Claims
- 1. A process for combustion of a fuel in a gas turbine combustor comprising:
- mixing a fuel and combustion air, forming a fuel/air mixture whereby the amount of combustion air is adjusted in response to a load on said gas turbine without employing any moving parts external to said gas turbine so as to maintain about a constant total amount of air flowing into said combustor;
- introducing said fuel/air mixture into at least one combustion chamber of a fixed geometry combustor;
- introducing a dilution air into a dilution chamber of said fixed geometry combustor whereby the amount of dilution air is adjusted in response to said load on said gas turbine without employing any moving parts external to said gas turbine so as to maintain about a constant total amount of air flowing into said combustor, said dilution chamber disposed downstream of said at least one combustion chamber and in communication with said at least one combustion chamber;
- burning said fuel/air mixture in said fixed geometry combustor, forming products of combustion;
- mixing said combustion products with said dilution air in said dilution chamber; and
- exhausting said dilute combustion products into said gas turbine.
- 2. A process in accordance with claim 1, wherein said fuel/air mixture is introduced tangentially into said at least one combustion chamber.
- 3. In a fixed geometry combustor for a gas turbine comprising at least one combustion chamber wall defining at least one combustion chamber having an upstream end and a downstream end, a dilution chamber wall defining a dilution chamber downstream of said at least one combustion chamber and in communication with said at least one combustion chamber, said dilution chamber having a dilution upstream end and a dilution downstream end, said dilution downstream end in communication with a gas turbine inlet, means for introducing a mixture of fuel and combustion air into said at least one combustion chamber, and means for introducing dilution air into said dilution chamber, the improvement comprising:
- said means for introducing said mixture of fuel and combustion air into said at least one combustion chamber and said means for introducing dilution air into said dilution chamber adjusting the amount of combustion air and dilution air introduced into said at least one combustion chamber and said dilution chamber, respectively, in response to changes in the load on said gas turbine without employing any moving parts external to said gas turbine so as to maintain about a constant total amount of air flowing into said combustor.
- 4. In a fixed geometry combustor in accordance with claim 3, wherein said means for introducing said mixture of fuel and combustion air into said at least one combustion chamber comprises at least one inspirator in communication with said at least one combustion chamber.
- 5. In a fixed geometry combustor in accordance with claim 4, wherein said at least one combustion chamber wall defines a plurality of combustion chambers and said means for introducing said mixture of fuel and combustion air comprises said at least one inspirator in communication with said plurality of combustion chambers.
- 6. In a fixed geometry combustor in accordance with claim 5, wherein said means for introducing said mixture of fuel and combustion air comprises at least one said at least one inspirator in communication with each of said combustion chambers.
- 7. In a fixed geometry combustor in accordance with claim 4, wherein said means for introducing said mixture of fuel and combustion air into said at least one combustion chamber comprises at least one nozzle secured to said at least one combustion chamber wall, said at least one nozzle in communication with said at least one combustion chamber and said at least one inspirator.
- 8. In a fixed geometry combustor in accordance with claim 7, wherein said at least one nozzle is tangentially mounted whereby said mixture of fuel and combustion air is tangentially introduced into said at least one combustion chamber.
- 9. In a fixed geometry combustor in accordance with claim 3, wherein said means for introducing said dilution air into said dilution chamber comprises said at least one combustion chamber wall forming an annular passage around said at least one combustion chamber and at least a portion of said dilution chamber, said annular passage in communication with said dilution chamber, and means for introducing said dilution air into said annular passage in communication with said annular passage.
- 10. In a fixed geometry combustor in accordance with claim 5, wherein said at least one combustion chamber wall defines a first combustion chamber having a first upstream end and a first downstream end, a second combustion chamber having a second upstream end and a second downstream end and said dilution chamber, and said means for introducing said mixture of fuel and combustion air comprises at least one primary said at least one inspirator in communication with said first combustion chamber and at least one secondary said at least inspirator in communication with said second combustion chamber.
- 11. In a fixed geometry combustor in accordance with claim 10, wherein said means for introducing said mixture of fuel and combustion air further comprises at least one primary nozzle secured to said at least one combustion chamber wall, said at least one primary nozzle in communication with said first combustion chamber and said at least one primary inspirator and at least one secondary nozzle secured to said at least one combustion chamber wall, said at least one secondary nozzle in communication with said second combustion chamber and said at least one secondary inspirator.
- 12. In a fixed geometry combustor in accordance with claim 11, wherein each of said first combustion chamber, said second combustion chamber and said dilution chamber is cylindrical, the diameter of said first combustion chamber being less than the diameter of said second combustion chamber.
- 13. In a fixed geometry combustor in accordance with claim 10, wherein a first orifice wall is disposed between said first downstream end of said first combustion chamber and said second upstream end of said second combustion chamber, said first orifice wall forming a first orifice between said first combustion chamber and said second combustion chamber.
- 14. In a fixed geometry combustor in accordance with claim 13, wherein said first orifice diverges in a direction from said first combustion chamber to said second combustion chamber.
- 15. In a fixed geometry combustor in accordance with claim 10, wherein a second orifice wall is disposed between said second downstream end of said second combustion chamber and said dilution chamber, said second orifice wall forming a second orifice between said second combustion chamber and said dilution chamber.
- 16. In a fixed geometry combustor in accordance with claim 8, wherein at least one of said at least one primary nozzle and said at least one secondary nozzle is tangentially mounted whereby at least one of a first portion of said mixture of fuel and combustion air and a second portion of said mixture of fuel and combustion air is tangentially introduced into at least one of said first combustion chamber and said second combustion chamber.
- 17. A fixed geometry combustor for a gas turbine comprising:
- at least one combustion chamber wall defining at least one combustion chamber having an upstream end and a downstream end;
- at least one dilution chamber wall defining a dilution chamber disposed downstream of said at least one combustion chamber and in communication with said at least one combustion chamber;
- combustion means for introducing a fuel/air mixture into said at least one combustion chamber; and
- dilution means for introducing dilution air into said dilution chamber, said combustion means and said dilution means adjusting the amount of combustion air and dilution air introduced into said at least one combustion chamber and said dilution chamber, respectively, in response to changes in the load on said gas turbine without employing any moving parts external to said gas turbine so as to maintain about a constant total amount of air flowing into said combustor.
- 18. A fixed geometry combustor in accordance with claim 17, wherein said combustion means comprises at least one primary inspirator in communication with said at least one combustion chamber.
- 19. A fixed geometry combustor in accordance with claim 18, wherein said combustion means for introducing said fuel/air mixture into said at least one combustion chamber comprises at least one nozzle secured to said at least one combustion chamber wall, said at least one nozzle in communication with said at least one primary inspirator and said at least one combustion chamber.
- 20. A fixed geometry combustor in accordance with claim 19, wherein said at least one nozzle is tangentially mounted whereby said fuel/air mixture is tangentially introduced into said at least one combustion chamber.
- 21. A fixed geometry combustor in accordance with claim 17, wherein said dilution means for introducing said dilution air into said dilution chamber comprises said at least one combustion chamber wall forming an annular passage around said at least one combustion chamber and at least a portion of said dilution chamber, said annular passage in communication with said dilution chamber, and means for introducing said dilution air into said annular passage in communication with said annular passage.
- 22. A fixed geometry combustor in accordance with claim 17, wherein said at least one combustion chamber wall defines a first combustion chamber having a first upstream end and a first downstream end and a second combustion chamber disposed downstream of said first combustion chamber in communication with said first combustion chamber, said second combustion chamber having a second upstream end and a second downstream end, said dilution chamber is disposed downstream of said second combustion chamber and in communication with said second combustion chamber, said dilution chamber having a dilution upstream end and a dilution downstream end, said dilution downstream end in communication with a gas turbine inlet, and said combustion means further comprises said at least one primary inspirator in communication with said first combustion chamber and at least one secondary inspirator in communication with said second combustion chamber.
- 23. A fixed geometry combustor in accordance with claim 22, wherein said combustion means for introducing said fuel/air mixture further comprises at least one primary nozzle secured to said at least one combustion chamber wall, said primary nozzle in communication with said first combustion chamber and Said at least one primary inspirator, and at least one secondary nozzle secured to said at least one combustion chamber wall, said secondary nozzle in communication with said second combustion chamber and said at least one secondary inspirator.
- 24. A fixed geometry combustor in accordance with claim 22, wherein said dilution means for introducing said dilution air into said dilution chamber comprises said at least one combustion chamber wall forming an annular passage around said first combustion chamber, said second combustion chamber and said dilution chamber, said annular passage in communication with said dilution chamber, and means for introducing said dilution air into said annular passage in communication with said annular passage.
- 25. A fixed geometry combustor in accordance with claim 22, wherein each of said first combustion chamber, said second combustion chamber and said dilution chamber is cylindrical, the diameter of said first combustion chamber being less than the diameter of said second combustion chamber.
- 26. A fixed geometry combustor in accordance with claim 22, wherein a first orifice wall is disposed between said first downstream end of said first combustion chamber and said second upstream end of said second combustion chamber, said first orifice wall forming a first orifice between said first combustion chamber and said second combustion chamber.
- 27. A fixed geometry combustor in accordance with claim 26, wherein said first orifice diverges in a direction from said first combustion chamber to said second combustion chamber.
- 28. A fixed geometry combustor in accordance with claim 26, wherein a second orifice wall is disposed between said second downstream end of said second combustion chamber and said dilution upstream end of said dilution chamber, said second orifice wall forming a second orifice between said second combustion chamber and said dilution chamber.
- 29. A fixed geometry combustor in accordance with claim 23, wherein at least one of said at least one primary nozzle and said at least one secondary nozzle is tangentially mounted whereby said fuel/air mixture is tangentially introduced into at least one of said first combustion chamber and said second combustion chamber.
Parent Case Info
This application is a continuation of application Ser. No. 08/066,787, filed 24 May 1994, now abandoned.
US Referenced Citations (23)
Foreign Referenced Citations (7)
Number |
Date |
Country |
0062149 |
Oct 1982 |
EPX |
0161561 |
Nov 1985 |
EPX |
0266857 |
May 1988 |
EPX |
1230621 |
Sep 1960 |
FRX |
3305254 |
Aug 1984 |
DEX |
3835415 |
May 1989 |
DEX |
2021201 |
Nov 1979 |
GBX |
Non-Patent Literature Citations (1)
Entry |
Carlstrom et al., "Improved Emissions Performance in Today's Combustion System", General Electric AEG/SOA 7805, pp. 17-18, Jun. 1978. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
66787 |
May 1993 |
|