Claims
- 1. An electrical power cable for supplying downhole electrical heating power in an A.C. electrical heating system for heating a fluid reservoir in the vicinity of a mineral fluid well, utilizing A.C. electrical power in a range of 25 to 1000 Hz, the well comprising a borehole extending down through an overburden and through a subterranean fluid reservoir, the well including an electrically conductive upper casing extending around the borehole in the overburden, at least one electrically conductive heating electrode located in the reservoir, and an electrically insulating casing between the upper casing and the heating electrode, the electrical power cable extending down through the conductive upper casing to the heating electrode to supply electrical power to the heating electrode, the electrical power cable comprising three electrical conductors, electrically isolated from each other, and an armor sheath of magnetic material encompassing the conductors, the conductors being electrically terminated within a zone that immediately surrounds the heating electrode and adjacent formations, with a net vertical current of approximately zero in the conductors so that eddy current and skin effect losses in the armor sheath are minimized.
- 2. An electrical power cable for supplying downhole electrical heating power in an electrical heating system for a mineral fluid well, according to claim 1 in which the three electrical conductors are all of approximately the same cross-sectional area.
- 3. An electrical power cable for supplying downhole electrical heating power in an electrical heating system for a mineral fluid well, according to claim 1, in which two of the electrical conductors each have a first cross-sectional area and the third electrical conductor has a cross sectional area substantially larger than the first cross-sectional area.
- 4. An electrical power cable for supplying downhole electrical heating power in an electrical heating system for a mineral fluid well, according to claim 3 in which:
- the third electrical conductor is of rectangular cross-sectional configuration;
- the two electrical conductors are located on opposite sides of the third electrical conductor; and
- the cable further comprises electrical insulation interposed between the two electrical conductors and the third electrical conductor to electrically isolate each of the two electrical conductors from the third electrical conductor.
- 5. An electrical power cable for supplying downhole electrical heating power in an electrical hating system for a mineral fluid well, according to claim 4 in which each of the two electrical conductors is of L-shaped cross-sectional configuration.
- 6. An electrical power cable for supplying downhole electrical heating power in an A.C. electrical heating system for heating a fluid reservoir in the vicinity of a mineral fluid well, utilizing A.C. electrical power in a range of 25 to 1000 Hz, the well comprising a borehole extending down from the surface through an overburden and through a subterranean fluid reservoir, the well including an electrically conductive upper casing extending around the borehole in the overburden, an electrically conductive heating electrode located in the reservoir, the heating electrode having a length smaller than the depth of the reservoir, and an electrically insulating casing between the upper casing and the heating electrode, the electrical power cable extending down through the conductive upper casing to the heating electrode to supply electrical power to the heating electrode, the electrical power cable comprising: at least two electrical conductors of approximately equal cross-sectional area each encompassed by an insulator sheath so that the two conductors are electrically isolated from each other, and an armor sheath of magnetic steel encompassing the conductors, the conductors being electrically terminated within a zone that immediately surrounds the heating electrode and adjacent formations, with one conductor connected to and terminated at the heating electrode in the reservoir and the other conductor electrically connected to and terminated at the upper casing immediately above the reservoir, and with a total net vertical current in the conductors of approximately zero so that eddy current and skin effect losses in the armor sheath are minimized, none of the conductors being grounded at the surface.
Parent Case Info
This patent application is a continuation of application Ser. No. 08/397,440, filed Mar. 1, 1995, now abandoned.
US Referenced Citations (9)
Continuations (1)
|
Number |
Date |
Country |
Parent |
397440 |
Mar 1995 |
|