The following disclosed embodiments describe stable and low dropout voltage regulators that also generate their own voltage references. Some embodiments utilize semiconductor inherent attributes to generate the voltage references.
In the following description, numerous specific details are provided, such as the identification of various system components, to provide a thorough understanding of embodiments of the invention. One skilled in the art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of various embodiments of the invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
In the feed-forward part of the circuit of
In this classical closed-loop control system, any change of Vout generates an error signal Verr which forces Vout back to its designated level. A drop in Vout causes an increase in Verr, subsequently an increase in the current passing through R1 and R2. And a rise in Vout causes a drop in Verr and subsequently a drop in the current passing through R1 and R2. Because the circuit continuously keeps Vfb equal to Vref, and since Vfb=Vout×R1/(R1+R2), therefore, Vout=Vref(130 R2/R1).
As seen from the above equation, the bottle neck in the performance of the voltage regulator of
The following disclosed embodiments provide stable voltage references from within the voltage regulating circuit. Some embodiments employ dependable semiconductor inherent attributes to generate a voltage reference, such as a band-gap voltage reference.
In the circuit of
The current through resistor R47 is determined by adding the currents through R51 and R52, which are the two branches of a current mirror that is partially defined by transistors QN15 and QN16. Because in this current mirror the currents through R51 and R52 are equal and the same current passes through R51 and R46, the current through the resistor R47 will be equal to two times the current passing through the resistor R46. The voltage across R46 is equal to the difference of the base-emitter voltage of QN15 and QN16. Therefore, the current through R46 can be written as:
V
R46
=V
BE(QN16)
−V
BE(QN15)
=ΔV
BE
=V
T
ln10,
which is about 60 mv at room temperature. Therefore IR46 can be written as:
I
R46
=V
R46
/R46=ΔVBE/R46=VTln10/R46=Io
or as IR46=IR51=½IR47,
which results in: IR47=2ΔVBE/R46.
Furthermore, Vref can be written as:
Therefore, the voltage at the output can be written as:
In the example circuit of
The passage of these signals through QN17 and QP13 also amplifies the error signal originating from transistor QN16. Hence, the control loop of the voltage regulator of
The above detailed descriptions of embodiments of the invention are not intended to be exhaustive or to limit the invention to the precise form disclosed above. While specific embodiments of, and examples for, the invention are described above for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. For example, while steps or components are presented in a given order, alternative embodiments may perform routines having steps or components in a different order. The teachings of the invention provided herein can be applied to other systems, not necessarily the network model described here. The elements and acts of the various embodiments described above can be combined to provide further embodiments and some steps or components may be deleted, moved, added, subdivided, combined, and/or modified. Each of these steps may be implemented in a variety of different ways. Also, while these steps are shown as being performed in series, these steps may instead be performed in parallel, or may be performed at different times.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Words in the above detailed description using the singular or plural number may also include the plural or singular number respectively. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. When the claims use the word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The teachings of the invention provided herein could be applied to other systems, not necessarily the system described herein. These and other changes can be made to the invention in light of the detailed description. The elements and acts of the various embodiments described above can be combined to provide further embodiments.
All of the above patents and applications and other references, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the invention can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the invention.
These and other changes can be made to the invention in light of the above detailed description. While the above description details certain embodiments of the invention and describes the best mode contemplated, no matter how detailed the above appears in text, the invention can be practiced in many ways. Details of the network model and its implementation may vary considerably in their implementation details, while still being encompassed by the invention disclosed herein. As noted above, particular terminology used when describing certain features, or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the invention under the claims.
While certain aspects of the invention are presented below in certain claim forms, the inventors contemplate the various aspects of the invention in any number of claim forms. Accordingly, the inventors reserve the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the invention.