Embodiments of the invention relate to low emission power generation in hydrocarbon recovery processes. More particularly, embodiments of the invention relate to methods and systems for using high turbine discharge temperatures generated by oxyfuel combustion (i) to encourage post-combustor conversion of gaseous components such that a desired chemical state is achieved and (ii) to reform a control fuel stream to generate a reformed control fuel stream characterized by an increase in hydrogen.
This section is intended to introduce various aspects of the art, which may be associated with exemplary embodiments of the present invention. This discussion is believed to assist in providing a framework to facilitate a better understanding of particular aspects of the present invention. Accordingly, it should be understood that this section should be read in this light, and not necessarily as admissions of prior art.
Many enhanced hydrocarbon recovery operations can be classified as one of the following types: pressure maintenance and miscible flooding. In a pressure maintenance operation, inert gasses such as nitrogen are injected into a primarily gaseous reservoir to maintain at least a minimal pressure in the reservoir to prevent retrograde condensation and improve total recovery. In a miscible flooding operation, miscible gasses such as carbon dioxide are injected into a primarily liquidous reservoir to mix with the liquids, lowering their viscosity and increasing pressure to improve the recovery rate.
Many oil producing countries are experiencing strong domestic growth in power demand and have an interest in enhanced oil recovery (EOR) to improve oil recovery from their reservoirs. Two common EOR techniques include nitrogen (N2) injection for reservoir pressure maintenance and carbon dioxide (CO2) injection for miscible flooding for EOR. At the same time there is a global concern regarding green house gas (GHG) emissions. This concern combined with the implementation of cap-and-trade policies in many countries make reducing CO2 emissions a priority for these and other countries as well as the companies that operate hydrocarbon production systems therein.
Some approaches to lower CO2 emissions include fuel de-carbonization or post-combustion capture. However, both of these solutions are expensive and reduce power generation efficiency, resulting in lower power production, increased fuel demand and increased cost of electricity to meet domestic power demand. Another approach is an oxyfuel gas turbine in a combined cycle (e.g. where exhaust heat from the gas turbine Brayton cycle is captured to make steam and produce additional power in a Rankin cycle). However, the power required to produce high purity oxygen significantly reduces the overall efficiency of the process. Several studies have compared these processes and show some of the advantages of each approach. See, e.g. BOLLAND, OLAV, and UNDRUM, HENRIETTE, Removal of CO2 from Gas Turbine Power Plants: Evaluation of pre-and post-combustion methods, SINTEF Group, found at http://www.energy.sintef.no/publ/xergi/98/3/3art-8-engelsk.htm (1998).
Nonetheless, there is still a substantial need for a low emission, high efficiency power generation and hydrocarbon recovery process.
A low emission, high efficiency power generation and hydrocarbon recovery process is described in PCT Patent Application PCT/US2009/038247 titled “LOW EMISSION POWER GENERATION AND HYDROCARBON RECOVERY SYSTEMS AND METHODS” which claims the benefit of U. S. Provisional Application No. 61/072,292, filed 28 Mar. 2008, and U.S. Provisional Application No. 61/153,508, filed 18 Feb. 2009 (all of which are incorporated herein by reference in their entirety). The present invention constitutes improvements to the methods and systems of the PCT/US2009/038247 application.
More specifically, one embodiment of the present invention comprises an oxygen stream, a carbon dioxide stream, a control fuel stream, a combustion unit, a turbine, and a plenum. The combustion unit is configured to receive and combust the oxygen stream, the carbon dioxide stream, and the control fuel stream to produce a gaseous combustion stream having substantially carbon dioxide and water. The gaseous combustion stream has a temperature of at least 1800 degrees Fahrenheit. The turbine is configured to receive the gaseous combustion stream, expand the gaseous combustion stream, and exhaust the expanded gaseous combustion stream as a turbine discharge stream. The turbine discharge stream has a temperature of at least 1200 degrees Fahrenheit. The plenum is in fluid communication with the turbine for receiving the turbine discharge stream. The plenum is configured to provide a residence time during at least one individual component of the turbine discharge stream reacts chemically towards equilibrium and substantially converts an intermediate product to an equilibrium product.
Another embodiment of the present invention comprises a combustion unit, a turbine, and a steam reformer. The combustion unit is configured to produce a gaseous combustion stream. The turbine is configured to receive the gaseous combustion stream, expand the gaseous combustion stream, and exhaust the expanded gaseous combustion stream as a turbine discharge stream. The turbine discharge stream has a temperature of at least 1200 degrees Fahrenheit. The steam reformer is configured to receive the turbine discharge stream and the control fuel stream, extract heat from the turbine discharge stream, and transfer the heat into a reformer feed stream to generate a reformer product stream.
Yet another embodiment of the present invention comprises the steps of providing an oxygen stream, a carbon dioxide stream, and a control fuel stream; combusting the oxygen stream, the carbon dioxide stream, and the control fuel stream to produce a gaseous combustion stream; expanding the gaseous combustion stream across a turbine to form an expanded gaseous combustion stream; and providing a residence time for the expanded gaseous combustion stream to reach substantial chemical equilibrium, wherein the residence time is provided by a plenum configured to retain the expanded gaseous combustion stream for the residence time.
Still yet another embodiment of the present invention comprises the steps of providing an oxygen stream, a carbon dioxide stream, a control fuel stream, and a reformed control fuel stream; combusting the oxygen stream, the carbon dioxide stream, and the reformed control fuel stream to produce a gaseous combustion stream; expanding the gaseous combustion stream across a turbine to form an expanded gaseous combustion stream; and reforming the control fuel stream to form the reformed control fuel stream using heat extracted from the expanded gaseous combustion stream. The gaseous combustion stream has a temperature of at least 1800 degrees Fahrenheit. The reformed control fuel stream is characterized by an increase in hydrogen as compared to the control fuel stream.
The foregoing and other advantages of the present invention may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments in which:
As used herein, the “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein unless a limit is specifically stated.
As used herein, the terms “comprising,” “comprises,” and “comprise” are open-ended transition terms used to transition from a subject recited before the term to one or more elements recited after the term, where the element or elements listed after the transition term are not necessarily the only elements that make up of the subject.
As used herein, the terms “containing,” “contains,” and “contain” have the same open-ended meaning as “comprising,” “comprises,” and “comprise.”
As used herein, the terms “having,” “has,” and “have” have the same open-ended meaning as “comprising,” “comprises,” and “comprise.”
As used herein, the terms “including,” “includes,” and “include” have the same open-ended meaning as “comprising,” “comprises,” and “comprise.”
As used herein, the term “equivalence ratio” refers to the mass ratio of fuel to oxygen entering a combustor divided by the mass ratio of fuel to oxygen when the ratio is stoichiometric.
As used herein, a “stoichiometric” mixture is a mixture having a volume of reactants, which is comprised of fuel and oxidizer, and a volume of products formed by combusting the reactants where the entire volume of the reactants is used to form the products
In the following detailed description section, specific embodiments of the present invention are described in connection with preferred embodiments. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present invention, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the invention is not limited to the specific embodiments described below, but rather, it includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
A low emission, high efficiency hydrocarbon recovery process is described in PCT Patent Application PCT/US2009/038247 titled “LOW EMISSION POWER GENERATION AND HYDROCARBON RECOVERY SYSTEMS AND METHODS” which claims the benefit of U.S. Provisional Application No. 61/072,292, filed 28 Mar. 2008, and U.S. Provisional Application No. 61/153,508, filed 18 Feb. 2009.
With reference to
In general, the gaseous combustion stream 122 is received by a turbine 124 and is expanded across the turbine 124. In at least one embodiment the turbine 124 is configured such that the expansion of the stream 122 across the turbine 124 generates power, such as electric power generated by an electric generator 126 coupled to the turbine 124. The expanded stream 122 may then be exhausted as a turbine discharge stream 128. In at least one embodiment the turbine discharge stream 128 has a pressure substantially equal to 1 bar. In another embodiment, the turbine discharge stream 128 has a pressure substantially between 1 and 2 bars. However, the turbine discharge stream 128 may have any appropriate pressure resulting from the design criteria of a particular application. Similarly, in at least one embodiment, the turbine discharge stream 128 has a temperature substantially between 1200 and 1800 degrees Fahrenheit. In at least one other embodiment, the turbine discharge stream 128 has a temperature substantially between 1350 and 1700 degrees Fahrenheit. However, the turbine discharge stream 128 may have any appropriate temperature resulting from the design criteria of a particular application.
As will be described in subsequent paragraphs, the discharge stream 128 may be implemented in conjunction with one or more additional devices and/or structure to meet the design criteria of a particular application. As shown in
Various cooling (e.g., 140) and compression techniques (e.g., 142) may be applied to the gaseous exhaust stream 132 or components of the gaseous exhaust stream 132 to meet the design criteria of a particular application. For example, flue gas cooling 140 may be implemented to separate water (H2O) 150 from the stream 132 such that the concentration of CO2 in the resulting stream 152 is greater than the concentration of CO2 in stream 132. All or a portion of the resultant stream 152 may then be compressed (e.g., via compressor 142) and/or otherwise configured for use in one or more processes such as enhanced oil recovery (EOR) 160. Similarly, all or a portion (e.g., 70-100%) of the resultant stream 152 (compressed or otherwise) may be recirculated as the CO2 stream 110.
Turning now to
Similarly, the control fuel stream 112 may be generated from a carbon dioxide flood reservoir (such as an oil well) 304 and/or a hydrocarbon fuel supply line 306. In at least one embodiment the carbon dioxide stream 110 may also be generated from the oil well 304. It may be appreciated that the system 300 provides the option to utilize one source (e.g., the stream 152) for the carbon dioxide stream 110 during system 300 startup and a second source (e.g., reservoir/oil well 304) during continued system 300 operation or visa-versa.
Referring to
In conventional non-oxyfuel high-pressure combustors used in power generating applications, the gases only reside in a combustor for a short period time (e.g., 40 ms) before entering a turbine. Because the reaction rate declines with temperature, the reaction is effectively “frozen” as the gases cool through the turbine's expander. In such a system the reaction is not able to reach equilibrium and the chemistry does not continue at measurable rates downstream in the system. The present invention configures the oxyfuel combustion system temperature, pressure and gas composition to generate a higher temperature turbine discharge stream that is generally still of a sufficient temperature to promote chemical reactions. The plenum 402 claimed in the present invention is designed and implemented to provide a suitable residence time during which individual components of a turbine discharge stream (e.g., 128) may continue to react until, upon exiting the plenum 402, the individual components have reached, or substantially reached, a desired reaction state. The resultant plenum exhaust stream 404 may then be utilized in subsequent processes (e.g., EOR) to meet a specified compositional design criteria of a pipeline or other particular application.
In one embodiment, the residence time is predetermined such that at least one individual component of the turbine discharge stream 128 continues to react chemically until the reaction reaches substantial equilibrium (i.e., one or more intermediate product is substantially converted to an equilibrium product). In at least one embodiment, substantial equilibrium may be considered the chemical reaction point at which the concentration of an individual component (e.g., oxygen, carbon monoxide, a hydrocarbon intermediate species, an unburned hydrocarbon intermediate species, formaldehyde, and/or the like) of the turbine discharge stream 128 becomes less than 10% greater than an equilibrium concentration of the individual component.
In yet another embodiment, the residence time maybe predetermined such that at least a predetermined percentage (e.g., 50%, 75%, 90%, etc.) of an individual component (e.g., oxygen, carbon monoxide, a hydrocarbon intermediate species, an unburned hydrocarbon intermediate species, formaldehyde, and/or the like) of the turbine discharge stream 128 at an exit of the turbine 124 is converted to an equilibrium product at an exit of the plenum 402.
Alternatively, the residence time may be predetermined such that the at least one individual component of the turbine discharge stream 128 reacts chemically until the individual component(s) is suitable for use with an Enhanced Oil Recovery process. In at least one such embodiment, the individual components may include oxygen and carbon monoxide, and the components may be determined to be suitable for use with an Enhanced Oil recovery Process when the oxygen has a concentration equal to or less than 10 parts-per-million and the carbon monoxide has a concentration equal to or less than 1000 parts-per-million.
One or more embodiments of the present invention may include a plenum 402 that provides a residence time substantially between 0.1 and 10 seconds. In another embodiment, the plenum 402 may provide a residence time substantially between 0.1 and 2 seconds. In yet another embodiment, the plenum 402 may provide a residence time greater than 1 second. However, the plenum 402 may be configured to provide any appropriate residence time to meet the design criteria of a particular application.
It may be understood from the present disclosure that residence time is essentially a function of the velocity of the gas passing through the plenum 402 and the volume of the plenum 402. As such, the volume of the plenum 402 may be determined to effectuate a desired residence time knowing the density of the turbine discharge stream 128. In at least one embodiment, the plenum 402 has a constant cross-sectional area and a center line length 406 (illustrated in
As such,
The reformed control fuel stream 504 is generally characterized by an increase in hydrogen as compared to the control fuel stream 112 and in one embodiment is substantially comprised of hydrogen and carbon monoxide. The reformed control fuel stream 504 is then fed to the combustion unit 120 in place of the control fuel stream 112 of
In general the steam reformer 502 is in fluid communication with the turbine 124 and in at least one embodiment the reformer 502 may be directly coupled to the turbine 124. In addition, one or more embodiments of the present invention may include a steam reformer 502 in fluid communication with and located upstream from a heat recovery steam generator 130. That is, the heat recovery steam generator 130 may receive the reformer exhaust gas 510.
As such, in at least one embodiment the plenum 402, described in connection with the system 400, and the steam reformer 502, described in connection with the system 500, may be advantageously implemented in a single system (e.g., 600) to meet the design criteria of a particular application.
Turning now to
Block 704 represents the step of providing an oxygen stream (e.g., 108), a carbon dioxide stream (e.g., 110), and a control fuel stream (e.g., 112).
Block 706 represents an optional step of compressing the carbon dioxide (CO2 ). In at least one embodiment, CO2 may be compressed to between 12 and 18 barg. However, the CO2 may be compressed to any appropriate pressure to meet the design criteria of a particular application. In at least one embodiment, the pressure of the CO2 at the combustor (e.g., 120) may be substantially similar to the pressure of the CO2 at the source (e.g., 104). In such an embodiment, post source compression may be unnecessary.
Block 708 represents the step of combusting the oxygen stream, the carbon dioxide stream, and the control fuel stream to produce a gaseous combustion stream (e.g., 122). In general, the gaseous combustion stream includes CO2 and water at a pressure between 12 and 18 bar. More specifically, the gaseous combustion stream may be between 70 and 80 percent CO2. However, the gaseous combustion stream may include any appropriate components at any appropriate concentration(s) and at any appropriate pressure(s) to meet the design criteria of a particular application. In one embodiment, the temperature of the gaseous combustion stream is greater than or equal to 1800 degrees Fahrenheit. In another embodiment the temperature of the gaseous combustion stream is substantially between 1900 and 2700 degrees Fahrenheit. In yet another embodiment, the temperature of the gaseous combustion stream is substantially between 2200 and 2500 degrees Fahrenheit. However, the temperature of the gaseous combustion stream may be any appropriate temperature to meet the design criteria of a particular application.
Block 710 represents the step of expanding the gaseous combustion stream across a turbine (e.g., 124) to form an expanded gaseous combustion stream (e.g., turbine discharge stream 128). The temperature of the expanded gaseous combustion stream is higher than the exhaust temperature of a similar non-oxyfuel gas turbine system. In at least one embodiment, the expanded gaseous combustion stream has a temperature substantially between 1200 and 1800 degrees Fahrenheit. In at least one other embodiment, the expanded gaseous combustion stream has a temperature substantially between 1350 and 1700 degrees Fahrenheit. However, the expanded gaseous turbine stream may be of any appropriate temperature resulting from the design criteria of a particular application.
Block 712 represents the optional step of generating power from the expansion of the gaseous stream across the turbine (i.e., Block 710).
Block 714 represents the step of providing a residence time for the expanded gaseous combustion stream to reach a desired chemical state, such as substantial chemical equilibrium. In at least one embodiment, the residence time is provided by a plenum (e.g., 402) configured to retain the expanded gaseous combustion stream for the residence time. As discussed in connection with
Block 716 represents the optional step of generating power, using a heat recovery steam generator (e.g., 130), from the expanded gaseous combustion stream after the step of providing a residence time (i.e., Block 714).
Block 718 represents the optional step of reforming the control fuel stream (e.g., methane) using heat extracted from the expanded gaseous combustion stream into, for example, Hydrogen and Carbon Monoxide.
Last, blocks 720 and 722 represent the optional steps of extracting carbon dioxide (e.g., from the gaseous combustion stream); and applying the carbon dioxide in an Enhanced Oil Recovery process, respectively.
Block 724 represents and exit from the method 700.
At
Block 804 represents the step of providing an oxygen stream (e.g., 108), a carbon dioxide stream (e.g., 110), a control fuel stream (e.g., 112), and a reformed control stream (e.g., 504).
Block 806 represents an optional step of compressing the carbon dioxide (CO2 ). In at least one embodiment, CO2 may be compressed to between 12 and 18 barg. However, the CO2 may be compressed to any appropriate pressure to meet the design criteria of a particular application. In at least one embodiment, the pressure of the CO2 at the combustor (e.g., 120) may be substantially similar to the pressure of the CO2 at the source (e.g., 104). In such an embodiment, post source compression may be unnecessary.
Block 808 represents the step of combusting the oxygen stream, the carbon dioxide stream, and the reformed control fuel stream to produce a gaseous combustion stream (e.g., 122). In general, the gaseous combustion stream includes CO2 and water (H2O) at a pressure between 12 and 18 bar. More specifically, the gaseous combustion stream may be between 70 and 80 percent CO2. However, the gaseous combustion stream may include any appropriate components at any appropriate concentration(s) and at any appropriate pressure(s) to meet the design criteria of a particular application. In one embodiment, the temperature of the gaseous combustion stream is greater than or equal to 1800 degrees Fahrenheit. In at least one other embodiment the temperature of the gaseous combustion stream is substantially between 1900 and 2700 degrees Fahrenheit. In yet another embodiment, the temperature of the gaseous combustion stream is substantially between 2200 and 2500 degrees Fahrenheit. However, the temperature of the gaseous combustion stream may be any appropriate temperature to meet the design criteria of a particular application.
Block 810 represents the step of expanding the gaseous combustion stream across a turbine (e.g., 124) to form an expanded gaseous combustion stream (e.g., turbine discharge stream 128). The temperature of the expanded gaseous combustion stream is higher than the exhaust temperature of a similar non-oxyfuel gas turbine system. In at least one embodiment, the expanded gaseous combustion stream has a temperature substantially between 1200 and 1800 degrees Fahrenheit. In at least one other embodiment, the expanded gaseous combustion stream has a temperature substantially between 1350 and 1700 degrees Fahrenheit. However, the expanded gaseous turbine stream may be of any appropriate temperature resulting from the design criteria of a particular application.
Block 812 represents the optional step of generating power from the expansion of the gaseous stream across the turbine (i.e., Block 810).
Block 814 represents the step of reforming the control fuel stream, using heat extracted from the expanded gaseous combustion stream, to form the reformed control fuel stream. In general, the reformed control fuel stream may be characterized by an increase in hydrogen as compared to the control fuel stream. From Block 814 the method 800 may fall through to any number (or none) of optional steps such as one or more of Blocks 816, 818, and/or 820.
Block 816 represents the optional step of generating power, using a Heat recovery steam generator (e.g., 130), from the expanded gaseous combustion stream after the step of reforming (i.e., Block 814).
Blocks 818 and 820 represent the optional steps of extracting carbon dioxide (e.g., from the gaseous combustion stream); and applying the carbon dioxide in an Enhanced Oil Recovery process, respectively.
Block 822 represents and exit from the method 800.
Turning now to
Taken together,
With regard to the graph 900 of
With regard to graph 1000 of
As previously mentioned, a complicating factor with conventional high-pressure combustors used in power generating devices, such as gas turbines, is that the gaseous combustion stream only resides in the combustor for a relatively short time, on the order of 40 ms, before entering the turbine. As a result, the composition is “frozen” because the reaction is quenched as the gas cools through the turbine's expander. There is not enough energy (e.g. low temperature) to allow reactions to progress toward equilibrium at a measurable rate.
In the proposed configuration of the oxyfuel gas turbine the temperature, pressure and reactant composition are configured to produce a turbine discharge stream with a temperature that is high enough to drive continued reaction toward equilibrium over a calculated residence time. For example, a potential turbine inlet temperature of 1750 K (2690 F) is marked by the line labeled “B” on graph 900, 1000 and 1100. Line “B” indicates an O2 equilibrium level of the order of 300-500 ppm; however, Line B of graph 1100 indicates that the realistic O2 concentration after 40 ms are up to an order of magnitude higher than the equilibrium levels shown at corresponding Line B of graph 900. It may be noted that the O2 level at Line B of graph 1100 is greater than one thousand ppm (12 bar, phi=1.0). Such a concentration of O2 is generally unacceptably high for pipeline (i.e., down hole) applications. After expansion across the turbine, the turbine discharge temperature is expected to be on the order or 1200 K. If a plenum is built into the system that allows the chemistry to progress toward equilibrium, the O2 mole fraction, as indicated by line “A” in 1000, will be less than 0.00001 (10 ppm).
Graph 1200 of
The present invention may be susceptible to various modifications and alternative forms and the exemplary embodiments discussed above have been shown only by way of example. It should be understood that the invention is not intended to be limited to the particular embodiments disclosed herein. Indeed, the present invention includes all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application 61/238,971 filed 1 Sep. 2009 entitled LOW EMISSION POWER GENERATION AND HYDROCARBON RECOVERY SYSTEMS AND METHODS, the entirety of which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/41548 | 7/9/2010 | WO | 00 | 1/27/2012 |
Number | Date | Country | |
---|---|---|---|
61238971 | Sep 2009 | US |