The present disclosure relates to low drop-out (LDO) regulators and LDO regulators in battery-operated products such as portable devices of small size.
The designation low drop-out (LDO) regulator denotes a DC voltage regulator capable of regulating an output voltage even if the input or supply voltage lies in the vicinity of the output voltage.
LDO regulators are widely used for industrial and automotive applications. The increasing demand for portable and battery-operated products have forced these circuits to operate over a wide range of supply voltage and multi-voltage platforms. As a consequence, standby and quiescent current flow are major concerns considering also that these regulators are expected to operate in a wide temperature range (−40° C. to 125° C., typically).
According to one or more embodiments, a circuit is provided.
One or more embodiments relate to a corresponding device.
A portable, battery-operated product of small size for consumer or professional electronics is exemplary of such a device.
One or more embodiments relate to a corresponding method.
In examples presented herein an on/off output stage is used for an LDO driven with a propagation time of few hundreds of picoseconds thanks to the use of a cascoded structure. This is driven by shifting capacitors refreshed in a way that allows a response that is completely uncorrelated to the refresh clock frequency. A level shifter and a charge pump of conventional type are no longer needed for such an arrangement.
Examples presented herein adopt an output driver having a response time comparable with the response time of a low-voltage (LV) comparator; a corresponding LDO will thus exhibit an improved response time.
Examples presented herein involve voltage shifting that takes place thanks to a pulse on the bottom plate of a charged capacitor. Short pulses of the LV comparator are not filtered, which improves the efficiency of the LDO.
Examples presented herein include a (very) small boost pump: this is used only to refresh small boost capacitors and not the gate of an output driver; area and current consumption are reduced because inefficiency introduced by a small pump is negligible.
Examples presented herein include two drivers that are symmetrical and work in alternance: when one driver is in a pulsing phase the other driver is in a refreshing phase and vice-versa. An overlapped phase is contemplated in which both drivers are pulsing, to facilitate continued regulation.
Examples presented herein include a phase generator that, starting from a refreshing clock, generates signals to manage different operation phases of the main drivers.
In examples as presented herein, the response time of the output driver is comparable with the response time of a low-voltage (LV) comparator; the LDO will thus exhibit improved response time performance.
One or more embodiments will now be described, by way of example only, with reference to the annexed figures, wherein:
Unless otherwise indicated, corresponding numerals and symbols in the different figures generally refer to corresponding parts.
Also, throughout this description, a same designation may be used for brevity to designate:
In the ensuing description, various specific details are illustrated in order to provide an in-depth understanding of various examples of embodiments according to the description. The embodiments may be obtained without one or more of the specific details, or with other methods, components, materials, etc. In other cases, known structures, materials, or operations are not illustrated or described in detail so that various aspects of the embodiments will not be obscured.
Reference to “an embodiment” or “one embodiment” in the framework of the present description is intended to indicate that a particular configuration, structure, or characteristic described in relation to the embodiment is comprised in at least one embodiment. Hence, phrases such as “in an embodiment,” “in one embodiment,” or the like, that may be present in various points of the present description do not necessarily refer exactly to one and the same embodiment. Furthermore, particular configurations, structures, or characteristics may be combined in any adequate way in one or more embodiments.
The headings/references used herein are provided merely for convenience and hence do not define the extent of protection or the scope of the embodiments.
As noted in the introduction to this description, low drop-out (LDO) regulators are now widely used for industrial and automotive applications.
In devices such as portable and battery-operated products, a growing demand exists for LDO regulators capable of operating over a wide range of supply voltages, e.g., in multi-voltage platforms: values such as vcc [1.6V-3.6V] and vdd [0.8V-1.15V] are exemplary of possible desired operating domains or ranges. Standby and quiescent current flows become significant parameters, especially for devices expected to operate over wide temperature ranges (−40° C. to 125° C., for instance.
So called on-off LDO regulators are circuits (integrated circuits or ICs, for instance) designed with the aim of providing (e.g., fixed) output voltages for varying loads with minimal voltage dropout and (very) fast response time
The LDO regulator of
The comparator 10 can be implemented with low-voltage transistors to facilitate achieving a fast response time. This results in the output from the comparator 10 being a low-voltage signal COMP_OUT that is applied to an output driver 12.
The output driver 12 is supplied at a voltage vcc to produce a regulated voltage when a large amount of current is desired to be applied at an output node vout to a (e.g., capacitive) load Cload.
The output driver 12 comprises a voltage pump supplied at the voltage vcc and configured to generate a (fixed) voltage signal vpump (e.g., 3.6V).
A level shifter 122 shifts the low-voltage signal COMP_OUT (e.g., [0, vdd]) from the comparator 10 to the voltage vpump (e.g., [0, vpump]) that controls (at a node A) switching of an output transistor MDRV.
If the output voltage vout becomes higher than desired relative to the reference voltage, the regulator drives the power transistor MDRV in such a way to maintain a constant output voltage vout.
Structure and operation of a LDO regulator as illustrated in
The output driver MDRV can be implemented with a high-voltage (HV) transistor (a MOSFET transistor, for instance, having its gate coupled to the node A and the source-drain current flow path therethrough included in a current flow line between a node at the voltage vcc and the load Cout (output node vout).
The transistor MDRV is chosen big enough to facilitate achieving largest (max) current for a regulated output voltage vout (e.g., 1.5V).
It is again noted that the quantitative data mentioned herein are merely exemplary and non-limiting.
Having a high output current for the transistor MDRV involves selecting for MDRV a “big” transistor with a correspondingly high gate capacitance.
The low-voltage comparator 10 provides a (very) fast response time so that the signal COMP_OUT has a correspondingly high switching frequency. A conventional arrangement as illustrated in
For instance, the response time of the level shifter 122 may not be fast enough to follow adequately the variations of the signal COMP_OUT, thus giving rise to an undesired (low-pass) filtering action of short pulses in the signal COMP_OUT.
The level shifter 122 may also introduce a delay on its commutation (switching) and this reduces the response time of the output driver MDRV and the response time of the LDO regulator as a whole.
The pump 121 is expected to be able to supply a current of high intensity to keep up with commutations in the level shifter 122 and to drive the (large) gate capacitance of the output driver MDRV. As a result, the pump 121 may introduce a current inefficiency into the system; also, using a big pump 121 results in considerable area consumption.
By way of contrast, examples as discussed herein (see
Referring to operation being “mainly” in an alternate manner takes into account that, as discussed in the following, an overlapped or overlapping phase can be contemplated in which both drivers are pulsing, to facilitate continued regulation.
The drivers 12A and 12B as discussed herein are configured to co-operate within the framework of a LDO regulator that comprises:
The phase generator 100A and the boost pump 100B are illustrated in
The phase generator 100A and the boost pump 100B can be implemented a manner known per se to those of skill in the art (e.g., the phase generator 100A can be implemented as a finite state machine—FSM) based on the explanations provided in the following.
The full LDO regulator combination of the comparator 10 (indicated twice at the nodes where the signal COMP_OUT is injected into the drivers 12A and 12B), the phase generator 100A and the boost pump 100B is illustrated only in
As illustrated in
The references 12A and 12B are intended to highlight the fact that the drivers 12A and 12B are intended to play a role similar to the role of the output driver 12 of
At least in principle, a bipolar junction transistor (BJT) implementation of the circuits discussed in the present description is likewise possible. In such a BJT implementation, the control terminal will be the base of these transistors (in the place of the gate for a field-effect transistor) and the current path therethrough will be represented by the emitter-collector current flow path (in the place of source-drain current flow path for a field-effect transistor).
Considering the driver 12A (DRIVER A) first, references MCASC_2A and MDRV_1A denote two transistors (two MOSFET transistors, for instance) arranged with the current flow paths therethrough (source-drain in the case of a field-effect transistor such as a MOSFET transistor) cascaded between a node at voltage vcc and the output node or line vout (this is common to the two drivers 12A and 12B and intended to be connected to a load such as, e.g., a capacitive load Cload: see also
MDRV_1A is the main driver transistor and can be chosen as a low-voltage (LV) transistor.
In an implementation as illustrated, the source of the transistor MDRV_1A is coupled to the output node vout and the gate coupled to anode B1 to be pulsed (shifted) from vout to vout+vdd when a pulse in the signal COMP_OUT comes from the comparator 10.
As noted, throughout this description, a same designation (e.g., vout, vdd) is used for brevity to designate a certain node or line as well as a signal occurring at that node or line.
Reference vout thus denotes the regulated voltage and vdd is a low voltage supply ([0.8V, 1.15V], for instance: the quantitative values provided throughout this description are merely exemplary and non-limiting).
The transistor MCASC_2A is a high-voltage (HV) transistor (MOSFET, for instance) that facilitates obtaining a cascoded signal on the drain of the transistor MDRV_1A to facilitate protection thereof in various operating conditions.
The control electrode (gate, in the case of a field-effect transistors such as a MOSFET) C1 is pulsed (shifted) from vout+vdd to vout+2vdd when a pulse in the signal COMP_OUT comes from the comparator 10.
As illustrated herein, the transistors MDRV_1A and MCASC_2A are “on” (conductive) during a pulsing phase as discussed in the following.
References C1A and C1B denote boost capacitors that are refreshed, during a refreshing phase, to bring the node B1 to vout and a node C1 to vbl_boost=vout+vdd.
The nodes C1 and B1 are arranged in a current flow line between a node at a voltage vbl_boost (from the boost pump 100B of
The transistors M1A and M2A are used to refresh the capacitor C1A (node B1) and capacitor C1B (node C1).
The control electrodes (gates in the case of field-effect transistors such as a MOSFET) of the transistors M1A and M2A receive from the boost pump 100B signals PA_TOP_ana and PA_BST_TOP_ana (at values vout+vdd and vout+2vdd, respectively) to switch on (make conductive) the two transistors M1A and M2A during refreshing phases as discussed in the following.
References M3A and M4A denote two further transistors (MOSFETs, for instance) arranged with:
The transistors M3A, M4A (n-channel and p-channel) are used to disconnect the node C11 from the node C1 and put it to ground in when the regulator, and so the output driver, is OFF (EN=0). In OFF condition the nodes B1 and C11 are grounded
An AND gate N1 provides gating of the signal COMP_OUT from the comparator 10 via a signal PA_LV that is “0” in a refreshing condition (so that the signal COMP_OUT is don't care) and ‘1’ in a pulsing condition.
The bottom portion of
Considering now the driver 12B (DRIVER B), references MCASC_2B and MDRV_1B denote two transistors (two MOSFET transistors, for instance) arranged with the current flow paths therethrough (source-drain in the case of a field-effect transistor such as a MOSFET transistor) cascaded between the node at voltage vcc and the output node or line vout (as noted, this is common to the two drivers 12A and 12B).
MDRV_1B is the main driver transistor and can be chosen as a low-voltage (LV) transistor.
In an implementation as illustrated, the source of the transistor MDRV_1B is coupled to the output node vout and the gate coupled to a node B2 to be pulsed (shifted) from vout to vout+vdd when a pulse in the signal COMP_OUT comes from the comparator 10.
The transistor MCASC_2B is a high-voltage (HV) transistor (MOSFET, for instance) that facilitates obtaining a cascoded signal on the drain of the transistor MDRV_1B to facilitate protection thereof in various operating conditions.
The control electrode (gate, in the case of a field-effect transistors such as a MOSFET) C2 is pulsed (shifted) from vout+vdd to vout+2vdd when a pulse in the signal COMP_OUT comes from the comparator 10.
As illustrated herein, the transistors MDRV_1B and MCASC_2B are “on” (conductive) during a pulsing phase as discussed in the following.
References C2B and C2A denote boost capacitors that are refreshed, during a refreshing phase, to bring the node B2 to vout and a node C2 to vbl_boost=vout+vdd.
The nodes C2 and B2 are arranged in a current flow line between the node at a voltage vbl_boost (from the boost pump 100B of
The transistors M1B and M2B are used to refresh the capacitor C2A (node B2) and capacitor C2B (node C2).
The control electrodes (gates in the case of field-effect transistors such as a MOSFET) of the transistors M1B and M2B receive from the boost pump 100B signals PB_TOP_ana and PB_BST_TOP_ana (at values vout+vdd and vout+2vdd, respectively) to switch on (make conductive) the two transistors M1B and M2B during refreshing phases as discussed in the following.
References M3B and M4B denote two further transistors (MOSFETs, for instance) arranged with:
The transistors M3B, M4B (n-channel and p-channel) are used to disconnect the node C22 from the node C2 and put it to ground in when the regulator, and so the output driver, is OFF (EN=0). In OFF condition the nodes B2 and C22 are grounded.
An AND gate N2 provides gating of the signal COMP_OUT from the comparator 10 via a signal PB_LV that is “0” in a refreshing condition (so that the signal COMP_OUT is don't care) and ‘1’ in a pulsing condition.
The bottom portion of
Labels ON and OFF
During the pulsing phase of the driver 12B:
During the refreshing phase of the driver 12A:
During the pulsing phase of the driver 12A:
During the refreshing phase of the driver 12B:
In order to facilitate adequate regulation during the alternate switching of the drivers 12A and 12B between the refreshing phase and the pulsing phase (transition from
The period in which both drivers are ON (pulsing) is (very) small, e.g., a fraction of the “on” time for the signal COMP_OUT from the comparator 10. This was found to be adequate in providing continuity in the regulation as desired.
A refreshing frequency of about 5 MHz was likewise found to be adequate in providing satisfactory operation of the circuit as exemplified herein.
Assuming, by way of example, that transition takes place from a condition where the driver 12B is in a pulsing mode and the driver 12A is in a refreshing mode (that is, a condition as illustrated in
Assuming, conversely, that transition takes place from a condition where the driver 12A is in a pulsing mode and the driver 12B is in a refreshing mode (that is, a condition as illustrated in
In these conditions:
Protection of the low-voltage drivers (MDRV_1A and MDRV_1B) is facilitated by MCASC_2A and MCASC_2B being turned off (non-conductive).
To summarize, architecture as exemplified herein provides the following advantages:
Without prejudice to the underlying principles, the details and embodiments may vary, even significantly, with respect to what has been described by way of example only without departing from the extent of protection.
A circuit, may be summarized as including an output node (vout) configured to apply an output voltage to a load (Cload), an input comparator (10) configured to perform a comparison of a reference voltage (vref) and a voltage (vfb) that is a function (LC) of the output voltage and to produce a comparison signal (COMP_OUT) having a first logical value or a second logical value based on the outcome of the comparison, and driver circuitry (12A, 12B) coupled to the input comparator (10) to receive the comparison signal (COMP_OUT) therefrom, the driver circuitry including at least one driver transistor (MDRV_1A, MCASC_2A, MDRV_1B, MCASC_2B) having a current flow path therethrough coupled to the output node (vout) and a control terminal (B1, C1, B2, C2) configured to receive a voltage-pumped (100A; vbl_boost) replica of the comparison signal (COMP_OUT), wherein said replica of the comparison signal (COMP_OUT) has a first respective logical value or a second respective second logical value based on the outcome of the comparison an input comparator (10), wherein the current flow path through the least one driver transistor (MDRV_1A, MCASC_2A, MDRV_1B, MCASC_2B) is conductive or non-conductive in response to the voltage-pumped (100A, vbl_boost) replica of said comparison signal (COMP_OUT) having the first respective logical value or the second respective logical value, wherein the driver circuitry includes a first (12A) and a second (12B) driver coupled to the input comparator (10) to receive the comparison signal (COMP_OUT) therefrom and each of the first (12A) and second (12B) drivers includes at least one driver transistor (MDRV_1A, MCASC_2A, MDRV_1B, MCASC_2B) having a current flow path therethrough coupled to the output node (vout) and a control terminal (B1, C1, B2, C2), voltage boost capacitive circuitry (C1A, C1B, C2A, C2B) configured to apply to the control terminal (B1, C1, B2, C2) of the at least one driver transistor (MDRV_1A, MCASC_2A, MDRV_1B, MCASC_2B) said voltage-pumped (100A; vbl_boost) replica of the comparison signal (COMP_OUT), voltage refresh transistor circuitry (M1A, M2A, M1B, M2B) coupled to the voltage boost capacitive circuitry (C1A, C1B, C2A, C2B) to transfer thereon said voltage-pumped (100A, vbl_boost) replica of the comparison signal (COMP_OUT), wherein the first (12A) and second (12B) drivers are controllably (PA_LV, PB_LV) switchable between a first mode of operation during which the current flow path through the least one driver transistor (MDRV_1A, MCASC_2A, MDRV_1B, MCASC_2B) is conductive or non-conductive in response to the voltage-pumped (100A; vbl_boost) replica of said comparison signal (COMP_OUT) having the first respective logical value or the second respective logical value and the voltage refresh transistor circuitry (M1A, M2A, M1B, M2B) is de-activated (OFF), and a second mode of operation during which the voltage refresh transistor circuitry (M1A, M2A, M1B, M2B) coupled to the voltage boost capacitive circuitry (C1A, C1B, C2A, C2B) is activated (ON) to transfer thereon said voltage-pumped (100A; vbl_boost) replica of the comparison signal (COMP_OUT), and the current flow path through the least one driver transistor (MDRV_1A, MCASC_2A, MDRV_1B, MCASC_2B) is non-conductive.
The circuit may include mode control circuitry (100A) configured (PA_LV, PB_LV) to alternately switch the first (12A) and second (12B) drivers between a first operating condition wherein the first driver (12A) may be in the first mode of operation and the second driver (12B) may be in the second mode of operation, and a second operating condition wherein the first driver (12A) may be in the second mode of operation and the second driver (12B) may be in the first mode of operation.
The mode control circuitry (100A) may be configured (PA_LV, PB_LV) to switch the first (12A) and second (12B) drivers to a transition operating condition wherein both the first driver (12A) and the second driver (12B) may be in the first mode of operation.
Each of the first (12A) and second (12B) drivers may include a current flow line between a supply node (vcc) and the output node (vout) may include the cascaded arrangement of current flow paths through a first driver transistor (MDRV_1A, MDRV_1B) having the current flow path therethrough coupled to the output node (vout), and a second driver transistor (MCASC_2A, MCASC_2B) arranged with the current flow path therethrough between the supply node (vcc) and the first driver transistor (MDRV_1A, MDRV_1B).
The first driver transistor (MDRV_1A, MDRV_1B) and the second driver transistor (MCASC_2A, MCASC_2B) may be low-voltage and high-voltage transistors, respectively.
The circuit may include mode control circuitry (100A) configured (EN) to switch the first (12A) and second (12B) drivers to an off condition wherein the output node (vout) may be grounded and the second driver transistor (MCASC_2A, MCASC_2B) in both the first (12A) and second (12B) drivers may be non-conductive.
Each of the first (12A) and second (12B) drivers may include a circuit node (A1, A2) configured (N1, N2) to have applied thereto the comparison signal (COMP_OUT), first (C1A, C2A) and second (C1B, C2B) voltage boost capacitors arranged with said circuit node (A1, A2) intermediate therebetween, a first voltage refresh transistor (M1A, M1B) having a current flow path therethrough arranged between the first voltage boost capacitor (C1A, C2A) and the output node (vout), and a second voltage refresh transistor (M2A, M2B) having a current flow path therethrough arranged between the second boost capacitor (C1B, C2B) and a boosted voltage supply node (vbl_boost).
Each of the first (12A) and second (12B) drivers may include the first driver transistor (MDRV_1A, MDRV_1B) having a control terminal coupled to the current flow path through the first refresh transistor (M1A, M1B) between (B1, B2) the first refresh transistor (M1A, M1B) and the first voltage boost capacitor (C1A, C2A); and the second driver transistor (MCASC_2A, MCASC_2B) having a control terminal coupled to the current flow path through the second refresh transistor (M2A, M2B) between (C1, C2) the second refresh transistor (M2A, M2B) and the boosted voltage supply node (vbl_boost).
Each of the first (12A) and second (12B) drivers may include the control terminal of the second driver transistor (MCASC_2A, MCASC_2B) being coupled to the current flow path through the second refresh transistor (M2A, M2B) via a transistor switch (M3A, M4A, M3B, M4B) configured to be made non-conductive to decouple the control terminal of the second driver transistor (MCASC_2A, MCASC_2B) from the current flow path through the second refresh transistor (M2A, M2B) in response to the circuit being disabled (EN=0).
A device may be summarized as including a circuit, and an electrical load (Cload) coupled to said output node (vout) in the circuit to receive a regulated voltage therefrom.
A method of operating a circuit, or a device, the method may be summarized as including alternately switching (PA_LV, PB_LV) the first (12A) and second (12B) drivers between a first operating condition wherein the first driver (12A) is in the first mode of operation and the second driver (12B) is in the second mode of operation, and a second operating condition wherein the first driver (12A) is in the second mode of operation and the second driver (12B) is in the first mode of operation.
The method may include switching (PA_LV, PB_LV) the first (12A) and second (12B) drivers to a transition operating condition wherein both the first driver (12A) and the second driver (12B) may be in the first mode of operation.
Switching (PA_LV, PB_LV) the first (12A) and second (12B) drivers to said transition operating condition may include discontinuing the second mode of operation in one (12A, resp. 12B) of the first and second drivers de-activating the voltage refresh transistor circuitry (M1A, M2A, M1B, M2B) therein while maintaining the other (12B, resp. 12A) of the first and second drivers in the first mode of operation, wherein both of the first (12A) and second (12B) may be in the first mode of operation, and discontinuing the first mode of operation in the other (12A, resp. 12B) of the first and second drivers activating the voltage refresh transistor circuitry (M1A, M2A, M1B, M2B) therein.
The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
102022000007505 | Apr 2022 | IT | national |