1. Field of the Invention
The present invention relates to voltage regulators and in particular, to a low drop-out voltage regulator with low power dissipation.
2. Description of the Related Art
Currently, the increasing demand for higher performance power supply circuits has resulted in a continued development of voltage regulator devices. Many low voltage applications, such as for use in cell phones, pagers, laptops, camera recorders and other mobile battery operated devices, require the use of low drop-out (LDO) voltage regulators. These portable electronics applications typically require low voltage and small quiescent current flow to increase the battery efficiency and longevity.
The LDO voltage regulators generally can provide a well-specified and stable DC voltage whose input to output voltage difference is low. The LDO voltage regulators are usually configured for providing the power requirements to electrical circuits. The LDO voltage regulators typically have an error amplifier, a dynamic bias circuit and a pass device, e.g., a power transistor. These three components are coupled in series. The error amplifier is coupled to an input terminal of the LDO voltage regulators, and the pass device is coupled to an output terminal of the LDO voltage regulators. The dynamic bias circuit is configured to drive the pass device, which can then drive an external load.
In general, a feedback circuit is further provided to the LDO voltage regulators scaling the output voltage down and feeding back a scaled down voltage to the error amplifier. The negative feedback provided by the feedback circuit can improve the stability of the regulator system. The LDO voltage regulators can further incorporate a compensation circuit to form a control loop and provide Miller compensation in order to improve the stability of the LDO voltage regulators. A conventional technique for providing Miller compensation is to take advantage of the Miller Effect, by adding a Miller compensation circuit or a nested Miller compensation (NMC) circuit which includes a Miller compensation capacitor. The Miller compensation capacitor is inserted between the output voltage and the error amplifier. Such a configuration may result in a well-known phenomenon called pole splitting, which advantageously multiplies the effective capacitance of the physical capacitor used in the circuit. However, the Miller compensation capacitor may cause the two poles to meet together, and then generate two complex poles in a right-hand plane along a direction, especially when the LDO voltage regulator covers a larger range of a capacitive load with an equivalent serial resistance (ESR) and provides a large output current. The right-hand plane poles can cause voltage oscillation at the LDO voltage regulators, which will make the output voltage unstable.
It is thus desirous to have an apparatus and method that can provide a stable output voltage when the capacitance of a load varies in a larger range, and at the same time output a corresponding current with low power dissipation, high driving capacity, and good stability. It is to such an apparatus and method the invention is primarily directed to.
In one embodiment, the invention is a LDO voltage regulator circuit with enhanced frequency compensation. The LDO voltage regulator circuit includes an error amplifier for generating an amplified error voltage, a dynamic bias circuit, an enhanced frequency compensation unit for generating a zero reference value, a pass device for providing an output voltage to drive a plurality of external components, and a feedback circuit for scaling down the output voltage. The LDO voltage regulator circuit further includes a compensation circuit for providing compensation to the output voltage. The error amplifier has a first input terminal for receiving a reference voltage, a second input terminal for receiving a feedback voltage, a third input terminal, and an output terminal. The dynamic bias circuit has an input terminal and an output terminal, and the input terminal of the dynamic bias circuit is connected to the output terminal of the error amplifier. The enhanced frequency compensation unit has a first terminal and a second terminal, and the first terminal of the enhanced frequency compensation unit is connected to the output terminal of the error amplifier. The pass device has an input terminal and an output terminal, and the input terminal of the pass device is connected to the output terminal of the dynamic bias circuit. The feedback circuit has a first terminal and a second terminal, the first terminal of the feedback circuit is connected to the output terminal of the pass device, and the second terminal of the feedback circuit is connected to the second input terminal of the error amplifier.
In another embodiment, the invention is a LDO voltage regulator circuit with enhanced frequency compensation. The LDO voltage regulator circuit includes an error amplifier for generating an amplified error voltage, a dynamic bias circuit, an enhanced frequency compensation unit for generating a zero reference value, a pass device for providing an output voltage to drive a plurality of external components, and a feedback circuit for scaling down the output voltage. The LDO voltage regulator circuit further includes a compensation circuit for providing compensation to the output voltage. The error amplifier has a first input terminal for receiving a reference voltage, a second input terminal for receiving a feedback voltage, a third input terminal, and an output terminal. The dynamic bias circuit has an input terminal and an output terminal, and the input terminal of the dynamic bias circuit is connected to the output terminal of the error amplifier. The enhanced frequency compensation unit has a first terminal and a second terminal, and the first terminal of the enhanced frequency compensation unit is connected to the output terminal of the dynamic bias circuit. The pass device has an input terminal and an output terminal, and the input terminal of the pass device is connected to the output terminal of the dynamic bias circuit. The feedback circuit has a first terminal and a second terminal, the first terminal of the feedback circuit is connected to the output terminal of the pass device, and the second terminal of the feedback circuit is connected to the second input terminal of the error amplifier.
In yet another embodiment, the invention is a method for frequency compensation in a low drop-out voltage regulator circuit with enhanced frequency compensation capacity. This method includes the steps of generating an amplified voltage, receiving the amplified voltage at a dynamic bias circuit, generating a first output voltage at the dynamic bias circuit, driving a pass device with the first output voltage, increasing a slew rate for a gate voltage of the pass device through use of the dynamic bias circuit, receiving a second output voltage from the pass device, generating a zero reference value to stabilize the second output voltage, and regulating a damping factor to further stabilize the second output voltage.
Advantages of the present invention will be apparent from the following detailed description of exemplary embodiments thereof, which description should be considered in conjunction with the accompanying drawings, in which:
The error amplifier 110 can amplify a differential value between two input signals and then output the amplified value at its output terminal. A first signal, for example, a predetermined reference voltage VREF is provided to an inverting input terminal of the error amplifier 110, and a second signal VFB from the feedback circuit 140 is transmitted back to a non-inverting input terminal of the error amplifier 110. The differential value is given by the second signal VFB subtracted from the first signal VREF, and then the amplified value is provided to the dynamic bias circuit 120.
The dynamic bias circuit 120 may include a PMOS transistor as a source follower which is coupled to the output terminal of the error amplifier 110. The dynamic bias circuit 120 usually consists of a plurality of MOS transistors. The dynamic bias circuit 120 provides an output voltage to the pass device 130 and drives the action of the pass device 130. The dynamic bias circuit 120 can increase the slew rate for the voltage of a gate terminal of the MOS transistor included in the pass device 130.
The pass device 130 is driven by the output voltage from the dynamic bias circuit 120, and provides an output voltage VOUT to the external load as an effective power supply with a desirable output current (not shown). The feedback circuit 140 can scale the output voltage VOUT based on a specific proportion, which depends on a topology of the voltage regulator 10. The feedback circuit 140 may feedback the scaled voltage, for example VRB to the error amplifier 110. The compensation circuit 150 can provide a capacitive compensation depending on various conditions of the external load so that the output voltage VOUT can be kept relatively stable.
In the error amplifier 210, differential input signals on line 15 and line 16 are provided to respective gate terminals of a differential pair of PMOS transistors 31, 32. PMOS transistors 41 and 42, 41 and 43 can form two separate current mirrors. The PMOS transistor 41 can establish an internal bias voltage based on the input bias current IBIAS on line 13. The transistors 42 and 43 can be biased by the bias voltage. The mirrored bias current in the PMOS transistor 42 can activate the PMOS transistors 31 and 32. Receiving the voltage VREF and VRB at lines 15 and 16, the differential pair of the PMOS 31 and 32 can begin to operate. Similarly, the current in the PMOS transistors 31 and 32 can activate NMOS transistors 34 and 35, respectively. Because NMOS transistors 34 and 35 is incorporated into current mirrors 51 and 52, the currents in the NMOS transistors 34 and 35 can be also mirrored, respectively, by NMOS transistors 33 and 36 in the same way as the PMOS transistor 42. The current in the NMOS transistors 33 and 36 can also activate PMOS transistors 37 and 38, respectively. The PMOS transistors 37 and 38 can build up a current mirror 53. A source terminal of the NMOS transistor 36 can output a signal to drive the dynamic bias circuit 220.
In the dynamic bias circuit 220, a MOS transistor 73 acts as a source follower which is coupled to the output terminal of the error amplifier 210. NMOS transistors 71 and 72 can form a current mirror. Similarly, PMOS transistors 75 and 76, and a PMOS transistor 74 and a PMOS transistor 91 in the pass device 230 form two separate current mirrors, respectively. The pass device 230 can be the PMOS transistor 91. A gate terminal of the MOS transistor 91 can sense the variation of the output current at the rail 14 which will be further described below. Finally, the PMOS transistor 91 provides an output voltage VOUT with driving capacity, for example, the PMOS transistor 91 can output approximately a current of 130 mA at the rail 14 that supplies the power to the external load.
Traditionally, a load capacitor with an equivalent serial resistance (ESR) (not shown) is coupled in parallel with the external load, and it is connected between an output terminal of the voltage regulator and the ground. In this embodiment, IC is defined as a current flowing through the load capacitor, and ILOAD indicates another current flowing through the external load. The output current, IOUT, is equal to the sum of IC and ILOAD. In a transient condition, if the load current ILOAD increases, the load capacitor will discharge so as to charge the external load. Consequently, the output voltage VOUT will decrease instantly, and the feedback voltage VRB in line 16 will decrease proportionally. The output voltage of the error amplifier 210 will become smaller as VRB decreases. A voltage VG of the gate terminal of the PMOS 91 will decrease correspondingly since the gate terminal is discharged along the line 17. The output current IOUT then can become larger as the VG decreases. Therefore, the increased output current can charge the load capacitor and the output voltage VOUT will increase to a predetermined value.
In opposition, if the load current ILOAD decrease, the load capacitor can be charged such that the output voltage VOUT can become larger. In a transient condition, the output current remains larger than the ILOAD. The output current is mirrored by the MPOS transistor 74. After the mirrored current flowing through the NMOS transistor 72, the mirrored current from the PMOS transistor 74 can be mirrored by the NMOS transistor 71. In the same way, a larger mirrored current is provided at PMOS 75. The larger mirrored current can charge the gate terminal of the PMOS transistor 91. As the voltage VG increases rapidly, the output voltage VOUT reduces to the predetermined value accordingly and the output current at the rail 14 can quickly return to a smaller value based on the increasing voltage VG. Therefore, the voltage VG can vary quickly according to the load current and the slew rate for a gate voltage of the pass device 230 is greatly improved.
A resistive divider is employed as the feedback circuit 240. The resistive divider includes a first resistor 92 and a second resistor 93 coupled in series. The resistors 92 and 93 can scale down the output voltage VOUT in rail 14 according to different values of resistors 92 and 93 and feed a voltage lower than the VOUT back to a gate terminal of the MOS transistor 32. As shown, the resistors 92 and 93 can implement a feedback system for the voltage regulator system and the feedback voltage can be adjusted by selecting different values for the resistor 92 and 93.
The compensation circuit 250 includes a Miller compensation capacitor 94. The compensation circuit 250 is coupled between the output voltage VOUT and a gate terminal of MOS transistors 33 and 34. The compensation circuit 250 basically provides a compensation to ensure the voltage regulator 20 outputs a relatively stable VOUT utilizing the Miller effect.
The insertion of the compensation circuit 150 in
The symbols in
The enhanced frequency compensation unit 160 can provide an internal zero (i.e. a zero reference value) to influence movement of poles given by a system transfer function of the voltage regulator 100. Therefore, the enhanced frequency compensation unit 160 can greatly improve stability of the voltage regulator system and provide a stable voltage VOUT. The advantages of the enhanced frequency compensation unit 160 will be further described in details herein compared with
With reference to
Therefore, the enhanced frequency compensation unit 160 is needed to compensate the instability resulting from the right-hand plane poles. The enhanced frequency compensation unit 160 can insert an internal zero in higher frequency in the system transfer function, which can prevent the poles P1 and P2 from appearing in the right-hand plane. The generation of the internal zero can prevent the poles P1 and P2 from meeting together and moving to the right-hand plane. Consequently, the poles P1 and P2 are enforced to remain in a left-hand plane with influence of the enhanced frequency compensation unit 160 because the value of the poles P1 and P2 are negative. Further, the locations of the poles P1 and P2 are determined by the specific requirement of frequency compensation.
Additionally, a damping factor generated by the compensation circuit 150 can be small in some conditions, thus, an undesirable frequency peak can occur. The small damping factor can cause the frequency peak to appear near to or above a unity-gain frequency of the voltage regulator 20. The frequency peak can also decrease a gain margin and a phase margin of the open-loop frequency response. However, the compensation capacitor in the error amplifier 110′ can further regulate the damping factor. The compensation capacitor can also slightly compensate the output voltage VOUT.
Turning to
The frequency of the zero Z1 is given by an equation (2):
Although the capacitor CC3 is represented in
It is obvious to those skilled in the art that the location where the enhanced frequency compensation unit 160 is added is not fixed. The location of the enhanced frequency compensation unit 160 depends on requirements of the integrated circuitry. Turning to
It is also obvious to those skilled in the art that the damping factor regulating circuit included in the error amplifier 110′ in
For further understanding of the principle of the present invention,
Turning to
Turning to Chart 1 Å, two complex poles, for example (71.9061K, −463.6408k) and (71.9061K, 463.6408k) can appear in the right-hand plane, although the Miller compensation capacitor 94 is provided. Thus, the voltage regulator 20 cannot output the stable voltage signal VOUT.
With reference to
In this embodiment of
All the poles are located in the left-hand plane which can prevent the voltage regulator 200 from entering into oscillations. Therefore, the experiment results can meet all the requirements for system stability.
In operation, the LDO voltage regulator circuit 200 can receive a DC input signal VIN and export a stable DC output voltage VOUT based on different requirements of a plurality of applications. During the enhanced frequency compensation procedure, the error amplifier 210′ in the voltage regulator circuit 200 can compare a reference signal VREF and a feedback signal VRB transmitted from the feedback circuit 240, and providing an amplified difference value at its output terminal.
The dynamic bias circuit 220 can sense the output current of the voltage regulator circuit 200. The dynamic bias circuit 220 can charge or discharge the gate terminal of the pass device 230 according to the variation of the output current. The charging and discharging of the gate terminal greatly improve the slew rate for the gate voltage of the pass device 230. Additionally, the pass device 230 is driven into a linear operation region, thus reducing the die size of the integrated circuit. The pass device 230 can provide a stable output voltage and output current that supply power to various loads of large-scale.
The feedback circuit 140 can provide a proportional voltage such that a close-loop configuration is formed in the voltage regulator. With the compensation circuit 150 and the enhanced frequency compensation unit 160, the voltage regulator circuit 100 can be ensured to obtain a stable voltage which also can be less influenced by the loads.
The embodiments that have been described herein are some of the several possible embodiments that utilize this invention and they are described here by way of illustration and not of limitation. It is obvious that many other embodiments, which will be readily apparent to those skilled in the art, may be made without departing materially from the spirit and scope of the invention as defined in the appended claims. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
This application claims the benefit of U.S. provisional application, titled Enhanced Compensation Strategy for Low Quiescent Current, Low Drop-out Voltage Regulator, Ser. No. 60/656,732, filed on Feb. 25, 2005, the specification of which is incorporated herein in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
60656732 | Feb 2005 | US |