1. Field of the Invention
This invention relates to gas turbine combustors and more specifically to a method of operating such a gas turbine so as to reduce emissions of nitrous oxides.
2. Description of Related Art
In an effort to reduce the amount of pollution emissions from gas-powered turbines, governmental agencies have enacted numerous regulations requiring reductions in the amount of emissions, especially nitrogen oxide (NOx) and carbon monoxide (CO). Lower combustion emissions can be attributed to a more efficient combustion process, with specific regard to fuel injectors and nozzles. Early combustion systems utilized diffusion type nozzles that produce a diffusion flame, which is a nozzle that injects fuel and air separately and mixing occurs by diffusion in the flame zone. Diffusion type nozzles produce high emissions due to the fact that the fuel and air burn stoichiometrically at high temperature to maintain adequate combustor stability and low combustion dynamics.
An enhancement in fuel injector technology over diffusion nozzles is the utilization of some form of premixing, such that the fuel and air mix prior to combustion to form a homogeneous mixture that burns at a lower temperature than a diffusion type flame and produces lower NOx emissions. Premixing can occur either internal to the fuel nozzle or external thereto, as long as it is upstream of the combustion zone. While combustion systems having premixing technology can lower emissions, the lower flame temperature associated with the premixing can cause flame stability and combustion dynamics issues.
What is needed is a system that can provide the benefits of flame stability and low combustion dynamics associated with the diffusion type nozzles with the low emissions benefits of the premix type nozzles.
The present invention seeks to overcome the shortfalls of the prior art by providing a method of operating a gas turbine combustor to achieve overall lower emissions of nitrous oxides by supplying a mixture of natural gas and hydrogen gas to the combustion chamber of the gas turbine in a manner that the localized concentration of hydrogen gas is greater than 0.1% by mass of the mass of the mixture, and less than 20.0% by mass of the mixture prior to combusting the mixture in the combustion chamber.
It is an object of the present invention to reduce nitrous oxide emissions produced by operation of gas turbine engines.
It is a further object of the present invention to reduce nitrous oxide emissions in existing gas turbines without significant retrofitting of the hardware currently in use on such gas turbine engines.
In accordance with these and other objects, which will become apparent hereinafter, the instant invention will now be described with particular reference to the accompanying drawings.
As shown in
The fuel nozzles, both primary and secondary, may be identical to one another as disclosed in the U.S. Pat. No. 4,292,801 (i.e. the nozzles are all of the diffusion type). A diffusion nozzle 16 includes a fuel delivery nozzle 20 and an annular swirler 22. The nozzle 20 delivers only fuel, which is then subsequently mixed with swirler air for combustion. Alternatively, the primary fuel nozzles may be identical to one another (i.e. the nozzles are all of the diffusion type) but the secondary may be a different type that incorporates a premixing type nozzle, a diffusion type nozzle, or both as disclosed in U.S. Pat. No. 4,982,570. For further fuel-air mixing adjacent secondary nozzle 18, it is desirable to have a secondary swirler 19 encompass secondary nozzle 18 as shown in FIG. 1.
During base-load operation, combustors such as the one shown in
The applicant has discovered that NOx emissions can be further reduced by providing at least one fuel nozzle upstream from the combustion chamber for introducing fuel into the first combustion chamber and supplying a mixture of fuel to said combustion chamber through said at least one fuel nozzle in which the fuel comprises natural gas and hydrogen gas. The fuel is introduced into the combustion chamber in such a manner as to create localized concentrations of hydrogen gas in the combustion chamber in which the hydrogen gas in the mixture is greater than 0.1% by mass of the mass of said mixture, and less than 20.0% by mass of said mixture. In the case of a combustor having a secondary fuel combustion having a diffusion type nozzle, this can be achieved by providing the mixture containing hydrogen gas comprising greater than 0.1% by mass of the mass of said mixture, and less than 20.0% by mass of said mixture directly to the diffusion nozzle, or premixed nozzle, of the secondary fuel nozzle. When this mixture is subsequently combusted in the combustion chamber, the NOx is reduced as a result of the lower flame temperature produced by the mixture of hydrogen gas and natural gas as compared to fuel containing only natural gas. More specifically, applicant has determined that the addition of hydrogen gas to the natural gas fuel allows gas turbine operation at reduced flame temperature, which in turn reduces NOx production. The addition of hydrogen allows stable operation at lower flame temperature due to the presence of a higher concentration of OH radicals in the flame. This allows more air to be introduced in the premixer while maintaining stable operation and adequate burnout of carbon monoxide.
While additions of hydrogen gas in amounts in excess of 0.1% by mass of the mixture provide benefits in NOx reduction, most of the benefits of adding hydrogen gas to the mixture are achieved by adding hydrogen gas in amounts up to 20.0% by mass of the mixture. Beyond this amount, the flame speed increases caused by the hydrogen gas additions require significant modifications to the typical combustion hardware to accommodate the higher flame speeds. In addition, since hydrogen gas typically costs about three (3) times the cost of natural gas, fuel mixtures having higher concentrations of hydrogen gas are likewise undesirable.
Although the invention has just been described in terms of a typical combustor having two combustion chambers and multiple fuel nozzles, those skilled in the art will readily appreciate that the method of the present invention can be practiced even in combustor having a single combustion chamber and a single fuel nozzle, as long as the hydrogen gas can be supplied to the combustion chamber in a manner that produces a local concentration of hydrogen gas so that localized concentrations of hydrogen gas in the mixture are greater than 0.1% by mass of the mass of said mixture, and less than 20.0% by mass of said mixture. For example, a small amount of hydrogen gas could be added asymmetrically in the manner known in the art, to produce a film of hydrogen gas and natural gas in which the concentration of hydrogen is within the range specified and claimed in this disclosure. This application is not limited to the specific mechanism for creating the desired localized concentration of hydrogen gas relative to the mixture, but rather to the use of a mixture of hydrogen gas and natural gas within the claimed range of concentrations to provide a stabilizing flame for the combustor that produces significantly less NOx than prior art methods of operating gas turbine combustors.
While the invention has been described in what is known as presently the preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment but, on the contrary, is intended to cover various modifications and equivalent arrangements within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3446012 | Foster-Pegg | May 1969 | A |
4292801 | Wilkes et al. | Oct 1981 | A |
4982570 | Waslo et al. | Jan 1991 | A |
5216876 | Gabrielson et al. | Jun 1993 | A |
6164055 | Lovett et al. | Dec 2000 | A |
6298652 | Mittricker et al. | Oct 2001 | B1 |
6523351 | Mittricker et al. | Feb 2003 | B2 |
6585784 | Mittricker | Jul 2003 | B1 |
6722132 | Stuttaford et al. | Apr 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040172949 A1 | Sep 2004 | US |