2, depending on device length. The spot size of the beam generated by the laser is approximated by d/Γ, where d is the quantum well width, and Γ is the confinement factor. A spot size is ≈1 μm, compared with values of approximately 0.4-0.6 μm for prior art structures designed for high power operation, thus conferring a higher resistance to catastrophic optical damage (COD). Lasers produced in accordance with the invention are particularly suited for high power applications such as materials processing, medicine, and optical communications, such as 980 nm pump lasers for Er-doped fiber amplifiers.
Preferred embodiments of the present invention are hereinafter described, by way of example only, with reference to the accompanying drawings, wherein:
A ridge diode laser, as shown in the cross-section view of
Electrical contact to the laser is facilitated by a p++ GaAs contact layer 7. The layers 2 to 7 are grown on an n++ GaAs substrate wafer 1 by a suitable epitaxial method such as metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or chemical beam epitaxy (CBE). Table 1 provides more detail of the diode laser structure, including the purpose, composition, thickness, conductivity type, doping concentration and confinement factor Γ of each layer, including spacer and grading layers not shown in FIG. 1. With the exception of the In0.2Ga0.80As quantum wells in the active layer 5, the compositions are indicated by the fractional content x of Al in the grown AlxGa1-xAs layers.
After growing these layers 2 to 7, a ridge structure 8 is fabricated by masked chemical etching through the GaAs contact layer 7 and part of the p-type confinement layer 6 to produce an elongated ridge 8 with a width of about 50 μm and a length (into the page in
The depth profiles of refractive index 20 and optical field distribution 22 in the diode laser are shown as a function of total growth thickness in FIG. 2. The asymmetrical layer structure around the active layer 5 produces an asymmetric refractive index profile 20. In general, regions of relatively high refractive index attract the optical field, whilst regions of relatively low refractive index repel or guide the optical field away into higher refractive index layers. The reference numerals labelling various portions of the refractive index profile 20 are those of the corresponding layers shown in FIG. 1. The region from about 4-6 μm in
The corresponding optical field depth distribution 22 within the laser, as shown in
In addition, the asymmetric structure is suited to high power operation. This is important because high power laser diodes, such as those emitting laser radiation at about 980 nm for pumping applications, operate very close to the power threshold for catastrophic optical mirror damage (COD). The lifetime of a diode laser critically depends on how close it operates to the COD threshold, which is directly proportional to the optical spot size. The spreading of the optical field naturally increases the spot size, thus increasing the power threshold for COD. The challenge is to increase the spot size in such a way that the corresponding increase of the threshold current density is tolerable for high power operation. In conventional structures optimised for high power operation, the typical spot size is about 0.4-0.6 μm and the corresponding transverse divergence is approximately 28-30°. In conventional structures designed for low threshold operation, the divergence increases to values of about 30-40° due to the tighter confinement of the light around the active region. For the asymmetric diode laser structure of Table 1, the spot size is given by d/Γ=0.82 μm, where d, and Γ are the thickness and the confinement factor of the active region 5, respectively. Thus, the structure is suited to high power operation. Moreover, the transverse divergence of the laser is only about 17°. This low divergence is suitable for coupling the laser to optical fibers without incurring significant coupling losses.
The differential efficiency of a diode laser is defined as
where P is the laser output power, I is the laser drive current,
is the slope of the optical power output versus injection current graph, Eg is the band gap, and ηint is the internal quantum efficiency, which is ˜100%. A number of diode lasers were fabricated with different ridge lengths but having the layer structure of Table 1.
the reciprocal of differential efficiency of the lasers, as a function of ridge length. The slope of the straight line 30 fit to the data points for individual devices corresponds to an internal loss of only about 1.5 cm−1. This low loss value makes possible the use of relatively long (e.g., approximately 1.5-2 mm) devices having reasonable efficiencies. Long devices are preferred because they have higher kink-free power operation than shorter devices due to reduced carrier anti-guiding and thermal effects.
In an alternative embodiment, an even lower transverse beam divergence is obtained by a ridge diode laser having the layer structure of Table 2. The depth profiles of refractive index 502 and optical field distribution 504 in the diode laser are shown as a function of total growth thickness in FIG. 5. The rightmost feature of the refractive index profile 502 corresponds to an approximately 0.1 μm p++ GaAs contact layer 506, having a refractive index of approximately 3.52. Below this is an approximately 0.60 μm p-type Al0.6GA0.4As confinement layer 508, having the lowest value of refractive index, near 3.18, strongly repelling the optical field. The next layer is an approximately 0.4 μm p-type Al0.45Ga0.55As confinement or waveguide layer 510, with a moderate refractive index value near 3.28. Below this is the active layer 512, with grading and spacer layers around and between the two In0.2Ga0.8As quantum wells used to generate 980 nm radiation. Under the active layer 512 is an approximately 0.05 μn-type Al0.375Ga0.625As separation layer 514 for repelling the optical field distribution into the adjacent approximately 5.5 μm n-type Al0.333Ga0.667As optical trap layer 516. Finally, an approximately 0.4 μm n-type Al0.6Ga0.4As confinement layer 518, having approximately the same refractive index value as the top p-type confinement layer 508, reduces the spread of the optical field distribution into the underlying n++ substrate 1.
The resulting optical field distribution 504 has a single peak at approximately the depth of the two quantum wells in the active layer 512. The peak is sharply defined towards the p-type layers 506 to 510, with a much broader, exponential-like tail in the thick n-type trap layer 516. It will be apparent that the low refractive index values of the top p-type confinement layer 508 and the bottom n-type confinement layer 518 confine the optical field distribution to the intermediate layers 510 to 516. In comparison with the first embodiment shown in
the reciprocal of differential efficiency of ridge diode lasers having the layer structure of Table 2 as a function of ridge length. The slope of the straight line fit 602 to the data points for individual devices corresponds to an internal loss of only about 1.2 cm−1, substantially lower than the internal loss of diode lasers having the layer structure of Table 1.
The characteristics of the lasers described above are determined by the particular asymmetric layer structures shown in Tables 1 and 2. However, it will be apparent to one skilled in the art that many possible asymmetric layer structures can be used to provide a diode laser with low transverse beam divergence, and preferably also with low loss and large spot size. Due to the complex nature of diode laser physics, it is not generally possible to define strict rules for determining which layer structures will provide the desired characteristics for a given application. For example, a structure with low confinement does not necessarily produce a laser beam with low divergence. Ultimately, the characteristics of a particular layer structure may be simulated using standard transfer matrix calculations, as described for example in K. H. Schlereth and M. Tacke, The Complex Propagation of Multilayer Waveguides: an Algorithm for a Personal Computer, IEEE Journal of Quantum Electronics, Vol. 26, p. 627 (1990) (“Schlereth”).
Notwithstanding the above, it is possible to state a number of design guidelines that can be used to reduce the time required to design a laser structure with good performance characteristics, such as the structure of the preferred embodiment. For example, the following procedure can be used to determine a suitable structure:
Many modifications will be apparent to those skilled in the art without departing from the scope of the present invention as herein described with reference to the accompanying drawings.
Number | Date | Country | Kind |
---|---|---|---|
PS 150702 | Apr 2002 | AU | national |
Number | Name | Date | Kind |
---|---|---|---|
4328469 | Scifres et al. | May 1982 | A |
5197077 | Harding et al. | Mar 1993 | A |
5260959 | Hayakawa | Nov 1993 | A |
5289484 | Hayakawa | Feb 1994 | A |
5594749 | Behfar-Rad et al. | Jan 1997 | A |
5815521 | Hobson et al. | Sep 1998 | A |
Number | Date | Country |
---|---|---|
0 790 685 | Jul 2001 | EP |
WO 9608062 | Mar 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20040013147 A1 | Jan 2004 | US |