Embodiments are generally related to voltage regulators. Embodiments also relate to low dropout regulators utilized in electronic industrial and consumer applications.
Voltage regulators are utilized in a variety of electrical and electro-mechanical applications. DC voltage regulators, for example, are typically implemented in the context of a static circuit that accepts a variable DC voltage input and produces a regulated DC voltage output. The output voltage is maintained for changes in input voltage and output load current. One type of voltage regulator utilized widely in industrial and commercial applications is the low dropout regulator. The “Low Dropout Regulator” also known as an LDO generally functions with a lower voltage across it before it stops regulating.
Transistor 24 is generally disposed between nodes A and D. A resistor 28 is connected to node D and a node G. A resistor 38 is in turn connected to node G and ground. Transistor 26 is also connected to node G. A resistor 32 is also provided, which is connected to a resistor 30. Note that resistors 30 and 32 are configured in parallel with a capacitor 34 and a resistor 36. A node C is connected to one end of resistor 30 and one end of capacitor 34 and resistor 36. An output voltage 37 can be obtained from node C, which also happens to be connected to transistor 16. One of the problems with prior art circuit 10 is that circuit 10 often requires the use of the external capacitor 34 and is unable to operate at higher supply voltages due to electrical breakdown considerations of capacitor 22. Additionally, circuit 10 requires a large circuit area.
One of the primary problems associated with the configuration depicted in
The following summary is provided to facilitate an understanding of some of the innovative features unique to the embodiments disclosed and is not intended to be a full description. A full appreciation of the various aspects of the embodiments can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
It is, therefore, one aspect of the present invention to provide for an improved low dropout voltage regulator apparatus.
It is another aspect of the present invention to provide for an improved low dropout voltage regulator apparatus that incorporates the use of a feedback compensation component.
It is a further aspect of the present invention to provide for an improved low dropout voltage regulator apparatus that incorporates the use of a feedback compensation component that takes advantage of the Miller effect for improved compensation thereof.
The aforementioned aspects and other objectives and advantages can now be achieved as described herein. A low dropout voltage regulator apparatus is disclosed, which includes a low dropout voltage regulator circuit connected to a supply voltage, wherein at least one input voltage is input to the low dropout voltage regulator circuit to generate at least one output voltage from the low dropout voltage regulator circuit. A feedback compensation component is also provided, which is integrated with the low dropout voltage regulator circuit. The feedback compensation component is located generally within the low dropout voltage regulator circuit to take advantage of a Miller effect associated with the low dropout voltage regulator circuit in order to withstand high voltages associated with the supply voltage and generate the output voltage from the low dropout voltage regulator circuit.
The feedback compensation component generally comprises a capacitor, such as, for example, a bipolar junction capacitor or a dielectric capacitor. By implementing such a voltage regulator circuit, the supply voltage dependency across the feedback compensation component or capacitor can be eliminated and the required size of the capacitor is reduced. This reduction is a result of the improved utilization of the Miller effect in combination with the voltage remaining constant across the feedback compensation component or capacitor to prevent the effective capacitance lowering at higher voltages. In addition, the input robustness (e.g., maximum supply voltage and ESD immunity) can be improved by not providing a configuration in which the capacitor is coupled to the supply voltage input.
The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the embodiments and, together with the detailed description, serve to explain the embodiments disclosed herein.
The particular values and configurations discussed in these non-limiting examples can be varied and are cited merely to illustrate at least one embodiment and are not intended to limit the scope thereof.
The transistor 16 is in turn connected to a transistor 18, which is connected to ground and to a current supply 20. Note that the current supply 20 is also connected to transistor 14 and can provide a start-up current such as, for example, 15 micro amps, depending of course, upon design considerations. Transistor 14 is generally connected to transistor 18 and current supply 20 at node H. Transistor 14 is further connected to transistor 26 at node I. Transistor 26 is in turn connected to resistor 38 at node G. Transistor 26 is also connected to resistor 28 at node G.
Additionally, unlike the prior art configuration depicted in
Resistor 28 is in turn generally connected to transistor 24 at node D. Note that transistor 24 is also connected to node A, which electrically constitutes the same node as node H. Transistor 24 is thus connected to transistor 14, current supply 20 and transistor 18 at node A/H. Resistor 28 is also connected to the compensation capacitor 23.
Resistors 30 and 32 form a resistor divider and connect to the base of transistors 24 and 26 at node B. Capacitor 23, resistor 30 and capacitor 34 and resistor 36 are also connected to node E, which is electrically the same node as node C from which a voltage output 37 can be taken. Note that capacitor 34, which may be part of the typical load, is configured in parallel with resistor 36, which functions as the electrical load. The capacitor 34 will generally not be needed due to the improved compensation provided by capacitor 23.
Circuit 90, which functions as a low dropout voltage regulator circuit, generally includes transistor 14 connected to a supply voltage 12, a current source 20 and an FET transistor 92. Additionally, transistor 26 is connected to resistor 38 and resistor 28 at node G. Transistor 26 is also connected to transistor 24, which in turn is connected to resistor 28 at node D. In system or circuit 90 depicted in
Resistors 30 and 32 are also connected to node B, while a node C is connected to FET transistor 92, resistor 30, capacitor 22, capacitor 34 and resistor 36. Capacitor 34, which may be part of the typical load, is located in parallel with resistor 36, which functions as an electrical load. Resistors 30 and 32 are located in series with one another and in together in parallel with capacitor 34 and resistor 36. The voltage output 37 can be obtained from node C.
Circuit 90 thus implements a basic circuit topology in the context of a low dropout regulator that can be configured by altering how the feedback compensation is accomplished. Circuit 90 can be implemented utilizing bipolar technology. The supply voltage dependency across capacitor 22 (e.g., a bipolar junction capacitor) can be eliminated and the required size of capacitor 22 thereby reduced. This reduction is a result of the improved utilization of the Miller effect in combination with the voltage remaining constant across capacitor 22 to prevent the effective capacitance lowering at higher voltages, particularly when junction capacitors are utilized. In addition, the input robustness (i.e., max supply voltage and ESD immunity) is thus improved by not having the capacitor coupled to the supply voltage 12. The same advantages are also associated with circuit 60 depicted in
Based on the foregoing it can be appreciated that an improved dropout voltage regulator apparatus has disclosed, which includes a low dropout voltage regulator circuit (e.g., circuits 60, 90) connected to a supply voltage 12, wherein at least one input voltage is input to the low dropout voltage regulator circuit 60 or 90 to generate at least one output voltage from the low dropout voltage regulator circuit 60 or 90. A feedback compensation component 22 or 23 can also be provided, which is integrated with the low dropout voltage regulator circuit 60 or 90. The feedback compensation component 22 or 23 is located generally within the low dropout voltage regulator circuit 60 or 90 to take advantage of a Miller effect associated with the low dropout voltage regulator circuit 60 or 90 in order to withstand high voltages associated with the supply voltage 12 and generate the output voltage 37 from the low dropout voltage regulator circuit 60 or 90.
The feedback compensation component 22 or 23 can be implemented as a capacitor, such as, for example, a bipolar junction capacitor or dielectric capacitor. If provided as a dielectric capacitor, for instance, the feedback compensation component 22 and/or 23 can be configured as a dielectric capacitor composed of two metal sheets placed on either side of a layer of dielectric material. Dielectrics are materials like glass or plastics (polymers) which are insulators. The behavior of a dielectric is determined by its dielectric constant value.
By implementing such a voltage regulator circuit 60 or 90, the supply voltage dependency across the feedback compensation component or capacitor 22, 23 can be eliminated and the required size of the capacitor 22, 23 is reduced. This reduction is a result of the improved utilization of the Miller effect in combination with the voltage remaining constant across the feedback compensation component or capacitor 22, 23 to prevent the effective capacitance lowering at higher voltages. In addition, the input robustness (e.g., maximum supply voltage and ESD immunity) can be improved by not providing a configuration in which the capacitor 22 or 23 is coupled to the supply voltage input.
It will be appreciated that variations of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5563501 | Chan | Oct 1996 | A |
6188212 | Larson et al. | Feb 2001 | B1 |
6201375 | Larson et al. | Mar 2001 | B1 |
6225857 | Brokaw | May 2001 | B1 |
6304131 | Huggins et al. | Oct 2001 | B1 |
6333623 | Heisley et al. | Dec 2001 | B1 |
6373233 | Bakker et al. | Apr 2002 | B2 |
6465994 | Xi | Oct 2002 | B1 |
6518737 | Stanescu et al. | Feb 2003 | B1 |
6522114 | Bakker et al. | Feb 2003 | B1 |
6541946 | Chen et al. | Apr 2003 | B1 |
6621675 | Ingino, Jr. | Sep 2003 | B2 |
6822514 | Aude | Nov 2004 | B1 |
6914476 | Ingino, Jr. | Jul 2005 | B2 |
20030111986 | Xi | Jun 2003 | A1 |
20040046532 | Menegoli et al. | Mar 2004 | A1 |
20050184711 | Chen et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
WO 9641248 | Dec 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20070052400 A1 | Mar 2007 | US |